
mmalloc
The GNU memory-mapped malloc package

Fred Fish
Cygnus Support
Mike Haertel
Free Software Foundation



Cygnus Support
fnf@cygnus.com

MMALLOC, the GNU memory-mapped malloc package, Revision: 1.4
TEXinfo 2003-02-03.16

Copyright c© 1992 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.



Chapter 1: Overall Description 1

1 Overall Description

This is a heavily modified version of GNU malloc. It uses mmap as the basic mechanism
for obtaining memory from the system, rather than sbrk. This gives it several advantages
over the more traditional malloc:
• Several different heaps can be used, each of them growing or shinking under control of

mmap, with the mmalloc functions using a specific heap on a call by call basis.
• By using mmap, it is easy to create heaps which are intended to be persistent and exist

as a filesystem object after the creating process has gone away.
• Because multiple heaps can be managed, data used for a specific purpose can be allo-

cated into its own heap, making it easier to allow applications to “dump” and “restore”
initialized malloc-managed memory regions. For example, the “unexec” hack popular-
ized by GNU Emacs could potentially go away.



2 MMALLOC, the GNU memory-mapped malloc package



Chapter 2: Implementation 3

2 Implementation

The mmalloc functions contain no internal static state. All mmalloc internal data is
allocated in the mapped in region, along with the user data that it manages. This allows
it to manage multiple such regions and to “pick up where it left off” when such regions are
later dynamically mapped back in.

In some sense, malloc has been “purified” to contain no internal state information and
generalized to use multiple memory regions rather than a single region managed by sbrk.
However the new routines now need an extra parameter which informs mmalloc which
memory region it is dealing with (along with other information). This parameter is called
the malloc descriptor.

The functions initially provided by mmalloc are:

void *mmalloc_attach (int fd, void *baseaddr);
void *mmalloc_detach (void *md);
int mmalloc_errno (void *md);
int mmalloc_setkey (void *md, int keynum, void *key);
void *mmalloc_getkey (void *md, int keynum);

void *mmalloc (void *md, size_t size);
void *mrealloc (void *md, void *ptr, size_t size);
void *mvalloc (void *md, size_t size);
void mfree (void *md, void *ptr);

2.1 Backwards Compatibility

To allow a single malloc package to be used in a given application, provision is made for
the traditional malloc, realloc, and free functions to be implemented as special cases of
the mmalloc functions. In particular, if any of the functions that expect malloc descriptors
are called with a NULL pointer rather than a valid malloc descriptor, then they default
to using an sbrk managed region. The mmalloc package provides compatible malloc,
realloc, and free functions using this mechanism internally. Applications can avoid this
extra interface layer by simply including the following defines:

#define malloc(size) mmalloc ((void *)0, (size))
#define realloc(ptr,size) mrealloc ((void *)0, (ptr), (size));
#define free(ptr) mfree ((void *)0, (ptr))

or replace the existing malloc, realloc, and free calls with the above patterns if using
#define causes problems.

2.2 Function Descriptions

These are the details on the functions that make up the mmalloc package.

void *mmalloc_attach (int fd, void *baseaddr);
Initialize access to a mmalloc managed region.



4 MMALLOC, the GNU memory-mapped malloc package

If fd is a valid file descriptor for an open file, then data for the mmalloc managed
region is mapped to that file. Otherwise ‘/dev/zero’ is used and the data will
not exist in any filesystem object.
If the open file corresponding to fd is from a previous use of mmalloc and
passes some basic sanity checks to ensure that it is compatible with the current
mmalloc package, then its data is mapped in and is immediately accessible at
the same addresses in the current process as the process that created the file.
If baseaddr is not NULL, the mapping is established starting at the specified
address in the process address space. If baseaddr is NULL, the mmalloc package
chooses a suitable address at which to start the mapped region, which will be the
value of the previous mapping if opening an existing file which was previously
built by mmalloc, or for new files will be a value chosen by mmap.
Specifying baseaddr provides more control over where the regions start and how
big they can be before bumping into existing mapped regions or future mapped
regions.
On success, returns a malloc descriptor which is used in subsequent calls to
other mmalloc package functions. It is explicitly ‘void *’ (‘char *’ for systems
that don’t fully support void) so that users of the package don’t have to worry
about the actual implementation details.
On failure returns NULL.

void *mmalloc_detach (void *md);
Terminate access to a mmalloc managed region identified by the descriptor md,
by closing the base file and unmapping all memory pages associated with the
region.
Returns NULL on success.
Returns the malloc descriptor on failure, which can subsequently be used for
further action (such as obtaining more information about the nature of the
failure).

void *mmalloc (void *md, size_t size);
Given an mmalloc descriptor md, allocate additional memory of size bytes in
the associated mapped region.

*mrealloc (void *md, void *ptr, size_t size);
Given an mmalloc descriptor md and a pointer to memory previously allocated
by mmalloc in ptr, reallocate the memory to be size bytes long, possibly moving
the existing contents of memory if necessary.

void *mvalloc (void *md, size_t size);
Like mmalloc but the resulting memory is aligned on a page boundary.

void mfree (void *md, void *ptr);
Given an mmalloc descriptor md and a pointer to memory previously allocated
by mmalloc in ptr, free the previously allocated memory.

int mmalloc_errno (void *md);
Given a mmalloc descriptor, if the last mmalloc operation failed for some reason
due to a system call failure, then returns the associated errno. Returns 0
otherwise. (This function is not yet implemented).


