
Lzlib
Compression library for the lzip format
for Lzlib version 1.12, 2 January 2021

by Antonio Diaz Diaz

i

Table of Contents

1 Introduction . 1

2 Library version . 3

3 Buffering . 4

4 Parameter limits . 5

5 Compression functions . 6

6 Decompression functions . 9

7 Error codes . 12

8 Error messages . 13

9 Invoking minilzip . 14

10 Data format . 18

11 A small tutorial with examples 20
11.1 Buffer compression . 20
11.2 Buffer decompression . 21
11.3 File compression . 21
11.4 File decompression . 22
11.5 File-to-file multimember compression . 23
11.6 Skipping data errors . 24

12 Reporting bugs . 26

Concept index . 27

1

1 Introduction

Lzlib is a data compression library providing in-memory LZMA compression and decom-
pression functions, including integrity checking of the decompressed data. The compressed
data format used by the library is the lzip format. Lzlib is written in C.

The lzip file format is designed for data sharing and long-term archiving, taking into
account both data integrity and decoder availability:

• The lzip format provides very safe integrity checking and some data recovery means.
The program lziprecover can repair bit flip errors (one of the most common forms of
data corruption) in lzip files, and provides data recovery capabilities, including error-
checked merging of damaged copies of a file. See Section “Data safety” in lziprecover.

• The lzip format is as simple as possible (but not simpler). The lzip manual provides
the source code of a simple decompressor along with a detailed explanation of how
it works, so that with the only help of the lzip manual it would be possible for a
digital archaeologist to extract the data from a lzip file long after quantum computers
eventually render LZMA obsolete.

• Additionally the lzip reference implementation is copylefted, which guarantees that it
will remain free forever.

A nice feature of the lzip format is that a corrupt byte is easier to repair the nearer it
is from the beginning of the file. Therefore, with the help of lziprecover, losing an entire
archive just because of a corrupt byte near the beginning is a thing of the past.

The functions and variables forming the interface of the compression library are declared
in the file ‘lzlib.h’. Usage examples of the library are given in the files ‘bbexample.c’,
‘ffexample.c’, and ‘main.c’ from the source distribution.

Compression/decompression is done by repeatedly calling a couple of read/write func-
tions until all the data have been processed by the library. This interface is safer and less
error prone than the traditional zlib interface.

Compression/decompression is done when the read function is called. This means the
value returned by the position functions will not be updated until a read call, even if a lot
of data are written. If you want the data to be compressed in advance, just call the read
function with a size equal to 0.

If all the data to be compressed are written in advance, lzlib will automatically adjust the
header of the compressed data to use the largest dictionary size that does not exceed neither
the data size nor the limit given to ‘LZ_compress_open’. This feature reduces the amount
of memory needed for decompression and allows minilzip to produce identical compressed
output as lzip.

Lzlib will correctly decompress a data stream which is the concatenation of two or more
compressed data streams. The result is the concatenation of the corresponding decom-
pressed data streams. Integrity testing of concatenated compressed data streams is also
supported.

Lzlib is able to compress and decompress streams of unlimited size by automatically
creating multimember output. The members so created are large, about 2 PiB each.

All the library functions are thread safe. The library does not install any signal handler.
The decoder checks the consistency of the compressed data, so the library should never
crash even in case of corrupted input.

http://www.nongnu.org/lzip/lzlib.html
http://www.nongnu.org/lzip/manual/lziprecover_manual.html#Data-safety

2

In spite of its name (Lempel-Ziv-Markov chain-Algorithm), LZMA is not a concrete
algorithm; it is more like "any algorithm using the LZMA coding scheme". For example,
the option ‘-0’ of lzip uses the scheme in almost the simplest way possible; issuing the
longest match it can find, or a literal byte if it can’t find a match. Inversely, a much more
elaborated way of finding coding sequences of minimum size than the one currently used by
lzip could be developed, and the resulting sequence could also be coded using the LZMA
coding scheme.

Lzlib currently implements two variants of the LZMA algorithm; fast (used by option
‘-0’ of minilzip) and normal (used by all other compression levels).

The high compression of LZMA comes from combining two basic, well-proven compres-
sion ideas: sliding dictionaries (LZ77/78) and markov models (the thing used by every
compression algorithm that uses a range encoder or similar order-0 entropy coder as its last
stage) with segregation of contexts according to what the bits are used for.

The ideas embodied in lzlib are due to (at least) the following people: Abraham Lempel
and Jacob Ziv (for the LZ algorithm), Andrey Markov (for the definition of Markov chains),
G.N.N. Martin (for the definition of range encoding), Igor Pavlov (for putting all the above
together in LZMA), and Julian Seward (for bzip2’s CLI).

LANGUAGE NOTE: Uncompressed = not compressed = plain data; it may never have
been compressed. Decompressed is used to refer to data which have undergone the process
of decompression.

3

2 Library version

One goal of lzlib is to keep perfect backward compatibility with older versions of itself
down to 1.0. Any application working with an older lzlib should work with a newer lzlib.
Installing a newer lzlib should not break anything. This chapter describes the constants
and functions that the application can use to discover the version of the library being used.

[Constant]LZ_API_VERSION
This constant is defined in ‘lzlib.h’ and works as a version test macro. The appli-
cation should verify at compile time that LZ API VERSION is greater than or equal
to the version required by the application:

#if !defined LZ_API_VERSION || LZ_API_VERSION < 1012

#error "lzlib 1.12 or newer needed."

#endif

Before version 1.8, lzlib didn’t define LZ API VERSION.
LZ API VERSION was first defined in lzlib 1.8 to 1.
Since lzlib 1.12, LZ API VERSION is defined as (major * 1000 + minor).

NOTE: Version test macros are the library’s way of announcing functionality to the ap-
plication. They should not be confused with feature test macros, which allow the application
to announce to the library its desire to have certain symbols and prototypes exposed.

[Function]int LZ_api_version (void)
If LZ API VERSION >= 1012, this function is declared in ‘lzlib.h’ (else it doesn’t
exist). It returns the LZ API VERSION of the library object code being used. The
application should verify at run time that the value returned by LZ_api_version is
greater than or equal to the version required by the application. An application may
be dinamically linked at run time with a different version of lzlib than the one it
was compiled for, and this should not break the program as long as the library used
provides the functionality required by the application.

#if defined LZ_API_VERSION && LZ_API_VERSION >= 1012

if(LZ_api_version() < 1012)

show_error("lzlib 1.12 or newer needed.");

#endif

[Constant]const char * LZ_version_string
This string constant is defined in the header file ‘lzlib.h’ and represents the version
of the library being used at compile time.

[Function]const char * LZ_version (void)
This function returns a string representing the version of the library being used at
run time.

4

3 Buffering

Lzlib internal functions need access to a memory chunk at least as large as the dictionary
size (sliding window). For efficiency reasons, the input buffer for compression is twice or
sixteen times as large as the dictionary size.

Finally, for safety reasons, lzlib uses two more internal buffers.

These are the four buffers used by lzlib, and their guaranteed minimum sizes:

• Input compression buffer. Written to by the function ‘LZ_compress_write’. For the
normal variant of LZMA, its size is two times the dictionary size set with the function
‘LZ_compress_open’ or 64 KiB, whichever is larger. For the fast variant, its size is
1 MiB.

• Output compression buffer. Read from by the function ‘LZ_compress_read’. Its size
is 64 KiB.

• Input decompression buffer. Written to by the function ‘LZ_decompress_write’. Its
size is 64 KiB.

• Output decompression buffer. Read from by the function ‘LZ_decompress_read’. Its
size is the dictionary size set in the header of the member currently being decompressed
or 64 KiB, whichever is larger.

5

4 Parameter limits

These functions provide minimum and maximum values for some parameters. Current
values are shown in square brackets.

[Function]int LZ_min_dictionary_bits (void)
Returns the base 2 logarithm of the smallest valid dictionary size [12].

[Function]int LZ_min_dictionary_size (void)
Returns the smallest valid dictionary size [4 KiB].

[Function]int LZ_max_dictionary_bits (void)
Returns the base 2 logarithm of the largest valid dictionary size [29].

[Function]int LZ_max_dictionary_size (void)
Returns the largest valid dictionary size [512 MiB].

[Function]int LZ_min_match_len_limit (void)
Returns the smallest valid match length limit [5].

[Function]int LZ_max_match_len_limit (void)
Returns the largest valid match length limit [273].

6

5 Compression functions

These are the functions used to compress data. In case of error, all of them return -1 or
0, for signed and unsigned return values respectively, except ‘LZ_compress_open’ whose
return value must be verified by calling ‘LZ_compress_errno’ before using it.

[Function]struct LZ_Encoder * LZ_compress_open (const int
dictionary_size, const int match_len_limit, const unsigned long long
member_size)

Initializes the internal stream state for compression and returns a pointer that can
only be used as the encoder argument for the other LZ compress functions, or a null
pointer if the encoder could not be allocated.

The returned pointer must be verified by calling ‘LZ_compress_errno’ before using
it. If ‘LZ_compress_errno’ does not return ‘LZ_ok’, the returned pointer must not
be used and should be freed with ‘LZ_compress_close’ to avoid memory leaks.

dictionary size sets the dictionary size to be used, in bytes. Valid values range from
4 KiB to 512 MiB. Note that dictionary sizes are quantized. If the size specified
does not match one of the valid sizes, it will be rounded upwards by adding up to
(dictionary size / 8) to it.

match len limit sets the match length limit in bytes. Valid values range from 5 to 273.
Larger values usually give better compression ratios but longer compression times.

If dictionary size is 65535 and match len limit is 16, the fast variant of LZMA is
chosen, which produces identical compressed output as ‘lzip -0’. (The dictionary
size used will be rounded upwards to 64 KiB).

member size sets the member size limit in bytes. Valid values range from 4 KiB to
2 PiB. A small member size may degrade compression ratio, so use it only when
needed. To produce a single-member data stream, give member size a value larger
than the amount of data to be produced. Values larger than 2 PiB will be reduced
to 2 PiB to prevent the uncompressed size of the member from overflowing.

[Function]int LZ_compress_close (struct LZ Encoder * const encoder)
Frees all dynamically allocated data structures for this stream. This function dis-
cards any unprocessed input and does not flush any pending output. After a call
to ‘LZ_compress_close’, encoder can no longer be used as an argument to any
LZ compress function. It is safe to call ‘LZ_compress_close’ with a null argument.

[Function]int LZ_compress_finish (struct LZ Encoder * const encoder)
Use this function to tell ‘lzlib’ that all the data for this member have already
been written (with the function ‘LZ_compress_write’). It is safe to call
‘LZ_compress_finish’ as many times as needed. After all the compressed data have
been read with ‘LZ_compress_read’ and ‘LZ_compress_member_finished’ returns
1, a new member can be started with ‘LZ_compress_restart_member’.

[Function]int LZ_compress_restart_member (struct LZ Encoder * const
encoder, const unsigned long long member_size)

Use this function to start a new member in a multimember data stream. Call this
function only after ‘LZ_compress_member_finished’ indicates that the current mem-

Chapter 5: Compression functions 7

ber has been fully read (with the function ‘LZ_compress_read’). See [member size],
page 6, for a description of member size.

[Function]int LZ_compress_sync_flush (struct LZ Encoder * const encoder
)

Use this function to make available to ‘LZ_compress_read’ all the data already writ-
ten with the function ‘LZ_compress_write’. First call ‘LZ_compress_sync_flush’.
Then call ‘LZ_compress_read’ until it returns 0.

This function writes a LZMA marker ‘3’ ("Sync Flush" marker) to the compressed
output. Note that the sync flush marker is not allowed in lzip files; it is a device
for interactive communication between applications using lzlib, but is useless and
wasteful in a file, and is excluded from the media type ‘application/lzip’. The
LZMA marker ‘2’ ("End Of Stream" marker) is the only marker allowed in lzip files.
See Chapter 10 [Data format], page 18.

Repeated use of ‘LZ_compress_sync_flush’ may degrade compression ratio, so use
it only when needed. If the interval between calls to ‘LZ_compress_sync_flush’
is large (comparable to dictionary size), creating a multimember data stream with
‘LZ_compress_restart_member’ may be an alternative.

Combining multimember stream creation with flushing may be tricky.
If there are more bytes available than those needed to complete mem-
ber size, ‘LZ_compress_restart_member’ needs to be called when
‘LZ_compress_member_finished’ returns 1, followed by a new call to
‘LZ_compress_sync_flush’.

[Function]int LZ_compress_read (struct LZ Encoder * const encoder,
uint8 t * const buffer, const int size)

The function ‘LZ_compress_read’ reads up to size bytes from the stream pointed to
by encoder, storing the results in buffer. If LZ API VERSION >= 1012, buffer may
be a null pointer, in which case the bytes read are discarded.

The return value is the number of bytes actually read. This might be less than size;
for example, if there aren’t that many bytes left in the stream or if more bytes have to
be yet written with the function ‘LZ_compress_write’. Note that reading less than
size bytes is not an error.

[Function]int LZ_compress_write (struct LZ Encoder * const encoder,
uint8 t * const buffer, const int size)

The function ‘LZ_compress_write’ writes up to size bytes from buffer to the stream
pointed to by encoder.

The return value is the number of bytes actually written. This might be less than
size. Note that writing less than size bytes is not an error.

[Function]int LZ_compress_write_size (struct LZ Encoder * const encoder
)

The function ‘LZ_compress_write_size’ returns the maximum number of bytes that
can be immediately written through ‘LZ_compress_write’. For efficiency reasons,
once the input buffer is full and ‘LZ_compress_write_size’ returns 0, almost all the
buffer must be compressed before a size greater than 0 is returned again. (This is

Chapter 5: Compression functions 8

done to minimize the amount of data that must be copied to the beginning of the
buffer before new data can be accepted).

It is guaranteed that an immediate call to ‘LZ_compress_write’ will accept a size up
to the returned number of bytes.

[Function]enum LZ_Errno LZ_compress_errno (struct LZ Encoder * const
encoder)

Returns the current error code for encoder. See Chapter 7 [Error codes], page 12. It
is safe to call ‘LZ_compress_errno’ with a null argument, in which case it returns
‘LZ_bad_argument’.

[Function]int LZ_compress_finished (struct LZ Encoder * const encoder)
Returns 1 if all the data have been read and ‘LZ_compress_close’ can
be safely called. Otherwise it returns 0. ‘LZ_compress_finished’ implies
‘LZ_compress_member_finished’.

[Function]int LZ_compress_member_finished (struct LZ Encoder * const
encoder)

Returns 1 if the current member, in a multimember data stream, has been fully read
and ‘LZ_compress_restart_member’ can be safely called. Otherwise it returns 0.

[Function]unsigned long long LZ_compress_data_position (struct
LZ Encoder * const encoder)

Returns the number of input bytes already compressed in the current member.

[Function]unsigned long long LZ_compress_member_position (struct
LZ Encoder * const encoder)

Returns the number of compressed bytes already produced, but perhaps not yet read,
in the current member.

[Function]unsigned long long LZ_compress_total_in_size (struct
LZ Encoder * const encoder)

Returns the total number of input bytes already compressed.

[Function]unsigned long long LZ_compress_total_out_size (struct
LZ Encoder * const encoder)

Returns the total number of compressed bytes already produced, but perhaps not yet
read.

9

6 Decompression functions

These are the functions used to decompress data. In case of error, all of them return -1 or
0, for signed and unsigned return values respectively, except ‘LZ_decompress_open’ whose
return value must be verified by calling ‘LZ_decompress_errno’ before using it.

[Function]struct LZ_Decoder * LZ_decompress_open (void)
Initializes the internal stream state for decompression and returns a pointer that can
only be used as the decoder argument for the other LZ decompress functions, or a
null pointer if the decoder could not be allocated.

The returned pointer must be verified by calling ‘LZ_decompress_errno’ before using
it. If ‘LZ_decompress_errno’ does not return ‘LZ_ok’, the returned pointer must not
be used and should be freed with ‘LZ_decompress_close’ to avoid memory leaks.

[Function]int LZ_decompress_close (struct LZ Decoder * const decoder)
Frees all dynamically allocated data structures for this stream. This function dis-
cards any unprocessed input and does not flush any pending output. After a call
to ‘LZ_decompress_close’, decoder can no longer be used as an argument to any
LZ decompress function. It is safe to call ‘LZ_decompress_close’ with a null argu-
ment.

[Function]int LZ_decompress_finish (struct LZ Decoder * const decoder)
Use this function to tell ‘lzlib’ that all the data for this stream have already
been written (with the function ‘LZ_decompress_write’). It is safe to call
‘LZ_decompress_finish’ as many times as needed. It is not required to call
‘LZ_decompress_finish’ if the input stream only contains whole members, but not
calling it prevents lzlib from detecting a truncated member.

[Function]int LZ_decompress_reset (struct LZ Decoder * const decoder)
Resets the internal state of decoder as it was just after opening it with the function
‘LZ_decompress_open’. Data stored in the internal buffers is discarded. Position
counters are set to 0.

[Function]int LZ_decompress_sync_to_member (struct LZ Decoder * const
decoder)

Resets the error state of decoder and enters a search state that lasts until a new
member header (or the end of the stream) is found. After a successful call to
‘LZ_decompress_sync_to_member’, data written with ‘LZ_decompress_write’ will
be consumed and ‘LZ_decompress_read’ will return 0 until a header is found.

This function is useful to discard any data preceding the first member, or to discard
the rest of the current member, for example in case of a data error. If the decoder is
already at the beginning of a member, this function does nothing.

[Function]int LZ_decompress_read (struct LZ Decoder * const decoder,
uint8 t * const buffer, const int size)

The function ‘LZ_decompress_read’ reads up to size bytes from the stream pointed
to by decoder, storing the results in buffer. If LZ API VERSION >= 1012, buffer
may be a null pointer, in which case the bytes read are discarded.

Chapter 6: Decompression functions 10

The return value is the number of bytes actually read. This might be less than size;
for example, if there aren’t that many bytes left in the stream or if more bytes have
to be yet written with the function ‘LZ_decompress_write’. Note that reading less
than size bytes is not an error.

‘LZ_decompress_read’ returns at least once per member so that
‘LZ_decompress_member_finished’ can be called (and trailer data retrieved) for
each member, even for empty members. Therefore, ‘LZ_decompress_read’ returning
0 does not mean that the end of the stream has been reached. The increase in the
value returned by ‘LZ_decompress_total_in_size’ can be used to tell the end of
the stream from an empty member.

In case of decompression error caused by corrupt or truncated data,
‘LZ_decompress_read’ does not signal the error immediately to the application,
but waits until all the bytes decoded have been read. This allows tools like tarlz to
recover as much data as possible from each damaged member. See tarlz.

[Function]int LZ_decompress_write (struct LZ Decoder * const decoder,
uint8 t * const buffer, const int size)

The function ‘LZ_decompress_write’ writes up to size bytes from buffer to the stream
pointed to by decoder.

The return value is the number of bytes actually written. This might be less than
size. Note that writing less than size bytes is not an error.

[Function]int LZ_decompress_write_size (struct LZ Decoder * const
decoder)

The function ‘LZ_decompress_write_size’ returns the maximum number of bytes
that can be immediately written through ‘LZ_decompress_write’. This number
varies smoothly; each compressed byte consumed may be overwritten immediately,
increasing by 1 the value returned.

It is guaranteed that an immediate call to ‘LZ_decompress_write’ will accept a size
up to the returned number of bytes.

[Function]enum LZ_Errno LZ_decompress_errno (struct LZ Decoder * const
decoder)

Returns the current error code for decoder. See Chapter 7 [Error codes], page 12. It
is safe to call ‘LZ_decompress_errno’ with a null argument, in which case it returns
‘LZ_bad_argument’.

[Function]int LZ_decompress_finished (struct LZ Decoder * const decoder
)

Returns 1 if all the data have been read and ‘LZ_decompress_close’ can be
safely called. Otherwise it returns 0. ‘LZ_decompress_finished’ does not imply
‘LZ_decompress_member_finished’.

[Function]int LZ_decompress_member_finished (struct LZ Decoder * const
decoder)

Returns 1 if the previous call to ‘LZ_decompress_read’ finished reading
the current member, indicating that final values for member are available
through ‘LZ_decompress_data_crc’, ‘LZ_decompress_data_position’, and
‘LZ_decompress_member_position’. Otherwise it returns 0.

http://www.nongnu.org/lzip/manual/tarlz_manual.html

11

[Function]int LZ_decompress_member_version (struct LZ Decoder * const
decoder)

Returns the version of current member from member header.

[Function]int LZ_decompress_dictionary_size (struct LZ Decoder * const
decoder)

Returns the dictionary size of the current member, read from the member header.

[Function]unsigned LZ_decompress_data_crc (struct LZ Decoder * const
decoder)

Returns the 32 bit Cyclic Redundancy Check of the data decompressed
from the current member. The returned value is valid only when
‘LZ_decompress_member_finished’ returns 1.

[Function]unsigned long long LZ_decompress_data_position (struct
LZ Decoder * const decoder)

Returns the number of decompressed bytes already produced, but perhaps not yet
read, in the current member.

[Function]unsigned long long LZ_decompress_member_position (struct
LZ Decoder * const decoder)

Returns the number of input bytes already decompressed in the current member.

[Function]unsigned long long LZ_decompress_total_in_size (struct
LZ Decoder * const decoder)

Returns the total number of input bytes already decompressed.

[Function]unsigned long long LZ_decompress_total_out_size (struct
LZ Decoder * const decoder)

Returns the total number of decompressed bytes already produced, but perhaps not
yet read.

12

7 Error codes

Most library functions return -1 to indicate that they have failed. But this return value
only tells you that an error has occurred. To find out what kind of error it was, you need
to verify the error code by calling ‘LZ_(de)compress_errno’.

Library functions don’t change the value returned by ‘LZ_(de)compress_errno’ when
they succeed; thus, the value returned by ‘LZ_(de)compress_errno’ after a successful call
is not necessarily LZ ok, and you should not use ‘LZ_(de)compress_errno’ to determine
whether a call failed. If the call failed, then you can examine ‘LZ_(de)compress_errno’.

The error codes are defined in the header file ‘lzlib.h’.

[Constant]enum LZ_Errno LZ_ok
The value of this constant is 0 and is used to indicate that there is no error.

[Constant]enum LZ_Errno LZ_bad_argument
At least one of the arguments passed to the library function was invalid.

[Constant]enum LZ_Errno LZ_mem_error
No memory available. The system cannot allocate more virtual memory because its
capacity is full.

[Constant]enum LZ_Errno LZ_sequence_error
A library function was called in the wrong order. For example
‘LZ_compress_restart_member’ was called before ‘LZ_compress_member_finished’
indicates that the current member is finished.

[Constant]enum LZ_Errno LZ_header_error
An invalid member header (one with the wrong magic bytes) was read. If this happens
at the end of the data stream it may indicate trailing data.

[Constant]enum LZ_Errno LZ_unexpected_eof
The end of the data stream was reached in the middle of a member.

[Constant]enum LZ_Errno LZ_data_error
The data stream is corrupt. If ‘LZ_decompress_member_position’ is 6 or less, it
indicates either a format version not supported, an invalid dictionary size, a corrupt
header in a multimember data stream, or trailing data too similar to a valid lzip
header. Lziprecover can be used to remove conflicting trailing data from a file.

[Constant]enum LZ_Errno LZ_library_error
A bug was detected in the library. Please, report it. See Chapter 12 [Problems],
page 26.

13

8 Error messages

[Function]const char * LZ_strerror (const enum LZ Errno lz_errno)
Returns the standard error message for a given error code. The messages are fairly
short; there are no multi-line messages or embedded newlines. This function makes
it easy for your program to report informative error messages about the failure of a
library call.

The value of lz errno normally comes from a call to ‘LZ_(de)compress_errno’.

14

9 Invoking minilzip

Minilzip is a test program for the compression library lzlib, fully compatible with lzip 1.4
or newer.

Lzip is a lossless data compressor with a user interface similar to the one of gzip or
bzip2. Lzip uses a simplified form of the ’Lempel-Ziv-Markov chain-Algorithm’ (LZMA)
stream format, chosen to maximize safety and interoperability. Lzip can compress about as
fast as gzip (lzip -0) or compress most files more than bzip2 (lzip -9). Decompression speed
is intermediate between gzip and bzip2. Lzip is better than gzip and bzip2 from a data
recovery perspective. Lzip has been designed, written, and tested with great care to replace
gzip and bzip2 as the standard general-purpose compressed format for unix-like systems.

The format for running minilzip is:

minilzip [options] [files]

If no file names are specified, minilzip compresses (or decompresses) from standard input
to standard output. A hyphen ‘-’ used as a file argument means standard input. It can be
mixed with other files and is read just once, the first time it appears in the command line.

minilzip supports the following options: See Section “Argument syntax” in arg_parser.

-h

--help Print an informative help message describing the options and exit.

-V

--version

Print the version number of minilzip on the standard output and exit. This
version number should be included in all bug reports.

-a

--trailing-error

Exit with error status 2 if any remaining input is detected after decompressing
the last member. Such remaining input is usually trailing garbage that can be
safely ignored.

-b bytes

--member-size=bytes

When compressing, set the member size limit to bytes. It is advisable to keep
members smaller than RAM size so that they can be repaired with lziprecover
in case of corruption. A small member size may degrade compression ratio, so
use it only when needed. Valid values range from 100 kB to 2 PiB. Defaults to
2 PiB.

-c

--stdout Compress or decompress to standard output; keep input files unchanged. If
compressing several files, each file is compressed independently. (The output
consists of a sequence of independently compressed members). This option
(or ‘-o’) is needed when reading from a named pipe (fifo) or from a device.
Use it also to recover as much of the decompressed data as possible when
decompressing a corrupt file. ‘-c’ overrides ‘-o’ and ‘-S’. ‘-c’ has no effect
when testing or listing.

http://www.nongnu.org/lzip/lzip.html
http://www.nongnu.org/arg-parser/manual/arg_parser_manual.html#Argument-syntax

Chapter 9: Invoking minilzip 15

-d

--decompress

Decompress the files specified. If a file does not exist or can’t be opened, minilzip
continues decompressing the rest of the files. If a file fails to decompress, or is
a terminal, minilzip exits immediately without decompressing the rest of the
files.

-f

--force Force overwrite of output files.

-F

--recompress

When compressing, force re-compression of files whose name already has the
‘.lz’ or ‘.tlz’ suffix.

-k

--keep Keep (don’t delete) input files during compression or decompression.

-m bytes

--match-length=bytes

When compressing, set the match length limit in bytes. After a match this long
is found, the search is finished. Valid values range from 5 to 273. Larger values
usually give better compression ratios but longer compression times.

-o file

--output=file

If ‘-c’ has not been also specified, write the (de)compressed output to file;
keep input files unchanged. If compressing several files, each file is compressed
independently. (The output consists of a sequence of independently compressed
members). This option (or ‘-c’) is needed when reading from a named pipe (fifo)
or from a device. ‘-o -’ is equivalent to ‘-c’. ‘-o’ has no effect when testing or
listing.

When compressing and splitting the output in volumes, file is used as a prefix,
and several files named ‘file00001.lz’, ‘file00002.lz’, etc, are created. In
this case, only one input file is allowed.

-q

--quiet Quiet operation. Suppress all messages.

-s bytes

--dictionary-size=bytes

When compressing, set the dictionary size limit in bytes. Minilzip will use for
each file the largest dictionary size that does not exceed neither the file size
nor this limit. Valid values range from 4 KiB to 512 MiB. Values 12 to 29
are interpreted as powers of two, meaning 2^12 to 2^29 bytes. Dictionary sizes
are quantized so that they can be coded in just one byte (see [coded-dict-size],
page 18). If the size specified does not match one of the valid sizes, it will be
rounded upwards by adding up to (bytes / 8) to it.

For maximum compression you should use a dictionary size limit as large as pos-
sible, but keep in mind that the decompression memory requirement is affected
at compression time by the choice of dictionary size limit.

Chapter 9: Invoking minilzip 16

-S bytes

--volume-size=bytes

When compressing, and ‘-c’ has not been also specified, split the compressed
output into several volume files with names ‘original_name00001.lz’,
‘original_name00002.lz’, etc, and set the volume size limit to bytes. Input
files are kept unchanged. Each volume is a complete, maybe multimember,
lzip file. A small volume size may degrade compression ratio, so use it only
when needed. Valid values range from 100 kB to 4 EiB.

-t

--test Check integrity of the files specified, but don’t decompress them. This really
performs a trial decompression and throws away the result. Use it together
with ‘-v’ to see information about the files. If a file fails the test, does not
exist, can’t be opened, or is a terminal, minilzip continues checking the rest of
the files. A final diagnostic is shown at verbosity level 1 or higher if any file
fails the test when testing multiple files.

-v

--verbose

Verbose mode.
When compressing, show the compression ratio and size for each file processed.
When decompressing or testing, further -v’s (up to 4) increase the verbosity
level, showing status, compression ratio, dictionary size, and trailer contents
(CRC, data size, member size).

-0 .. -9 Compression level. Set the compression parameters (dictionary size and match
length limit) as shown in the table below. The default compression level is
‘-6’, equivalent to ‘-s8MiB -m36’. Note that ‘-9’ can be much slower than ‘-0’.
These options have no effect when decompressing or testing.

The bidimensional parameter space of LZMA can’t be mapped to a linear scale
optimal for all files. If your files are large, very repetitive, etc, you may need to
use the options ‘--dictionary-size’ and ‘--match-length’ directly to achieve
optimal performance.

If several compression levels or ‘-s’ or ‘-m’ options are given, the last setting is
used. For example ‘-9 -s64MiB’ is equivalent to ‘-s64MiB -m273’

Level Dictionary size (-s) Match length limit (-m)
-0 64 KiB 16 bytes
-1 1 MiB 5 bytes
-2 1.5 MiB 6 bytes
-3 2 MiB 8 bytes
-4 3 MiB 12 bytes
-5 4 MiB 20 bytes
-6 8 MiB 36 bytes
-7 16 MiB 68 bytes
-8 24 MiB 132 bytes
-9 32 MiB 273 bytes

--fast

--best Aliases for GNU gzip compatibility.

Chapter 9: Invoking minilzip 17

--loose-trailing

When decompressing or testing, allow trailing data whose first bytes are so
similar to the magic bytes of a lzip header that they can be confused with a
corrupt header. Use this option if a file triggers a "corrupt header" error and
the cause is not indeed a corrupt header.

--check-lib

Compare the version of lzlib used to compile minilzip with the version actually
being used and exit. Report any differences found. Exit with error status 1
if differences are found. A mismatch may indicate that lzlib is not correctly
installed or that a different version of lzlib has been installed after compiling
the shared version of minilzip. ‘minilzip -v --check-lib’ shows the version of
lzlib being used and the value of ‘LZ_API_VERSION’ (if defined). See Chapter 2
[Library version], page 3.

Numbers given as arguments to options may be followed by a multiplier and an optional
‘B’ for "byte".

Table of SI and binary prefixes (unit multipliers):

Prefix Value | Prefix Value
k kilobyte (10^3 = 1000) | Ki kibibyte (2^10 = 1024)
M megabyte (10^6) | Mi mebibyte (2^20)
G gigabyte (10^9) | Gi gibibyte (2^30)
T terabyte (10^12) | Ti tebibyte (2^40)
P petabyte (10^15) | Pi pebibyte (2^50)
E exabyte (10^18) | Ei exbibyte (2^60)
Z zettabyte (10^21) | Zi zebibyte (2^70)
Y yottabyte (10^24) | Yi yobibyte (2^80)

Exit status: 0 for a normal exit, 1 for environmental problems (file not found, invalid
flags, I/O errors, etc), 2 to indicate a corrupt or invalid input file, 3 for an internal consis-
tency error (eg, bug) which caused minilzip to panic.

#Library-version

18

10 Data format

Perfection is reached, not when there is no longer anything to add, but when there is no
longer anything to take away.
— Antoine de Saint-Exupery

In the diagram below, a box like this:

+---+

| | <-- the vertical bars might be missing

+---+

represents one byte; a box like this:

+==============+

| |

+==============+

represents a variable number of bytes.

A lzip data stream consists of a series of "members" (compressed data sets). The mem-
bers simply appear one after another in the data stream, with no additional information
before, between, or after them.

Each member has the following structure:

+--+--+--+--+----+----+=============+-+

| ID string | VN | DS | LZMA stream | CRC32 | Data size | Member size |

+--+--+--+--+----+----+=============+-+

All multibyte values are stored in little endian order.

‘ID string (the "magic" bytes)’
A four byte string, identifying the lzip format, with the value "LZIP" (0x4C,
0x5A, 0x49, 0x50).

‘VN (version number, 1 byte)’
Just in case something needs to be modified in the future. 1 for now.

‘DS (coded dictionary size, 1 byte)’
The dictionary size is calculated by taking a power of 2 (the base size) and
subtracting from it a fraction between 0/16 and 7/16 of the base size.
Bits 4-0 contain the base 2 logarithm of the base size (12 to 29).
Bits 7-5 contain the numerator of the fraction (0 to 7) to subtract from the
base size to obtain the dictionary size.
Example: 0xD3 = 2^19 - 6 * 2^15 = 512 KiB - 6 * 32 KiB = 320 KiB
Valid values for dictionary size range from 4 KiB to 512 MiB.

‘LZMA stream’
The LZMA stream, finished by an end of stream marker. Uses default values
for encoder properties. See Section “Stream format” in lzip, for a complete
description.
Lzip only uses the LZMA marker ‘2’ ("End Of Stream" marker). Lzlib also
uses the LZMA marker ‘3’ ("Sync Flush" marker). See [sync flush], page 7.

19

‘CRC32 (4 bytes)’
Cyclic Redundancy Check (CRC) of the uncompressed original data.

‘Data size (8 bytes)’
Size of the uncompressed original data.

‘Member size (8 bytes)’
Total size of the member, including header and trailer. This field acts as a
distributed index, allows the verification of stream integrity, and facilitates safe
recovery of undamaged members from multimember files.

20

11 A small tutorial with examples

This chapter provides real code examples for the most common uses of the library. See
these examples in context in the files ‘bbexample.c’ and ‘ffexample.c’ from the source
distribution of lzlib.

Note that the interface of lzlib is symmetrical. That is, the code for normal compression
and decompression is identical except because one calls LZ compress* functions while the
other calls LZ decompress* functions.

11.1 Buffer compression

Buffer-to-buffer single-member compression (member size > total output).

/* Compresses ’insize’ bytes from ’inbuf’ to ’outbuf’.

Returns the size of the compressed data in ’*outlenp’.

In case of error, or if ’outsize’ is too small, returns false and does

not modify ’*outlenp’.

*/

bool bbcompress(const uint8_t * const inbuf, const int insize,

const int dictionary_size, const int match_len_limit,

uint8_t * const outbuf, const int outsize,

int * const outlenp)

{

int inpos = 0, outpos = 0;

bool error = false;

struct LZ_Encoder * const encoder =

LZ_compress_open(dictionary_size, match_len_limit, INT64_MAX);

if(!encoder || LZ_compress_errno(encoder) != LZ_ok)

{ LZ_compress_close(encoder); return false; }

while(true)

{

int ret = LZ_compress_write(encoder, inbuf + inpos, insize - inpos);

if(ret < 0) { error = true; break; }

inpos += ret;

if(inpos >= insize) LZ_compress_finish(encoder);

ret = LZ_compress_read(encoder, outbuf + outpos, outsize - outpos);

if(ret < 0) { error = true; break; }

outpos += ret;

if(LZ_compress_finished(encoder) == 1) break;

if(outpos >= outsize) { error = true; break; }

}

if(LZ_compress_close(encoder) < 0) error = true;

if(error) return false;

*outlenp = outpos;

return true;

}

Chapter 11: A small tutorial with examples 21

11.2 Buffer decompression

Buffer-to-buffer decompression.

/* Decompresses ’insize’ bytes from ’inbuf’ to ’outbuf’.

Returns the size of the decompressed data in ’*outlenp’.

In case of error, or if ’outsize’ is too small, returns false and does

not modify ’*outlenp’.

*/

bool bbdecompress(const uint8_t * const inbuf, const int insize,

uint8_t * const outbuf, const int outsize,

int * const outlenp)

{

int inpos = 0, outpos = 0;

bool error = false;

struct LZ_Decoder * const decoder = LZ_decompress_open();

if(!decoder || LZ_decompress_errno(decoder) != LZ_ok)

{ LZ_decompress_close(decoder); return false; }

while(true)

{

int ret = LZ_decompress_write(decoder, inbuf + inpos, insize - inpos);

if(ret < 0) { error = true; break; }

inpos += ret;

if(inpos >= insize) LZ_decompress_finish(decoder);

ret = LZ_decompress_read(decoder, outbuf + outpos, outsize - outpos);

if(ret < 0) { error = true; break; }

outpos += ret;

if(LZ_decompress_finished(decoder) == 1) break;

if(outpos >= outsize) { error = true; break; }

}

if(LZ_decompress_close(decoder) < 0) error = true;

if(error) return false;

*outlenp = outpos;

return true;

}

11.3 File compression

File-to-file compression using LZ compress write size.

int ffcompress(struct LZ_Encoder * const encoder,

FILE * const infile, FILE * const outfile)

{

enum { buffer_size = 16384 };

uint8_t buffer[buffer_size];

while(true)

{

Chapter 11: A small tutorial with examples 22

int len, ret;

int size = min(buffer_size, LZ_compress_write_size(encoder));

if(size > 0)

{

len = fread(buffer, 1, size, infile);

ret = LZ_compress_write(encoder, buffer, len);

if(ret < 0 || ferror(infile)) break;

if(feof(infile)) LZ_compress_finish(encoder);

}

ret = LZ_compress_read(encoder, buffer, buffer_size);

if(ret < 0) break;

len = fwrite(buffer, 1, ret, outfile);

if(len < ret) break;

if(LZ_compress_finished(encoder) == 1) return 0;

}

return 1;

}

11.4 File decompression

File-to-file decompression using LZ decompress write size.

int ffdecompress(struct LZ_Decoder * const decoder,

FILE * const infile, FILE * const outfile)

{

enum { buffer_size = 16384 };

uint8_t buffer[buffer_size];

while(true)

{

int len, ret;

int size = min(buffer_size, LZ_decompress_write_size(decoder));

if(size > 0)

{

len = fread(buffer, 1, size, infile);

ret = LZ_decompress_write(decoder, buffer, len);

if(ret < 0 || ferror(infile)) break;

if(feof(infile)) LZ_decompress_finish(decoder);

}

ret = LZ_decompress_read(decoder, buffer, buffer_size);

if(ret < 0) break;

len = fwrite(buffer, 1, ret, outfile);

if(len < ret) break;

if(LZ_decompress_finished(decoder) == 1) return 0;

}

return 1;

}

Chapter 11: A small tutorial with examples 23

11.5 File-to-file multimember compression

Example 1: Multimember compression with members of fixed size (member size < total output).

int ffmmcompress(FILE * const infile, FILE * const outfile)

{

enum { buffer_size = 16384, member_size = 4096 };

uint8_t buffer[buffer_size];

bool done = false;

struct LZ_Encoder * const encoder =

LZ_compress_open(65535, 16, member_size);

if(!encoder || LZ_compress_errno(encoder) != LZ_ok)

{ fputs("ffexample: Not enough memory.\n", stderr);

LZ_compress_close(encoder); return 1; }

while(true)

{

int len, ret;

int size = min(buffer_size, LZ_compress_write_size(encoder));

if(size > 0)

{

len = fread(buffer, 1, size, infile);

ret = LZ_compress_write(encoder, buffer, len);

if(ret < 0 || ferror(infile)) break;

if(feof(infile)) LZ_compress_finish(encoder);

}

ret = LZ_compress_read(encoder, buffer, buffer_size);

if(ret < 0) break;

len = fwrite(buffer, 1, ret, outfile);

if(len < ret) break;

if(LZ_compress_member_finished(encoder) == 1)

{

if(LZ_compress_finished(encoder) == 1) { done = true; break; }

if(LZ_compress_restart_member(encoder, member_size) < 0) break;

}

}

if(LZ_compress_close(encoder) < 0) done = false;

return done;

}

Example 2: Multimember compression (user-restarted members). (Call LZ compress open
with member size > largest member).

/* Compresses ’infile’ to ’outfile’ as a multimember stream with one member

for each line of text terminated by a newline character or by EOF.

Returns 0 if success, 1 if error.

*/

int fflfcompress(struct LZ_Encoder * const encoder,

FILE * const infile, FILE * const outfile)

{

Chapter 11: A small tutorial with examples 24

enum { buffer_size = 16384 };

uint8_t buffer[buffer_size];

while(true)

{

int len, ret;

int size = min(buffer_size, LZ_compress_write_size(encoder));

if(size > 0)

{

for(len = 0; len < size;)

{

int ch = getc(infile);

if(ch == EOF || (buffer[len++] = ch) == ’\n’) break;

}

/* avoid writing an empty member to outfile */

if(len == 0 && LZ_compress_data_position(encoder) == 0) return 0;

ret = LZ_compress_write(encoder, buffer, len);

if(ret < 0 || ferror(infile)) break;

if(feof(infile) || buffer[len-1] == ’\n’)

LZ_compress_finish(encoder);

}

ret = LZ_compress_read(encoder, buffer, buffer_size);

if(ret < 0) break;

len = fwrite(buffer, 1, ret, outfile);

if(len < ret) break;

if(LZ_compress_member_finished(encoder) == 1)

{

if(feof(infile) && LZ_compress_finished(encoder) == 1) return 0;

if(LZ_compress_restart_member(encoder, INT64_MAX) < 0) break;

}

}

return 1;

}

11.6 Skipping data errors

/* Decompresses ’infile’ to ’outfile’ with automatic resynchronization to

next member in case of data error, including the automatic removal of

leading garbage.

*/

int ffrsdecompress(struct LZ_Decoder * const decoder,

FILE * const infile, FILE * const outfile)

{

enum { buffer_size = 16384 };

uint8_t buffer[buffer_size];

while(true)

{

int len, ret;

25

int size = min(buffer_size, LZ_decompress_write_size(decoder));

if(size > 0)

{

len = fread(buffer, 1, size, infile);

ret = LZ_decompress_write(decoder, buffer, len);

if(ret < 0 || ferror(infile)) break;

if(feof(infile)) LZ_decompress_finish(decoder);

}

ret = LZ_decompress_read(decoder, buffer, buffer_size);

if(ret < 0)

{

if(LZ_decompress_errno(decoder) == LZ_header_error ||

LZ_decompress_errno(decoder) == LZ_data_error)

{ LZ_decompress_sync_to_member(decoder); continue; }

else break;

}

len = fwrite(buffer, 1, ret, outfile);

if(len < ret) break;

if(LZ_decompress_finished(decoder) == 1) return 0;

}

return 1;

}

26

12 Reporting bugs

There are probably bugs in lzlib. There are certainly errors and omissions in this manual.
If you report them, they will get fixed. If you don’t, no one will ever know about them and
they will remain unfixed for all eternity, if not longer.

If you find a bug in lzlib, please send electronic mail to lzip-bug@nongnu.org. In-
clude the version number, which you can find by running ‘minilzip --version’ or in
‘LZ_version_string’ from ‘lzlib.h’.

mailto:lzip-bug@nongnu.org

27

Concept index

B
buffer compression . 20
buffer decompression . 21
buffering . 4
bugs . 26

C
compression functions . 6

D
data format . 18
decompression functions . 9

E
error codes . 12
error messages . 13
examples . 20

F
file compression . 21
file decompression . 22

G
getting help . 26

I
introduction . 1
invoking . 14

L
library version . 3

M
multimember compression . 23

O
options . 14

P
parameter limits . 5

S
skipping data errors . 24

	Introduction
	Library version
	Buffering
	Parameter limits
	Compression functions
	Decompression functions
	Error codes
	Error messages
	Invoking minilzip
	Data format
	A small tutorial with examples
	Buffer compression
	Buffer decompression
	File compression
	File decompression
	File-to-file multimember compression
	Skipping data errors

	Reporting bugs
	Concept index

