
GNU dbm

A Database Manager

by Philip A. Nelson, Jason Downs and Sergey Poznyakoff

Manual by Pierre Gaumond, Philip A. Nelson, Jason Downs
and Sergey Poznyakoff

Edition 1.13

for GNU dbm, Version 1.13

Published by the Free Software Foundation, 51 Franklin Street, Fifth Floor Boston, MA
02110-1301, USA

Copyright c© 1989-1999, 2007-2017 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover, and no Back-Cover
texts. A copy of the license is included in the section entitled “GNU Free Documentation
License.”

i

Short Contents

1 Copying Conditions. 1
2 Introduction to GNU dbm. 2

3 List of functions. 3
4 Opening the database. 4

5 Closing the database. 6

6 Number of Records . 7
7 Inserting and replacing records in the database. 8

8 Searching for records in the database. 9
9 Removing records from the database. 10

10 Sequential access to records. 11
11 Database reorganization. 13

12 Database Synchronization . 14
13 Export and Import . 15
14 Error handling. 19

15 Recovery . 21
16 Setting options . 23
17 File Locking. 26
18 Useful global variables. 27

19 Error codes . 29

20 Compatibility with standard dbm and ndbm. 32

21 Examine and modify a GDBM database. 36

22 The gdbm_dump utility . 46
23 The gdbm_load utility . 47

24 Export a database into a portable format. 48
25 Exit codes . 49

26 Problems and bugs. 50
27 Additional resources . 51
A GNU Free Documentation License . 52
Index . 60

ii

Table of Contents

1 Copying Conditions. 1

2 Introduction to GNU dbm. 2

3 List of functions. 3

4 Opening the database. 4

5 Closing the database. 6

6 Number of Records . 7

7 Inserting and replacing records in the database. . . 8

8 Searching for records in the database. 9

9 Removing records from the database. 10

10 Sequential access to records. 11

11 Database reorganization. 13

12 Database Synchronization . 14

13 Export and Import . 15

14 Error handling. 19

15 Recovery . 21

16 Setting options . 23

17 File Locking. 26

18 Useful global variables. 27

iii

19 Error codes . 29

20 Compatibility with standard dbm and ndbm. . . 32
20.1 NDBM interface functions. 32
20.2 DBM interface functions. 34

21 Examine and modify a GDBM database. . . . 36
21.1 gdbmtool invocation . 36
21.2 gdbmtool interactive mode . 37

21.2.1 Shell Variables . 38
21.2.2 Gdbmtool Commands . 41
21.2.3 Data Definitions . 43
21.2.4 Startup Files . 45

22 The gdbm_dump utility . 46

23 The gdbm_load utility . 47

24 Export a database into a portable format. . . 48

25 Exit codes . 49

26 Problems and bugs. 50

27 Additional resources . 51

Appendix A GNU Free Documentation License . . 52

Index . 60

1

1 Copying Conditions.

This library is free; this means that everyone is free to use it and free to redistribute it
on a free basis. GNU dbm (gdbm) is not in the public domain; it is copyrighted and there
are restrictions on its distribution, but these restrictions are designed to permit everything
that a good cooperating citizen would want to do. What is not allowed is to try to prevent
others from further sharing any version of gdbm that they might get from you.

Specifically, we want to make sure that you have the right to give away copies gdbm, that
you receive source code or else can get it if you want it, that you can change these functions
or use pieces of them in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies gdbm, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for anything in the gdbm distribution. If these functions are modified by
someone else and passed on, we want their recipients to know that what they have is not
what we distributed, so that any problems introduced by others will not reflect on our
reputation.

Gdbm is currently distributed under the terms of the GNU General Public License, Version
3. (NOT under the GNU General Library Public License.) A copy the GNU General Public
License is included with the distribution of gdbm.

2

2 Introduction to GNU dbm.

GNU dbm (gdbm) is a library of database functions that use extensible hashing and works
similar to the standard UNIX dbm functions. These routines are provided to a programmer
needing to create and manipulate a hashed database. (gdbm is NOT a complete database
package for an end user.)

The basic use of gdbm is to store key/data pairs in a data file. Each key must be unique
and each key is paired with only one data item. The keys can not be directly accessed in
sorted order. The basic unit of data in gdbm is the structure:

typedef struct {

char *dptr;

int dsize;

} datum;

This structure allows for arbitrary sized keys and data items.

The key/data pairs are stored in a gdbm disk file, called a gdbm database. An application
must open a gdbm database to be able manipulate the keys and data contained in the
database. gdbm allows an application to have multiple databases open at the same time.
When an application opens a gdbm database, it is designated as a reader or a writer. A
gdbm database can be opened by at most one writer at a time. However, many readers may
open the database simultaneously. Readers and writers can not open the gdbm database at
the same time.

3

3 List of functions.

The following is a quick list of the functions contained in the gdbm library. The include file
gdbm.h, that can be included by the user, contains a definition of these functions.

#include <gdbm.h>

GDBM_FILE gdbm_open(name, block_size, flags, mode, fatal_func);

void gdbm_close(dbf);

int gdbm_store(dbf, key, content, flag);

datum gdbm_fetch(dbf, key);

int gdbm_delete(dbf, key);

datum gdbm_firstkey(dbf);

datum gdbm_nextkey(dbf, key);

int gdbm_reorganize(dbf);

void gdbm_sync(dbf);

int gdbm_exists(dbf, key);

char *gdbm_strerror(errno);

int gdbm_setopt(dbf, option, value, size);

int gdbm_fdesc(dbf);

int gdbm_export (GDBM_FILE, const char *, int, int);

int gdbm_export_to_file (GDBM_FILE dbf, FILE *fp);

int gdbm_import (GDBM_FILE, const char *, int);

int gdbm_import_from_file (GDBM_FILE dbf, FILE *fp, int flag);

int gdbm_count (GDBM_FILE dbf, gdbm_count_t *pcount);

int gdbm_version_cmp (int const a[], int const b[]);

The gdbm.h include file is often in the /usr/include directory. (The actual location of
gdbm.h depends on your local installation of gdbm. In case of the DJGPP port, the gdbm.h
include file is in the /dev/env/DJDIR/usr/include directory.)

4

4 Opening the database.

[gdbm interface]GDBM_FILE gdbm_open (const char *name, int block_size, int
flags, int mode, void (*fatal func)(const char *))

Initializes gdbm system. If the file has a size of zero bytes, a file initialization procedure
is performed, setting up the initial structure in the file.

The arguments are:

name The name of the file (the complete name, gdbm does not append any
characters to this name).

block size It is used during initialization to determine the size of various constructs.
It is the size of a single transfer from disk to memory. This parameter
is ignored if the file has been previously initialized. If the value is less
than 512, the file system block size is used instead. The size is adjusted
so that the block can hold exact number of directory entries, so that
the effective block size can be slightly greater than requested. However,
if the ‘GDBM_BSEXACT’ flag is set and the size needs to be adjusted, the
function will return with error status, setting the ‘gdbm_errno’ variable
to ‘GDBM_BLOCK_SIZE_ERROR’.

flags If flags is set to ‘GDBM_READER’, the user wants to just read the database
and any call to gdbm_store or gdbm_delete will fail. Many readers can
access the database at the same time. If flags is set to ‘GDBM_WRITER’,
the user wants both read and write access to the database and requires
exclusive access. If flags is set to ‘GDBM_WRCREAT’, the user wants both
read and write access to the database and wants it created if it does
not already exist. If flags is set to ‘GDBM_NEWDB’, the user want a new
database created, regardless of whether one existed, and wants read and
write access to the new database.

The following may also be logically or’d into the database flags:
‘GDBM_SYNC’, which causes all database operations to be synchronized
to the disk, ‘GDBM_NOLOCK’, which prevents the library from performing
any locking on the database file, and ‘GDBM_NOMMAP’, which disables the
memory mapping mechanism. The option ‘GDBM_FAST’ is now obsolete,
since gdbm defaults to no-sync mode.

If this flag is set and the requested block size cannot be used without
adjustment, gdbm_open will refuse to create the databases. In this case
it will set the ‘gdbm_errno’ variable to ‘GDBM_BLOCK_SIZE_ERROR’ and
return ‘NULL’.

If the host ‘open’ call (see Section “open” in open(2) man page) supports
the ‘O_CLOEXEC’ flag, the ‘GDBM_CLOEXEC’ can be or’d into the flags, to
enable the close-on-exec flag for the database file descriptor.

mode File mode (see Section “change permissions of a file” in chmod(2) man
page, and see Section “open a file” in open(2) man page), which is used
if the file is created).

Chapter 4: Opening the database. 5

fatal func A function for gdbm to call if it detects a fatal error. The only parameter
of this function is a string. If the value of ‘NULL’ is provided, gdbm will
use a default function.

The return value, is the pointer needed by all other functions to access that gdbm file.
If the return is the ‘NULL’ pointer, gdbm_open was not successful. The errors can be
found in gdbm_errno variable (see Chapter 18 [Variables], page 27). Available error
codes are discussed in Chapter 19 [Error codes], page 29.

In all of the following calls, the parameter dbf refers to the pointer returned from
gdbm_open.

[gdbm interface]GDBM_FILE gdbm_fd_open (int fd, const char *name, int
block_size, int flags, int mode, void (*fatal func)(const char *))

Alternative function for opening a GDBM database. The fd argument is the file
descriptor of the database file obtained by a call to open(2), creat(2) or simi-
lar funcionss. The descriptor is not dup’ed, and will be closed when the returned
GDBM FILE is closed. Use dup(2) if that is not desirable.

[gdbm interface]int gdbm_copy_meta (GDBM FILE dst, GDBM FILE src)
Copy file ownership and mode from src to dst.

6

5 Closing the database.

It is important that every file opened is also closed. This is needed to update the
reader/writer count on the file:

[gdbm interface]void gdbm_close (GDBM FILE dbf)
This function closes the gdbm file and frees all memory associated with it. The para-
meter is:

dbf The pointer returned by gdbm_open.

7

6 Number of Records

[gdbm interface]int gdbm_count (GDBM FILE dbf, gdbm count t *pcount)
Counts number of records in the database dbf. On success, stores it in the memory
location pointed to by pcount and return 0. On error, sets gdbm_errno (if relevant,
also errno) and returns -1.

8

7 Inserting and replacing records in the database.

[gdbm interface]int gdbm_store (GDBM FILE dbf, datum key, datum
content, int flag)

The function gdbm_store inserts or replaces records in the database.

The parameters are:

dbf The pointer returned by gdbm_open.

key The search key.

content The data to be associated with the key.

flag Defines the action to take when the key is already in the database. The
value ‘GDBM_REPLACE’ (defined in gdbm.h) asks that the old data be re-
placed by the new content. The value ‘GDBM_INSERT’ asks that an error
be returned and no action taken if the key already exists.

This function can return the following values:

-1 The item was not stored in the database because the caller was not an
official writer or either key or content have a ‘NULL’ ‘dptr’ field.

Both key and content must have the ‘dptr’ field be a non-‘NULL’ value.
Since a ‘NULL’ ‘dptr’ field is used by other functions to indicate an error,
it cannot be valid data.

+1 The item was not stored because the argument flag was ‘GDBM_INSERT’
and the key was already in the database.

0 No error. The value of content is keyed by key. The file on disk is
updated to reflect the structure of the new database before returning
from this function.

If you store data for a key that is already in the data base, gdbm replaces the old data
with the new data if called with ‘GDBM_REPLACE’. You do not get two data items for the
same key and you do not get an error from gdbm_store.

The size in gdbm is not restricted like dbm or ndbm. Your data can be as large as you
want.

9

8 Searching for records in the database.

[gdbm interface]datum gdbm_fetch (GDBM FILE dbf, datum key)
Looks up a given key and returns the information associated with it. The ‘dptr’ field
in the structure that is returned points to a memory block allocated by malloc. It is
the caller’s responsibility to free it when no longer needed.

If the ‘dptr’ is ‘NULL’, inspect the value of the gdbm_errno variable (see Chapter 18
[Variables], page 27). If it is ‘GDBM_ITEM_NOT_FOUND’, no data was found. Any other
value means an error occurred. Use gdbm_strerror function to convert gdbm_errno
to a human-readable string.

The parameters are:

dbf The pointer returned by gdbm_open.

key The search key.

An example of using this function:

content = gdbm_fetch (dbf, key);

if (content.dptr == NULL)

{

fprintf(stderr, "key not found\n");

}

else

{

/* do something with content.dptr */

}

You may also search for a particular key without retrieving it:

[gdbm interface]int gdbm_exists (GDBM FILE dbf, datum key)
Checks whether the key exists in the database dbf.

If key is found, returns ‘true’ (‘1’). If it is not found, returns ‘false’ (‘0’) and sets
gdbm_errno to ‘GDBM_NO_ERROR’ (‘0’).

On error, returns ‘0’ and sets gdbm_errno to a non-‘0’ error code.

The parameters are:

dbf The pointer returned by gdbm_open.

key The search key.

10

9 Removing records from the database.

To remove some data from the database, use the gdbm_delete function.

[gdbm interface]int gdbm_delete (GDBM FILE dbf, datum key)
Deletes the data associated with the given key, if it exists in the database dbf. The
file on disk is updated to reflect the structure of the new database before returning
from this function.

The parameters are:

dbf The pointer returned by gdbm_open.

datum key
The search key.

The function returns ‘-1’ if the item is not present or the requester is a reader. The
return of ‘0’ marks a successful delete.

11

10 Sequential access to records.

The next two functions allow for accessing all items in the database. This access is not
key sequential, but it is guaranteed to visit every key in the database once. The order has
to do with the hash values. gdbm_firstkey starts the visit of all keys in the database.
gdbm_nextkey finds and reads the next entry in the hash structure for dbf.

[gdbm interface]datum gdbm_firstkey (GDBM FILE dbf)
Initiate sequential access to the database dbf. The returned value is the first key
accessed in the database. If the ‘dptr’ field in the returned datum is ‘NULL’, inspect
the gdbm_errno variable (see Chapter 18 [Variables], page 27). The value of GDBM_
ITEM_NOT_FOUND means that the database contains no data. Other value means an
error occurred.

Otherwise, ‘dptr’ points to a memory block obtained from malloc, which holds the
key value. The caller is responsible for freeing this memory block when no longer
needed.

[gdbm interface]datum gdbm_nextkey (GDBM FILE dbf, datum prev)
This function continues the iteration over the keys in dbf, initiated by gdbm_firstkey.
The parameter prev holds the value returned from a previous call to gdbm_nextkey

or gdbm_firstkey.

The function returns next key from the database. If the ‘dptr’ field in the returned
datum is ‘NULL’ inspect the gdbm_errno variable (see Chapter 18 [Variables], page 27).
The value of GDBM_ITEM_NOT_FOUND means that all keys in the database has been
visited. Any other value means an error occurred.

Otherwise, ‘dptr’ points to a memory block obtained from malloc, which holds the
key value. The caller is responsible for freeing this memory block when no longer
needed.

These functions were intended to visit the database in read-only algorithms, for instance,
to validate the database or similar operations. The usual algorithm for sequential access is:

key = gdbm_firstkey (dbf);

while (key.dptr)

{

datum nextkey;

/* do something with the key */

...

/* Obtain the next key */

nextkey = gdbm_nextkey (dbf, key);

/* Reclaim the memory used by the key */

free (key.dptr);

/* Use nextkey in the next iteration. */

key = nextkey;

}

12

Care should be taken when the gdbm_delete function is used in such a loop. File visiting
is based on a hash table. The gdbm_delete function re-arranges the hash table to make
sure that any collisions in the table do not leave some item un-findable. The original key
order is not guaranteed to remain unchanged in all instances. So it is possible that some
key will not be visited if a loop like the following is executed:

key = gdbm_firstkey (dbf);

while (key.dptr)

{

datum nextkey;

if (some condition)

{

gdbm_delete (dbf, key);

}

nextkey = gdbm_nextkey (dbf, key);

free (key.dptr);

key = nextkey;

}

13

11 Database reorganization.

The following function should be used very seldom.

[gdbm interface]int gdbm_reorganize (GDBM FILE dbf)
Reorganizes the database.

The parameter is:

dbf The pointer returned by gdbm_open.

If you have had a lot of deletions and would like to shrink the space used by the gdbm

file, this function will reorganize the database. This results, in particular, in shortening the
length of a gdbm file by removing the space occupied by deleted records.

This reorganization requires creating a new file and inserting all the elements in the
old file dbf into the new file. The new file is then renamed to the same name as the old
file and dbf is updated to contain all the correct information about the new file. If an
error is detected, the return value is negative. The value zero is returned after a successful
reorganization.

14

12 Database Synchronization

Unless your database was opened with the ‘GDBM_SYNC’ flag, gdbm does not wait for writes
to be flushed to the disk before continuing. This allows for faster writing of databases at the
risk of having a corrupted database if the application terminates in an abnormal fashion.
The following function allows the programmer to make sure the disk version of the database
has been completely updated with all changes to the current time.

[gdbm interface]void gdbm_sync (GDBM FILE dbf)
Synchronizes the changes in dbf with its disk file. The parameter is a pointer returned
by gdbm_open.

This function would usually be called after a complete set of changes have been
made to the database and before some long waiting time. The gdbm_close function
automatically calls the equivalent of gdbm_sync so no call is needed if the database
is to be closed immediately after the set of changes have been made.

15

13 Export and Import

Gdbm databases can be converted into so-called flat format files. Such files cannot be used
for searching, their sole purpose is to keep the data from the database for restoring it when
the need arrives. There are two flat file formats, which differ in the way they represent
the data and in the amount of meta-information stored. Both formats can be used, for
example, to migrate between the different versions of gdbm databases. Generally speaking,
flat files are safe to send over the network, and can be used to recreate the database on
another machine. The recreated database is guaranteed to be a byte-to-byte equivalent of
the database from which the flat file was created. This does not necessarily mean, however,
that this file can be used in the same way as the original one. For example, if the original
database contained non-ASCII data (e.g. C structures, integers etc.), the recreated database
can be of any use only if the target machine has the same integer size and byte ordering as
the source one and if its C compiler uses the same packing conventions as the one which
generated C which populated the original database. In general, such binary databases are
not portable between machines, unless you follow some stringent rules on what data is
written to them and how it is interpreted.

The GDBM version 1.13 supports two flat file formats. The binary flat file format was
first implemented in GDBM version 1.9.1. This format stores only key/data pairs, it does
not keep information about the database file itself. As its name implies, files in this format
are binary files.

The ascii flat file format encodes all data in base64 and stores not only key/data pairs,
but also the original database file metadata, such as file name, mode and ownership. Files
in this format can be sent without additional encapsulation over transmission channels that
normally allow only ASCII data, such as, e.g. SMTP. Due to additional metadata they allow
for restoring an exact copy of the database, including file ownership and privileges, which
is especially important if the database in question contained some security-related data.

We call a process of creating a flat file from a database exporting or dumping this
database. The reverse process, creating the database from a flat file is called importing or
loading the database.

[gdbm interface]int gdbm_dump (GDBM FILE dbf, const char *filename, int
format, int open_flags, int mode)

Dumps the database file to the named file in requested format. Arguments are:

dbf A pointer to the source database, returned by a prior call to gdbm_open.

filename Name of the dump file.

format Output file format. Allowed values are: ‘GDBM_DUMP_FMT_BINARY’ to cre-
ate a binary dump and ‘GDBM_DUMP_FMT_ASCII’ to create an ASCII dump
file.

open flags How to create the output file. If flag is ‘GDBM_WRCREAT’ the file will be
created if it does not exist. If it does exist, the gdbm_dump will fail.

If flag is ‘GDBM_NEWDB’, the function will create a new output file, replacing
it if it already exists.

mode The permissions to use when creating the output file. See Section “open
a file” in open(2) man page, for a detailed discussion.

Chapter 13: Export and Import 16

[gdbm interface]int gdbm_load (GDBM FILE *pdbf, const char *filename,
int flag, int meta_mask, unsigned long *errline)

Loads data from the dump file filename into the database pointed to by pdbf. The
latter can point to ‘NULL’, in which case the function will try to create a new database.
If it succeeds, the function will return, in the memory location pointed to by pdbf, a
pointer to the newly created database. If the dump file carries no information about
the original database file name, the function will set gdbm_errno to ‘GDBM_NO_DBNAME’
and return ‘-1’, indicating failure.

The flag has the same meaning as the flag argument to the gdbm_store function (see
Chapter 7 [Store], page 8).

The meta mask argument can be used to disable restoring certain bits of file’s meta-
data from the information in the input dump file. It is a binary OR of zero or more
of the following:

GDBM META MASK MODE
Do not restore file mode.

GDBM META MASK OWNER
Do not restore file owner.

The function returns 0 upon successful completion or -1 on fatal errors and 1 on mild
(non-fatal) errors.

If a fatal error occurs, gdbm_errno will be set to one of the following values:

GDBM FILE OPEN ERROR
Input file (filename) cannot be opened. The errno variable can be used
to get more detail about the failure.

GDBM MALLOC ERROR
Not enough memory to load data.

GDBM FILE READ ERROR
Reading from filename failed. The errno variable can be used to get
more detail about the failure.

GDBM ILLEGAL DATA
Input contained some illegal data.

GDBM ITEM NOT FOUND
This error can occur only when the input file is in ASCII format. It indi-
cates that the data part of the record about to be read lacked length spec-
ification. Application developers are advised to treat this error equally
as ‘GDBM_ILLEGAL_DATA’.

Mild errors mean that the function was able to successfully load and restore the data,
but was unable to change database file metadata afterward. The table below lists
possible values for gdbm_errno in this case. To get more detail, inspect the system
errno variable.

GDBM ERR FILE OWNER
The function was unable to restore database file owner.

Chapter 13: Export and Import 17

GDBM ERR FILE MODE
The function was unable to restore database file mode (permission bits).

If an error occurs while loading data from an input file in ASCII format, the number
of line in which the error occurred will be stored in the location pointed to by the
errline parameter, unless it is ‘NULL’.

If the line information is not available or applicable, errline will be set to ‘0’.

[gdbm interface]int gdbm_dump_to_file (GDBM FILE dbf, FILE *fp, int
format)

This is an alternative entry point to gdbm_dump (which see). Arguments are:

dbf A pointer to the source database, returned by a call to gdbm_open.

fp File to write the data to.

format Format of the dump file. See the format argument to the gdbm_dump

function.

[gdbm interface]int gdbm_load_from_file (GDBM FILE *pdbf, FILE *fp,
int replace, int meta_mask, unsigned long *line)

This is an alternative entry point to gdbm_dump. It writes the output to fp which
must be a file open for writing. The rest of arguments is the same as for gdbm_load
(excepting of course flag, which is not needed in this case).

[gdbm interface]int gdbm_export (GDBM FILE dbf, const char *exportfile,
int flag, int mode)

This function is retained for compatibility with GDBM 1.10 and earlier. It dumps
the database to a file in binary dump format and is entirely equivalent to

gdbm_dump(dbf, exportfile, GDBM_DUMP_FMT_BINARY,

flag, mode)

[gdbm interface]int gdbm_export_to_file (GDBM FILE dbf, FILE *fp)
This is an alternative entry point to gdbm_export. This function writes to file fp a
binary dump of the database dbf.

[gdbm interface]int gdbm_import (GDBM FILE dbf, const char *importfile,
int flag)

This function is retained for compatibility with GDBM 1.10 and earlier. It loads the
file importfile, which must be a binary flat file, into the database dbf and is equivalent
to the following construct:

dbf = gdbm_open (importfile, 0,

flag == GDBM_REPLACE ?

GDBM_WRCREAT : GDBM_NEWDB,

0600, NULL);

gdbm_load (&dbf, exportfile, 0, flag, NULL)

[gdbm interface]int gdbm_import_from_file (GDBM FILE dbf, FILE *fp,
int flag)

An alternative entry point to gdbm_import. Reads the binary dump from the file fp
and stores the key/value pairs to dbf. See Chapter 7 [Store], page 8, for a description
of flag.

18

This function is equivalent to:

dbf = gdbm_open (importfile, 0,

flag == GDBM_REPLACE ?

GDBM_WRCREAT : GDBM_NEWDB,

0600, NULL);

gdbm_load_from_file (dbf, fp, flag, 0, NULL);

19

14 Error handling.

The global variable gdbm_errno (see Chapter 18 [Variables], page 27) keeps the error code
of the most recent error encountered by GDBM functions.

To convert this code to human-readable string, use the following function:

[gdbm interface]const char * gdbm_strerror (gdbm error errno)
Converts errno (which is an integer value) into a human-readable descriptive text.
Returns a pointer to a static string. The caller must not alter or free the returned
pointer.

Detailed information about the most recent error that occurred while operating on a
GDBM file is stored in the GDBM_FILE object itself. To retrieve it, the following functions
are provided:

[gdbm interface]gdbm_error gdbm_last_errno (GDBM FILE dbf)
Returns the code of the most recent error encountered when operating on dbf.

[gdbm interface]int gdbm_last_syserr (GDBM FILE dbf)
Returns the value of the system errno variable associated with the most recent error.

Notice, that not all GDBM errors have an associated system error code. The following
are the ones that have:

• GDBM FILE OPEN ERROR

• GDBM FILE WRITE ERROR

• GDBM FILE SEEK ERROR

• GDBM FILE READ ERROR

• GDBM FILE STAT ERROR

• GDBM BACKUP FAILED

For other errors, gdbm_last_syserr will return 0.

[gdbm interface]int gdbm_check_syserr (gdbm errno err)
Returns 1, if system errno value should be checked to get more info on the error
described by GDBM code err.

To get a human-readable description of the recent error for a particular database file,
use the gdbm_db_strerror function:

[gdbm interface]const char * gdbm_db_strerror (GDBM FILE dbf)
Returns textual description of the most recent error encountered when operating on
the database dbf. The resulting string is often more informative than what would be
returned by ‘gdbm_strerror(gdbm_last_errno(dbf))’. In particular, if there is a
system error associated with the recent failure, it will be described as well.

[gdbm interface]void gdbm_clear_error (GDBM FILE dbf)
Clears the error state for the database dbf. Normally, this function is called upon the
entry to any GDBM function.

Chapter 14: Error handling. 20

Certain errors (such as write error when saving stored key) can leave database file in
inconistent state. When such a critical error occurs, the database file is marked as needing
recovery. Subsequent calls to any GDBM functions for that database file (except gdbm_

recover), will return immediately with GDBM error value GDBM_NEED_RECOVERY. Addi-
tionally, the following function can be used to check the state of the database file:

[gdbm interface]int gdbm_needs_recovery (GDBM FILE dbf)
Returns 1 if the database file dbf is in inconsistent state and needs recovery.

The only way to bring the database back to operational state is to call the gdbm_recover
function (see Chapter 15 [Recovery], page 21).

21

15 Recovery

Certain errors (such as write error when saving stored key) can leave database file in inconis-
tent state. When such a critical error occurs, the database file is marked as needing recovery.
Subsequent calls to any GDBM functions for that database file (except gdbm_recover), will
return immediately with GDBM error value GDBM_NEED_RECOVERY.

To escape from this state and bring the database back to operational state, use the
following function:

[gdbm interface]int gdbm_recover (GDBM FILE dbf, gdbm recovery *rcvr,
int flags)

Check the database file dbf and fix eventual errors. The rcvr argument points to
a structure that has input members, providing additional information to alter the
behavior of gdbm_recover, and output members, used to return additional statistics
about the recovery process (rcvr can be NULL if no such information is needed).

Each input member has a corresponding flag bit, which must be set in the flags in
order to instruct the function to use it.

The gdbm_recover type is defined as:

typedef struct gdbm_recovery_s

{

/* Input members.

These are initialized before call to gdbm_recover.

The flags argument specifies which of them are initialized. */

void (*errfun) (void *data, char const *fmt, ...);

void *data;

size_t max_failed_keys;

size_t max_failed_buckets;

size_t max_failures;

/* Output members.

The gdbm_recover function fills these before returning. */

size_t recovered_keys;

size_t recovered_buckets;

size_t failed_keys;

size_t failed_buckets;

char *backup_name;

} gdbm_recovery;

The input members modify the behavior of gdbm_recover:

[input member on gdbm_recovery]void (*errfun) (void *data, char const
*fmt, ...)

If the GDBM_RCVR_ERRFUN flag bit is set, errfun points to a function that will
be called upon each recoverable or non-fatal error that occurred during the
recovery.

[input member of gdbm_recovery]void * data
Supplies first argument for the errfun invocations.

22

[input member of gdbm_recovery]size_t max_failed_keys
If GDBM_RCVR_MAX_FAILED_KEYS is set, this member sets the limit on the num-
ber of keys that cannot be retrieved. If the number of failed keys grows bigger
than max_failed_keys, recovery is aborted and error is returned.

[input member of gdbm_recovery]size_t max_failed_buckets
If GDBM_RCVR_MAX_FAILED_BUCKETS is set, this member sets the limit on the
number of buckets that cannot be retrieved or that contain bogus informa-
tion. If the number of failed buckets grows bigger than max_failed_buckets,
recovery is aborted and error is returned.

[output member of gdbm_recovery]size_t max_failures
If GDBM_RCVR_MAX_FAILURES is set, this member sets the limit of failures that
are tolerated during recovery. If the number of errors grows bigger than max_

failures, recovery is aborted and error is returned.

The following members are filled on output, upon successful return from the function:

[output member of gdbm_recovery]size_t recovered_keys
Number of recovered keys.

[output member of gdbm_recovery]size_t recovered_buckets
Number of recovered buckets.

[output member of gdbm_recovery]size_t failed_keys
Number of key/data pairs that cannot be retrieved.

[output member of gdbm_recovery]size_t failed_buckets
Number of buckets that cannot be retrieved.

[output member of gdbm_recovery]char * backup_name
Name of the file keeping the copy of the original database, in the state prior
to recovery. It is filled if the GDBM RCVR BACKUP flag is set. The string
is allocated using the malloc call. The caller is responsible for freeing that
memory when no longer needed.

By default, gdbm_recovery first checks the database fo inconsistencies and attempts
recovery only if some were found. The special flag bit GDBM_RCVR_FORCE instructs gdbm_

recovery to omit this check and to force recovery unconditionally.

23

16 Setting options

Gdbm supports the ability to set certain options on an already open database.

[gdbm interface]int gdbm_setopt (GDBM FILE dbf, int option, void *value,
int size)

Sets an option on the database or returns the value of an option.

The parameters are:

dbf The pointer returned by gdbm_open.

option The option to be set or retrieved.

value A pointer to the value to which option will be set or where to place the
option value (depending on the option).

size The length of the data pointed to by value.

The valid options are:

GDBM SETCACHESIZE
GDBM CACHESIZE

Set the size of the internal bucket cache. This option may only be set once on
each GDBM FILE descriptor, and is set automatically to 100 upon the first
access to the database. The value should point to a size_t holding the desired
cache size.

The ‘GDBM_CACHESIZE’ option is provided for compatibility with earlier versions.

GDBM GETCACHESIZE
Return the size of the internal bucket cache. The value should point to a size_t
variable, where the size will be stored.

GDBM GETFLAGS
Return the flags describing the state of the database. The value should point
to a int variable where to store the flags. The return is the same as the flags
used when opening the database (see Chapter 4 [Open], page 4), except that
it reflects the current state (which may have been altered by another calls to
gdbm_setopt.

GDBM FASTMODE
Enable or disable the fast writes mode, i.e. writes without subsequent synchro-
nization. The value should point to an integer: ‘TRUE’ to enable fast mode, and
‘FALSE’ to disable it.

This option is retained for compatibility with previous versions of gdbm. Its
effect is the reverse of GDBM_SETSYNCMODE (see below).

GDBM SETSYNCMODE
GDBM SYNCMODE

Turn on or off file system synchronization operations. This setting defaults to
off. The value should point to an integer: ‘TRUE’ to turn synchronization on,
and ‘FALSE’ to turn it off.

Chapter 16: Setting options 24

Note, that this option is a reverse of GDBM_FASTMODE, i.e. calling GDBM_

SETSYNCMODE with ‘TRUE’ has the same effect as calling GDBM_FASTMODE with
‘FALSE’.

The ‘GDBM_SYNCMODE’ option is provided for compatibility with earlier versions.

GDBM GETSYNCMODE
Return the current synchronization status. The value should point to an int

where the status will be stored.

GDBM SETCENTFREE
GDBM CENTFREE

NOTICE: This feature is still under study.

Set central free block pool to either on or off. The default is off, which is
how previous versions of gdbm handled free blocks. If set, this option causes
all subsequent free blocks to be placed in the global pool, allowing (in theory)
more file space to be reused more quickly. The value should point to an integer:
‘TRUE’ to turn central block pool on, and ‘FALSE’ to turn it off.

The ‘GDBM_CENTFREE’ option is provided for compatibility with earlier versions.

GDBM SETCOALESCEBLKS
GDBM COALESCEBLKS

NOTICE: This feature is still under study.

Set free block merging to either on or off. The default is off, which is how
previous versions of gdbm handled free blocks. If set, this option causes adjacent
free blocks to be merged. This can become a CPU expensive process with time,
though, especially if used in conjunction with GDBM CENTFREE. The value
should point to an integer: ‘TRUE’ to turn free block merging on, and ‘FALSE’
to turn it off.

GDBM GETCOALESCEBLKS
Return the current status of free block merging. The value should point to an
int where the status will be stored.

GDBM SETMAXMAPSIZE
Sets maximum size of a memory mapped region. The value should point to a
value of type size_t, unsigned long or unsigned. The actual value is rounded
to the nearest page boundary (the page size is obtained from sysconf(_SC_

PAGESIZE)).

GDBM GETMAXMAPSIZE
Return the maximum size of a memory mapped region. The value should point
to a value of type size_t where to return the data.

GDBM SETMMAP
Enable or disable memory mapping mode. The value should point to an integer:
‘TRUE’ to enable memory mapping or ‘FALSE’ to disable it.

GDBM GETMMAP
Check whether memory mapping is enabled. The value should point to an
integer where to return the status.

25

GDBM GETDBNAME
Return the name of the database disk file. The value should point to a variable
of type char**. A pointer to the newly allocated copy of the file name will be
placed there. The caller is responsible for freeing this memory when no longer
needed. For example:

char *name;

if (gdbm_setopt (dbf, GDBM_GETDBNAME, &name, sizeof (name)))

{

fprintf (stderr, "gdbm_setopt failed: %s\n",

gdbm_strerror (gdbm_errno));

}

else

{

printf ("database name: %s\n", name);

free (name);

}

GDBM GETBLOCKSIZE
Return the block size in bytes. The value should point to int.

The return value will be ‘-1’ upon failure, or ‘0’ upon success. The global variable
gdbm_errno will be set upon failure.

For instance, to set a database to use a cache of 10, after opening it with gdbm_open,
but prior to accessing it in any way, the following code could be used:

int value = 10;

ret = gdbm_setopt (dbf, GDBM_CACHESIZE, &value, sizeof (int));

26

17 File Locking.

With locking disabled (if gdbm_open was called with ‘GDBM_NOLOCK’), the user may want
to perform their own file locking on the database file in order to prevent multiple writers
operating on the same file simultaneously.

In order to support this, the gdbm_fdesc routine is provided.

[gdbm interface]int gdbm_fdesc (GDBM FILE dbf)
Returns the file descriptor of the database dbf. This value can be used as an argument
to flock, lockf or similar calls.

27

18 Useful global variables.

The following global variables and constants are available:

[Variable]gdbm_error gdbm_errno
This variable contains error code from the last failed gdbm call. See Chapter 19 [Error
codes], page 29, for a list of available error codes and their descriptions.

Use gdbm_strerror (see Chapter 14 [Errors], page 19) to convert it to a descriptive
text.

[Variable]const char * gdbm_errlist[]
This variable is an array of error descriptions, which is used by gdbm_strerror to
convert error codes to human-readable text (see Chapter 14 [Errors], page 19). You
can access it directly, if you wish so. It contains _GDBM_MAX_ERRNO + 1 elements and
can be directly indexed by the error code to obtain a corresponding descriptive text.

[Variable]int const gdbm_syserr[]
Array of boolean values indicating, for each GDBM error code, whether the value of
errno(3) variable is meaningful for this error code. See [gdbm check syserr], page 19.

[Constant]_GDBM_MIN_ERRNO
The minimum error code used by gdbm.

[Constant]_GDBM_MAX_ERRNO
The maximum error code used by gdbm.

[Variable]const char * gdbm_version
A string containing the version information.

[Variable]int const gdbm_version_number[3]
This variable contains the gdbm version numbers:

Index Meaning
0 Major number
1 Minor number
2 Patchlevel number

Additionally, the following constants are defined in the gdbm.h file:

GDBM VERSION MAJOR
Major number.

GDBM VERSION MINOR
Minor number.

GDBM VERSION PATCH
Patchlevel number.

These can be used to verify whether the header file matches the library.

To compare two split-out version numbers, use the following function:

28

[gdbm interface]int gdbm_version_cmp (int const a[3], int const b[3])
Compare two version numbers. Return ‘-1’ if a is less than b, ‘1’ if a is greater than
b and ‘0’ if they are equal.

Comparison is done from left to right, so that:

a = { 1, 8, 3 };

b = { 1, 8, 3 };

gdbm_version_cmp (a, b) ⇒ 0

a = { 1, 8, 3 };

b = { 1, 8, 2 };

gdbm_version_cmp (a, b) ⇒ 1

a = { 1, 8, 3 };

b = { 1, 9. 0 };

gdbm_version_cmp (a, b) ⇒ -1

29

19 Error codes

This chapter summarizes error codes which can be set by the functions in gdbm library.

GDBM NO ERROR
No error occurred.

GDBM MALLOC ERROR
Memory allocation failed. Not enough memory.

GDBM BLOCK SIZE ERROR
This error is set by the gdbm_open function (see Chapter 4 [Open], page 4), if
the value of its block size argument is incorrect and the ‘GDBM_BSEXACT’ flag is
set.

GDBM FILE OPEN ERROR
The library was not able to open a disk file. This can be set by gdbm_open

(see Chapter 4 [Open], page 4), gdbm_export and gdbm_import functions (see
Chapter 13 [Flat files], page 15).

Inspect the value of the system errno variable to get more detailed diagnostics.

GDBM FILE WRITE ERROR
Writing to a disk file failed. This can be set by gdbm_open (see Chapter 4
[Open], page 4), gdbm_export and gdbm_import functions.

Inspect the value of the system errno variable to get more detailed diagnostics.

GDBM FILE SEEK ERROR
Positioning in a disk file failed. This can be set by gdbm_open (see Chapter 4
[Open], page 4) function.

Inspect the value of the system errno variable to get a more detailed diagnos-
tics.

GDBM FILE READ ERROR
Reading from a disk file failed. This can be set by gdbm_open (see Chapter 4
[Open], page 4), gdbm_export and gdbm_import functions.

Inspect the value of the system errno variable to get a more detailed diagnos-
tics.

GDBM BAD MAGIC NUMBER
The file given as argument to gdbm_open function is not a valid gdbm file: it
has a wrong magic number.

GDBM EMPTY DATABASE
The file given as argument to gdbm_open function is not a valid gdbm file: it
has zero length.

GDBM CANT BE READER
This error code is set by the gdbm_open function if it is not able to lock file
when called in ‘GDBM_READER’ mode (see Chapter 4 [Open], page 4).

GDBM CANT BE WRITER
This error code is set by the gdbm_open function if it is not able to lock file
when called in writer mode (see Chapter 4 [Open], page 4).

Chapter 19: Error codes 30

GDBM READER CANT DELETE
Set by the gdbm_delete (see Chapter 9 [Delete], page 10) if it attempted to
operate on a database that is open in read-only mode (see Chapter 4 [Open],
page 4).

GDBM READER CANT STORE
Set by the gdbm_store (see Chapter 7 [Store], page 8) if it attempted to operate
on a database that is open in read-only mode (see Chapter 4 [Open], page 4).

GDBM READER CANT REORGANIZE
Set by the gdbm_reorganize (see Chapter 11 [Reorganization], page 13) if
it attempted to operate on a database that is open in read-only mode (see
Chapter 4 [Open], page 4).

GDBM ITEM NOT FOUND
Requested item was not found. This error is set by gdbm_delete (see Chapter 9
[Delete], page 10) and gdbm_fetch (see Chapter 8 [Fetch], page 9) when the
requested key value is not found in the database.

GDBM REORGANIZE FAILED
The gdbm_reorganize function is not able to create a temporary database. See
Chapter 11 [Reorganization], page 13.

GDBM CANNOT REPLACE
Cannot replace existing item. This error is set by the gdbm_store if the
requested key value is found in the database and the flag parameter is not
‘GDBM_REPLACE’. See Chapter 7 [Store], page 8, for a detailed discussion.

GDBM ILLEGAL DATA
Either key or content parameter was wrong in a call to to gdbm_store (see
Chapter 7 [Store], page 8).

GDBM OPT ALREADY SET
Requested option can be set only once and was already set. This error is
returned by the gdbm_setopt function. See Chapter 16 [Options], page 23.

GDBM OPT ILLEGAL
The option argument is not valid or the value argument points to an invalid
value in a call to gdbm_setopt function. See Chapter 16 [Options], page 23.

GDBM BYTE SWAPPED
The gdbm_open function (see Chapter 4 [Open], page 4) attempts to open a
database which is created on a machine with different byte ordering.

GDBM BAD FILE OFFSET
The gdbm_open function (see Chapter 4 [Open], page 4) sets this error code if
the file it tries to open has a wrong magic number.

GDBM BAD OPEN FLAGS
Set by the gdbm_export function if supplied an invalid flags argument. See
Chapter 13 [Flat files], page 15.

GDBM FILE STAT ERROR
Getting information about a disk file failed. The system errno will give more
details about the error.

Chapter 19: Error codes 31

This error can be set by the following functions: gdbm_open, gdbm_reorganize.

GDBM FILE EOF
End of file was encountered where more data was expected to be present. This
error can occur when fetching data from the database and usually means that
the database is truncated or otherwise corrupted.

This error can be set by any GDBM function that does I/O. Some of these
functions are: gdbm_delete, gdbm_exists, gdbm_fetch, gdbm_export, gdbm_
import, gdbm_reorganize, gdbm_firstkey, gdbm_nextkey, gdbm_store.

GDBM NO DBNAME
Output database name is not specified. This error code is set by gdbm_load

(see [gdbm load], page 16) if the first argument points to ‘NULL’ and the input
file does not specify the database name.

GDBM ERR FILE OWNER
This error code is set by gdbm_load if it is unable to restore database file
owner. It is a mild error condition, meaning that the data have been restored
successfully, only changing the target file owner failed. Inspect the system
errno variable to get a more detailed diagnostics.

GDBM ERR FILE MODE
This error code is set by gdbm_load if it is unable to restore database file
mode. It is a mild error condition, meaning that the data have been restored
successfully, only changing the target file owner failed. Inspect the system
errno variable to get a more detailed diagnostics.

GDBM NEED RECOVERY
Database is in inconsistent state and needs recovery. Call gdbm_recover if you
get this error. See Chapter 15 [Recovery], page 21, for a detailed description of
recovery functions.

GDBM BACKUP FAILED
The GDBM engine is unable to create backup copy of the file.

GDBM DIR OVERFLOW
Bucket directory would overflow the size limit during an attempt to split hash
bucket. This error can occur while storing a new key.

32

20 Compatibility with standard dbm and ndbm.

Gdbm includes a compatibility layer, which provides traditional ‘ndbm’ and older ‘dbm’ func-
tions. The layer is compiled and installed if the --enable-libgdbm-compat option is used
when configuring the package.

The compatibility layer consists of two header files: ndbm.h and dbm.h and the libgdbm_
compat library.

Older programs using ndbm or dbm interfaces can use libgdbm_compat without any
changes. To link a program with the compatibility library, add the following two options to
the cc invocation: -lgdbm_compat -lgdbm. The -L option may also be required, depending
on where gdbm is installed, e.g.:

cc ... -lgdbm_compat -lgdbm

Please note that the compatibility library contains references to gdbm routines so the
order in which the libraries are linked is essential. This means that the library linking order
given in the above example must be respected.

Databases created and manipulated by the compatibility interfaces consist of two dif-
ferent files: file.dir and file.pag. This is required by the POSIX specification and
corresponds to the traditional usage. Note, however, that despite the similarity of the nam-
ing convention, actual data stored in these files has not the same format as in the databases
created by other dbm or ndbm libraries. In other words, you cannot access a standard UNIX
dbm file with GNU dbm!

GNU dbm files are not sparse. You can copy them with the usual cp command and they
will not expand in the copying process.

20.1 NDBM interface functions.

The functions below implement the POSIX ‘ndbm’ interface:

[ndbm]DBM * dbm_open (char *file, int flags, int mode)
Opens a database. The file argument is the full name of the database file to be
opened. The function opens two files: file.pag and file.dir. The flags and mode
arguments have the same meaning as the second and third arguments of open (see
Section “open a file” in open(2) man page), except that a database opened for write-
only access opens the files for read and write access and the behavior of the O_APPEND
flag is unspecified.

The function returns a pointer to the DBM structure describing the database. This
pointer is used to refer to this database in all operations described below.

Any error detected will cause a return value of ‘NULL’ and an appropriate value will
be stored in gdbm_errno (see Chapter 18 [Variables], page 27).

[ndbm]void dbm_close (DBM *dbf)
Closes the database. The dbf argument must be a pointer returned by an earlier call
to dbm_open.

[ndbm]datum dbm_fetch (DBM *dbf, datum key)
Reads a record from the database with the matching key. The key argument supplies
the key that is being looked for.

Chapter 20: Compatibility with standard dbm and ndbm. 33

If no matching record is found, the dptr member of the returned datum is ‘NULL’.
Otherwise, the dptr member of the returned datum points to the memory managed
by the compatibility library. The application should never free it.

[ndbm]int dbm_store (DBM *dbf, datum key, datum content, int mode)
Writes a key/value pair to the database. The argument dbf is a pointer to the DBM

structure returned from a call to dbm_open. The key and content provide the values
for the record key and content. The mode argument controls the behavior of dbm_
store in case a matching record already exists in the database. It can have one of
the following two values:

DBM_REPLACE

Replace existing record with the new one.

DBM_INSERT

The existing record is left unchanged, and the function returns ‘1’.

If no matching record exists in the database, new record will be inserted no matter
what the value of the mode is.

[ndbm]int dbm_delete (DBM *dbf, datum key)
Deletes the record with the matching key from the database. If the function succeeds,
‘0’ is returned. Otherwise, if no matching record is found or if an error occurs, ‘-1’
is returned.

[ndbm]datum dbm_firstkey (DBM *dbf)
Initializes iteration over the keys from the database and returns the first key. Note,
that the word ‘first’ does not imply any specific ordering of the keys.

If there are no records in the database, the dptr member of the returned datum is
‘NULL’. Otherwise, the dptr member of the returned datum points to the memory
managed by the compatibility library. The application should never free it.

[ndbm]datum dbm_nextkey (DBM *dbf)
Continues the iteration started by dbm_firstkey. Returns the next key in the data-
base. If the iteration covered all keys in the database, the dptr member of the
returned datum is ‘NULL’. Otherwise, the dptr member of the returned datum points
to the memory managed by the compatibility library. The application should never
free it.

The usual way of iterating over all the records in the database is:

for (key = dbm_firstkey (dbf);

key.ptr;

key = dbm_nextkey (dbf))

{

/* do something with the key */

}

The loop above should not try to delete any records from the database, otherwise the
iteration is not guaranteed to cover all the keys. See Chapter 10 [Sequential], page 11,
for a detailed discussion of this.

Chapter 20: Compatibility with standard dbm and ndbm. 34

[ndbm]int dbm_error (DBM *dbf)
Returns the error condition of the database: ‘0’ if no errors occurred so far while
manipulating the database, and a non-zero value otherwise.

[ndbm]void dbm_clearerr (DBM *dbf)
Clears the error condition of the database.

[ndbm]int dbm_dirfno (DBM *dbf)
Returns the file descriptor of the ‘dir’ file of the database. It is guaranteed to be
different from the descriptor returned by the dbm_pagfno function (see below).

The application can lock this descriptor to serialize accesses to the database.

[ndbm]int dbm_pagfno (DBM *dbf)
Returns the file descriptor of the ‘pag’ file of the database. See also dbm_dirfno.

[ndbm]int dbm_rdonly (DBM *dbf)
Returns ‘1’ if the database dbf is open in a read-only mode and ‘0’ otherwise.

20.2 DBM interface functions.

The functions below are provided for compatibility with the old UNIX ‘DBM’ interface. Only
one database at a time can be manipulated using them.

[dbm]int dbminit (char *file)
Opens a database. The file argument is the full name of the database file to be
opened. The function opens two files: file.pag and file.dir. If any of them does
not exist, the function fails. It never attempts to create the files.

The database is opened in the read-write mode, if its disk permissions permit.

The application must ensure that the functions described below in this section are
called only after a successful call to dbminit.

[dbm]int dbmclose (void)
Closes the database opened by an earlier call to dbminit.

[dbm]datum fetch (datum key)
Reads a record from the database with the matching key. The key argument supplies
the key that is being looked for.

If no matching record is found, the dptr member of the returned datum is ‘NULL’.
Otherwise, the dptr member of the returned datum points to the memory managed
by the compatibility library. The application should never free it.

[dbm]int store (datum key, datum content)
Stores the key/value pair in the database. If a record with the matching key already
exists, its content will be replaced with the new one.

Returns ‘0’ on success and ‘-1’ on error.

[dbm]int delete (datum key)
Deletes a record with the matching key.

If the function succeeds, ‘0’ is returned. Otherwise, if no matching record is found or
if an error occurs, ‘-1’ is returned.

35

[dbm]datum firstkey (void)
Initializes iteration over the keys from the database and returns the first key. Note,
that the word ‘first’ does not imply any specific ordering of the keys.

If there are no records in the database, the dptr member of the returned datum is
‘NULL’. Otherwise, the dptr member of the returned datum points to the memory
managed by the compatibility library. The application should never free it.

[dbm]datum nextkey (datum key)
Continues the iteration started by a call to firstkey. Returns the next key in the
database. If the iteration covered all keys in the database, the dptr member of the
returned datum is ‘NULL’. Otherwise, the dptr member of the returned datum points
to the memory managed by the compatibility library. The application should never
free it.

36

21 Examine and modify a GDBM database.

The gdbmtool utility allows you to view and modify an existing GDBM database or to
create a new one.

When invoked without arguments, it tries to open a database file called junk.gdbm,
located in the current working directory. You can change this default by supplying the
name of the database as argument to the program, e.g.:

$ gdbmtool file.db

The database will be opened in read-write mode, unless the -r (--read-only) option is
specified, in which case it will be opened only for reading.

If the database does not exist, gdbmtool will create it. There is a special option -n

(--newdb, which instructs the utility to create a new database. If it is used and if the
database already exists, it will be deleted, so use it sparingly.

21.1 gdbmtool invocation

The following table summarizes all gdbmtool command line options:

-b size

--block-size=size

Set block size.

-c size

--cache-size=size

Set cache size.

-f file

--file file

Read commands from file, instead of the standard input.

-h

--help Print a concise help summary.

-N

--norc Don’t read startup files (see Section 21.2.4 [startup files], page 45).

-n

--newdb Create the database.

-l

--no-lock

Disable file locking.

-m

--no-mmap

Disable mmap.

-q

--quiet Don’t print the usual welcome banner at startup. This is the same as setting
the variable ‘quiet’ in the startup file. See [quiet], page 39.

Chapter 21: Examine and modify a GDBM database. 37

-r

--read-only

Open the database in read-only mode.

-s

--synchronize

Synchronize to the disk after each write.

-V

--version

Print program version and licensing information and exit.

--usage Print a terse invocation syntax summary along with a list of available command
line options.

21.2 gdbmtool interactive mode

After successful startup, gdbmtool starts a loop, in which it reads commands from the
standard input, executes them and prints results on the standard output. If the standard
input is attached to a console, gdbmtool runs in interactive mode, which is indicated by its
prompt:

gdbmtool> _

The utility finishes when it reads the ‘quit’ command (see below) or detects end-of-file
on its standard input, whichever occurs first.

A gdbmtool command consists of a command verb, optionally followed by arguments,
separated by any amount of white space. A command verb can be entered either in full or
in an abbreviated form, as long as that abbreviation does not match any other verb. For
example, ‘co’ can be used instead of ‘count’ and ‘ca’ instead of ‘cache’.

Any sequence of non-whitespace characters appearing after the command verb forms
an argument. If the argument contains whitespace or unprintable characters it must be
enclosed in double quotes. Within double quotes the usual escape sequences are understood,
as shown in the table below:

Sequence Replaced with
\a Audible bell character (ASCII 7)
\b Backspace character (ASCII 8)
\f Form-feed character (ASCII 12)
\n Newline character (ASCII 10)
\r Carriage return character (ASCII 13)
\t Horizontal tabulation character (ASCII 9)
\v Vertical tabulation character (ASCII 11)
\\ Single slash
\" Double quote

Table 21.1: Backslash escapes

In addition, a backslash immediately followed by the end-of-line character effectively
removes that character, allowing to split long arguments over several input lines.

Command parameters may be optional or mandatory. If the number of actual arguments
is less than the number of mandatory parameters, gdbmtool will prompt you to supply

Chapter 21: Examine and modify a GDBM database. 38

missing arguments. For example, the ‘store’ command takes two mandatory parameters,
so if you invoked it with no arguments, you would be prompted twice to supply the necessary
data, as shown in example below:

gdbmtool> store

key? three

data? 3

However, such prompting is possible only in interactive mode. In non-interactive mode
(e.g. when running a script), all arguments must be supplied with each command, otherwise
gdbmtool will report an error and exit immediately.

If the package is compiled with GNU Readline, the input line can be edited (see Section
“Command Line Editing” in GNU Readline Library).

21.2.1 Shell Variables

A number of gdbmtool parameters is kept in its internal variables.

[gdbmtool variable]bool confirm
Whether to ask for confirmation before certain destructive operations, such as trun-
cating the existing database.

Default is ‘true’.

[gdbmtool variable]string ps1
Primary prompt string. Its value can contain conversion specifiers, consisting of the
‘%’ character followed by another character. These specifiers are expanded in the
resulting prompt as follows:

Sequence Expansion
%f name of the current database file
%p program invocation name
%P package name (‘GDBM’)
%v program version
% single space character
%% %

The default value is ‘%p>%_’, i.e. the program name, followed by a “greater than”
sign, followed by a single space.

[gdbmtool variable]string ps2
Secondary prompt. See ‘ps1’ for a description of its value. This prompt is displayed
before reading the second and subsequent lines of a multi-line command.

The default value is ‘%_>%_’.

[gdbmtool variable]string delim1
A string used to delimit fields of a structured datum on output (see Section 21.2.3
[definitions], page 43).

Default is ‘,’ (a comma). This variable cannot be unset.

Chapter 21: Examine and modify a GDBM database. 39

[gdbmtool variable]string delim2
A string used to delimit array items when printing a structured datum (see
Section 21.2.3 [definitions], page 43).

Default is ‘,’ (a comma). This variable cannot be unset.

[gdbmtool variable]string pager
The name and command line of the pager program to pipe output to. This program
is used in interactive mode when the estimated number of output lines is greater then
the number of lines on your screen.

The default value is inherited from the environment variable PAGER. Unsetting this
variable disables paging.

[gdbmtool variable]bool quiet
Whether to display a welcome banner at startup. This variable should be set in a
startup script file (see Section 21.2.4 [startup files], page 45). See [-q option], page 36.

The following variables control how the database is opened:

[gdbmtool variable]numeric blocksize
Sets the block size. See Chapter 4 [Open], page 4. Unset by default.

[gdbmtool variable]numeric cachesize
Sets the cache size. See Chapter 16 [Options], page 23. By default this variable is
not set.

[gdbmtool variable]string open
Open mode. The following values are allowed:

newdb Truncate the database if it exists or create a new one. Open it in read-
write mode.

Technically, this sets the ‘GDBM_NEWDB’ flag in call to ‘gdbm_open’. See
Chapter 4 [Open], page 4.

wrcreat
rw Open the database in read-write mode. Create it if it does not exist. This

is the default.

Technically speaking, it sets the ‘GDBM_WRCREAT’ flag in call to gdbm_open.
See Chapter 4 [Open], page 4.

reader
readonly Open the database in read-only mode. Signal an error if it does not exist.

This sets the ‘GDBM_READER’ flag (see Chapter 4 [Open], page 4).

Attempting to set any other value or to unset this variable produces an error.

[gdbmtool variable]number filemode
File mode (in octal) for creating new database files and database dumps.

[gdbmtool variable]bool lock
Lock the database. This is the default.

Setting this variable to false or unsetting it results in passing ‘GDBM_NOLOCK’ flag to
gdbm_open (see Chapter 4 [Open], page 4).

Chapter 21: Examine and modify a GDBM database. 40

[gdbmtool variable]bool mmap
Use memory mapping. This is the default.

Setting this variable to false or unsetting it results in passing ‘GDBM_NOMMAP’ flag to
gdbm_open (see Chapter 4 [Open], page 4).

[gdbmtool variable]bool sync
Flush all database writes on disk immediately. Default is false. See Chapter 4 [Open],
page 4.

The following commands are used to list or modify the variables:

[command verb]set [assignments]
When used without arguments, lists all variables and their values. Unset variables
are shown after a comment sign (‘#’). For string and numeric variables, values are
shown after an equals sign. For boolean variables, only the variable name is displayed
if the variable is ‘true’. If it is ‘false’, its name is prefixed with ‘no’.

For example:

ps1="%p>%_"

ps2="%_>%_"

delim1=","

delim2=","

confirm

cachesize is unset

blocksize is unset

open="wrcreat"

lock

mmap

nosync

pager="less"

quiet is unset

If used with arguments, the set command alters the specified variables. In this case,
arguments are variable assignments in the form ‘name=value’. For boolean variables,
the value is interpreted as follows: if it is numeric, ‘0’ stands for ‘false’, any non-zero
value stands for ‘true’. Otherwise, the values ‘on’, ‘true’, and ‘yes’ denote ‘true’,
and ‘off’, ‘false’, ‘no’ stand for ‘false’. Alternatively, only the name of a boolean
variable can be supplied to set it to ‘true’, and its name prefixed with ‘no’ can be
used to set it to false. For example, the following command sets the ‘delim2’ variable
to ‘;’ and the ‘confirm’ variable to ‘false’:

set delim2=";" noconfirm

[command verb]unset variables
Unsets the listed variables. The effect of unsetting depends on the variable. Unless
explicitly described in the discussion of the variables above, unsetting a boolean vari-
able is equivalent to setting it to ‘false’. Unsetting a string variable is equivalent to
assigning it an empty string.

Chapter 21: Examine and modify a GDBM database. 41

21.2.2 Gdbmtool Commands

[command verb]avail
Print the avail list.

[command verb]bucket num
Print the bucket number num and set it as the current one.

[command verb]cache
Print the bucket cache.

[command verb]close
Close the currently open database.

[command verb]count
Print the number of entries in the database.

[command verb]current
Print the current bucket.

[command verb]delete key
Delete record with the given key

[command verb]dir
Print hash directory.

[command verb]export file-name [truncate] [binary|ascii]
Export the database to the flat file file-name. See Chapter 13 [Flat files], page 15, for a
description of the flat file format and its purposes. This command will not overwrite
an existing file, unless the ‘truncate’ parameter is also given. Another optional
argument determines the type of the dump (see Chapter 13 [Flat files], page 15). By
default, ASCII dump is created.

The global variable filemode specifies the permissions to use for the created output
file.

See also Chapter 24 [gdbmexport], page 48.

[command verb]fetch key
Fetch and display the record with the given key.

[command verb]first
Fetch and display the first record in the database. Subsequent records can be fetched
using the next command (see below). See Chapter 10 [Sequential], page 11, for more
information on sequential access.

[command verb]hash key
Compute and display the hash value for the given key.

[command verb]header
Print file header.

Chapter 21: Examine and modify a GDBM database. 42

[command verb]help
[command verb]?

Print a concise command summary, showing each command verb with its parameters
and a short description of what it does. Optional arguments are enclosed in square
brackets.

[command verb]import file-name [replace] [nometa]
Import data from a flat dump file file-name (see Chapter 13 [Flat files], page 15).
If the word ‘replace’ is given as an argument, any records with the same keys as
the already existing ones will replace them. The word ‘nometa’ turns off restoring
meta-information from the dump file.

[command verb]history
[command verb]history count
[command verb]history n count

Shows the command history list with line numbers. When used without arguments,
shows entire history. When used with one argument, displays count last commands
from the history. With two arguments, displays count commands starting from nth
command. Command numbering starts with 1.

This command is available only if GDBM was compiled with GNU Readline. The
history is saved in file .gdbmtool_history in the user’s home directory. If this file
exists upon startup, it is read to populate the history. Thus, command history is
preserved between gdbmtool invocations.

[command verb]list
List the contents of the database.

[command verb]next [key]
Sequential access: fetch and display the next record. If the key is given, the record
following the one with this key will be fetched.

Issuing several next commands in row is rather common. A shortcut is provided
to facilitate such use: if the last entered command was next, hitting the Enter key
repeats it without arguments.

See also first, above.

See Chapter 10 [Sequential], page 11, for more information on sequential access.

[command verb]open filename
Open the database file filename. If successful, any previously open database is closed.
Otherwise, if the operation fails, the currently opened database remains unchanged.

This command takes additional information from the following variables:

‘open’ The database access mode. See [The open variable], page 39, for a list of
its values.

‘lock’ Whether or not to lock the database. Default is ‘on’.

‘mmap’ Use the memory mapping. Default is ‘on’.

‘sync’ Synchronize after each write. Default is ‘off’.

Chapter 21: Examine and modify a GDBM database. 43

‘filemode’
Specifies the permissions to use in case a new file is created.

See [open parameters], page 39, for a detailed description of these variables.

[command verb]quit
Close the database and quit the utility.

[command verb]reorganize
Reorganize the database (see Chapter 11 [Reorganization], page 13).

[command verb]source filename
Read gdbmtool commands from the file filename.

[command verb]status
Print current program status. The following example shows the information displayed:

Database file: junk.gdbm

Database is open

define key string

define content string

The two ‘define’ strings show the defined formats for key and content data. See
Section 21.2.3 [definitions], page 43, for a detailed discussion of their meaning.

[command verb]store key data
Store the data with key in the database. If key already exists, its data will be replaced.

[command verb]version
Print the version of gdbm.

21.2.3 Data Definitions

GDBM databases are able to keep data of any type, both in the key and in the content
part of a record. Quite often these data are structured, i.e. they consist of several fields of
various types. Gdbmtool provides a mechanism for handling such kind of records.

The define command defines a record structure. The general syntax is:

define what definition

where what is ‘key’ to defining the structure of key data and ‘content’ to define the
structure of the content records.

The definition can be of two distinct formats. In the simplest case it is a single data
type. For example,

define content int

defines content records consisting of a single integer field. Supported data types are:

char Single byte (signed).

short Signed short integer.

ushort Unsigned short integer.

int Signed integer.

Chapter 21: Examine and modify a GDBM database. 44

unsigned
uint Unsigned integer.

long Signed long integer.

ulong Unsigned long integer.

llong Signed long long integer.

ullong Unsigned long long integer.

float A floating point number.

double Double-precision floating point number.

string Array of bytes.

stringz Null-terminated string, trailing null being part of the string.

All numeric data types (integer as well as floating point) have the same respective widths
as in C language on the host where the database file resides.

The ‘string’ and ‘stringz’ are special. Both define a string of bytes, similar to ‘char
x[]’ in C. The former defines an array of bytes, the latter - a null-terminated string. This
makes a difference, in particular, when the string is the only part of datum. Consider the
following two definitions:

1. define key string

2. define key stringz

Now, suppose we want to store the string "ab" in the key. Using the definition (1), the
dptr member of GDBM datum will contain two bytes: ‘a’, and ‘b’. Consequently, the dsize
member will have the value 2. Using the definition (2), the dptr member will contain three
bytes: ‘a’, ‘b’, and ASCII 0. The dsize member will have the value 3.

The definition (1) is the default for both key and content.

The second form of the define statement is similar to the C struct statement and
allows for defining structural data. In this form, the definition part is a comma-separated
list of data types and variables enclosed in curly braces. In contrast to the rest of gdbm
commands, this command is inherently multiline and is terminated with the closing curly
brace. For example:

define content {

int status,

pad 8,

char id[3],

string name

}

This defines a structure consisting of three members: an integer status, an array of 8 bytes
id, and a null-terminated string name. Notice the pad statement: it allows to introduce
padding between structure members. Another useful statement is offset: it specifies that
the member following it begins at the given offset in the structure. Assuming the size of
int is 8 bytes, the above definition can also be written as

define content {

int status,

Chapter 21: Examine and modify a GDBM database. 45

offset 16,

char id[3],

string name

}

NOTE : The ‘string’ type can reasonably be used only if it is the last or the only
member of the data structure. That’s because it provides no information about the number
of elements in the array, so it is interpreted to contain all bytes up to the end of the datum.

When displaying the structured data, gdbmtool precedes each value with the correspond-
ing field name and delimits parts of the structure with the string defined in the ‘delim1’
variable (see Section 21.2.1 [variables], page 38). Array elements are delimited using the
string from ‘delim2’. For example:

gdbmtool> fetch foo

status=2,id={ a, u, x },name="quux"

To supply a structured datum as an argument to a gdbmtool command, use the same
notation, but without field names, e.g.:

gdbmtool> hash { 2, {a,u,x}, "quux" }

hash value = 13089969.

21.2.4 Startup Files

Upon startup gdbmtool looks for a file named ‘.gdbmtoolrc’ first in the current working
directory and, if not found, in the home directory of the user who started the command.

The port compiled with DJGPP will look either for a file named ‘.gdbmtoolrc’ or
‘_gdbmtoolrc’, in that order, depending on if the underlying file system used offers long
filename support (aka LFN support) or not. If not, like on plain DOS, then only for
‘_gdbmtoolrc’ will be looked.

If found, this file is read and interpreted as a list of gdbmtool commands. This allows
you to customize the program behavior.

Following is an example startup file which disables the welcome banner, sets command
line prompt to contain the name of the database file in parentheses and defines the structure
of the database content records:

set quiet

set ps1="(%f) "

define key stringz

define content {

int time,

pad 4,

int status

}

46

22 The gdbm_dump utility

The gdbm_dump utility creates a flat file dump of a GDBM database (see Chapter 13 [Flat
files], page 15). It takes one mandatory argument: the name of the source database file.
The second argument, if given, specifies the name of the output file. If not given, gdbm_dump
will produce the dump on the standard output.

For example, the following invocation creates a dump of the database file.db in the
file file.dump:

$ gdbm_dump file.db file.dump

By default the utility creates dumps in ASCII format (see Chapter 13 [Flat files],
page 15). Another format can be requested using the --format (-H) option.

The gdbm_dump utility understands the following command line options:

-H fmt

--format=fmt

Select output format. Valid values for fmt are: ‘binary’ or ‘0’ to select binary
dump format, and ‘ascii’ or ‘1’ to select ASCII format.

-h

--help Print a concise help summary.

-V

--version

Print program version and licensing information and exit.

--usage Print a terse invocation syntax summary along with a list of available command
line options.

47

23 The gdbm_load utility

The gdbm_load utility restores a GDBM database from a flat file. The utility requires at
least one argument: the name of the input flat file. If it is ‘-’, the standard input will be
read. The format of the input file is detected automatically.

By default the utility attempts to restore the database under its original name, as stored
in the input file. It will fail to do so if the input is in binary format. In that case, the name
of the database must be given as the second argument.

In general, if two arguments are given the second one is treated as the name of the
database to create, overriding the file name specified in the flat file.

The utility understands the following command line arguments:

-b num

--block-size=num

Sets block size. See Chapter 4 [Open], page 4.

-c num

--cache-size=num

Sets cache size. See Chapter 16 [Options], page 23.

-M

--mmap Use memory mapping.

-m mode

--mode=mode

Sets the file mode. The argument is the desired file mode in octal.

-n

--no-meta

Do not restore file meta-data (ownership and mode) from the flat file.

-r

--replace

Replace existing keys.

-u user[:group]

--user=user[:group]

Set file owner. The user can be either a valid user name or UID. Similarly,
the group is either a valid group name or GID. If group is not given, the main
group of user is used.

User and group parts can be separated by a dot, instead of the colon.

-h

--help Print a concise help summary.

-V

--version

Print program version and licensing information and exit.

--usage Print a terse invocation syntax summary along with a list of available command
line options.

48

24 Export a database into a portable format.

The gdbmexport utility converts the database of an older GDBM version into a binary flat
format.

The utility takes two mandatory arguments: the name of the database file to convert
and the output file name, e.g.:

$ gdbmexport junk.gdbm junk.flat

In addition the following two options are understood:

-h Display short usage summary and exit.

-v Display program version and licensing information, and exit.

49

25 Exit codes

All GDBM utilities return uniform exit codes. These are summarized in the table below:

Code Meaning
0 Successful termination.
1 A fatal error occurred.
2 Program was unable to restore file ownership or mode.
3 Command line usage error.

50

26 Problems and bugs.

If you have problems with GNU dbm or think you’ve found a bug, please report it. Before
reporting a bug, make sure you’ve actually found a real bug. Carefully reread the documen-
tation and see if it really says you can do what you’re trying to do. If it’s not clear whether
you should be able to do something or not, report that too; it’s a bug in the documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to the smallest possible
input file that reproduces the problem. Then send us the input file and the exact results
gdbm gave you. Also say what you expected to occur; this will help us decide whether the
problem was really in the documentation.

Once you’ve got a precise problem, send e-mail to bug-gdbm@gnu.org.

Please include the version number of GNU dbm you are using. You can get this informa-
tion by printing the variable gdbm_version (see Chapter 18 [Variables], page 27).

Non-bug suggestions are always welcome as well. If you have questions about things
that are unclear in the documentation or are just obscure features, please report them too.

You may contact the authors and maintainers by e-mail:

phil@cs.wwu.edu, downsj@downsj.com, gray@gnu.org.ua

mailto:bug-gdbm@gnu.org
mailto:phil@cs.wwu.edu
mailto:downsj@downsj.com
mailto:gray@gnu.org.ua

51

27 Additional resources

For the latest updates and pointers to additional resources, visit http://www.gnu.org/

software/gdbm.

In particular, a copy of gdbm documentation in various formats is available online at
http://www.gnu.org/software/gdbm/manual.html.

Latest versions of gdbm can be downloaded from anonymous FTP: ftp://ftp.gnu.org/
gnu/gdbm, or via HTTP from http://ftp.gnu.org/gnu/gdbm, or from any GNU mirror
worldwide. See http://www.gnu.org/order/ftp.html, for a list of mirrors.

To track gdbm development, visit http://puszcza.gnu.org.ua/projects/gdbm.

http://www.gnu.org/software/gdbm
http://www.gnu.org/software/gdbm
http://www.gnu.org/software/gdbm/manual.html
ftp://ftp.gnu.org/gnu/gdbm
ftp://ftp.gnu.org/gnu/gdbm
http://ftp.gnu.org/gnu/gdbm
http://www.gnu.org/order/ftp.html
http://puszcza.gnu.org.ua/projects/gdbm

52

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000-2002, 2007-2008, 2011, 2017 Free Software
Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

http://fsf.org/

Appendix A: GNU Free Documentation License 53

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix A: GNU Free Documentation License 54

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

Appendix A: GNU Free Documentation License 55

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Appendix A: GNU Free Documentation License 56

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: GNU Free Documentation License 57

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 58

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 59

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

60

Index

–
--newdb, gdbmtool option . 36
--read-only, gdbmtool option 36
-n, gdbmtool option . 36
-r, gdbmtool option . 36

.

.gdbmtoolrc . 45

C
close-on-exec . 4
closing database . 6
command line options, gdbmtool 36
compatibility layer . 32
creating a database, gdbmtool 36

D
database options . 23
database reorganization . 13
database synchronization . 14
database, closing . 6
database, opening or creating 4
DBM functions . 34
dbm.h . 32
DBM_INSERT . 33
DBM_REPLACE . 33
default database, gdbmtool . 36
deleting records . 10
deletion in iteration loops . 11
‘dir’ file . 32

E
error code, most recent . 19
error codes . 29
error strings . 19
exit code . 49
export . 15

F
fetching records . 9
Flat file format . 15

G
GDBM_BACKUP_FAILED . 31
GDBM_BAD_FILE_OFFSET . 30
GDBM_BAD_MAGIC_NUMBER . 29
GDBM_BAD_OPEN_FLAGS . 30
GDBM_BLOCK_SIZE_ERROR . 29
GDBM_BSEXACT . 4, 29
GDBM_BYTE_SWAPPED . 30
GDBM_CACHESIZE . 23
GDBM_CANNOT_REPLACE . 30
GDBM_CANT_BE_READER . 29
GDBM_CANT_BE_WRITER . 29
GDBM_CENTFREE . 24
GDBM_CLOEXEC . 4
GDBM_COALESCEBLKS . 24
gdbm_delete and sequential access 11
GDBM_DIR_OVERFLOW . 31
gdbm_dump . 46
GDBM_EMPTY_DATABASE . 29
GDBM_ERR_FILE_MODE . 16, 31
GDBM_ERR_FILE_OWNER . 16, 31
gdbm errno . 19
GDBM_FASTMODE . 23
GDBM_FILE_EOF . 31
GDBM_FILE_OPEN_ERROR . 29
GDBM_FILE_READ_ERROR . 29
GDBM_FILE_SEEK_ERROR . 29
GDBM_FILE_STAT_ERROR . 30
GDBM_FILE_WRITE_ERROR . 29
GDBM_GETBLOCKSIZE . 25
GDBM_GETCACHESIZE . 23
GDBM_GETCOALESCEBLKS . 24
GDBM_GETDBNAME . 24
GDBM_GETFLAGS . 23
GDBM_GETMAXMAPSIZE . 24
GDBM_GETMMAP . 24
GDBM_GETSYNCMODE . 24
GDBM_ILLEGAL_DATA . 30
GDBM_INSERT . 8
GDBM_ITEM_NOT_FOUND . 30
gdbm_load . 47
GDBM_MALLOC_ERROR . 29
GDBM_NEED_RECOVERY . 31
GDBM_NEWDB . 4
GDBM_NO_DBNAME . 31
GDBM_NO_ERROR . 29
GDBM_NOLOCK . 4, 26
GDBM_NOMMAP . 4
GDBM_OPT_ALREADY_SET . 30
GDBM_OPT_ILLEGAL . 30
GDBM_RCVR_BACKUP . 22
GDBM_RCVR_ERRFUN . 21
GDBM_RCVR_FORCE . 22
GDBM_RCVR_MAX_FAILED_BUCKETS 22

Index 61

GDBM_RCVR_MAX_FAILED_KEYS 22
GDBM_RCVR_MAX_FAILURES . 22
GDBM_READER . 4
GDBM_READER_CANT_DELETE . 29
GDBM_READER_CANT_REORGANIZE 30
GDBM_READER_CANT_STORE . 30
GDBM_REORGANIZE_FAILED . 30
GDBM_REPLACE . 8
GDBM_SETCACHESIZE . 23
GDBM_SETCENTFREE . 24
GDBM_SETCOALESCEBLKS . 24
GDBM_SETMAXMAPSIZE . 24
GDBM_SETMMAP . 24
GDBM_SETSYNCMODE . 23
GDBM_SYNC . 4, 14
GDBM_SYNCMODE . 23
GDBM_VERSION_MAJOR . 27
GDBM_VERSION_MINOR . 27
GDBM_VERSION_PATCH . 27
GDBM_WRCREAT . 4
GDBM_WRITER . 4
gdbmexport . 48
gdbmtool . 36
global error state . 19
GNU Readline . 38

I
import . 15
init file, gdbmtool . 45
interactive mode, gdbmtool . 37
iterating over records . 11
iteration and gdbm_delete . 11
iteration loop . 11
iteration loop, using ‘NDBM’ . 33

J
junk.gdbm . 36

L
libgdbm_compat . 32
locking . 26
looking up records . 9

M
most recent error code . 19

N
NDBM functions . 32
ndbm.h . 32
number of records . 7

O
opening the database . 4
options, database . 23

P
‘pag’ file . 32

R
read-only mode, gdbmtool . 36
readline . 38
record, deleting . 10
record, fetching . 9
records, iterating over . 11
records, storing . 8
records, testing existence . 9
reorganization, database . 13

S
sequential access . 11
sequential access, using ‘NDBM’ 33
startup file, gdbmtool . 45
storing records . 8
synchronization, database . 14

V
variables, gdbmtool . 38
version number . 27

	Copying Conditions.
	Introduction to GNU dbm.
	List of functions.
	Opening the database.
	Closing the database.
	Number of Records
	Inserting and replacing records in the database.
	Searching for records in the database.
	Removing records from the database.
	Sequential access to records.
	Database reorganization.
	Database Synchronization
	Export and Import
	Error handling.
	Recovery
	Setting options
	File Locking.
	Useful global variables.
	Error codes
	Compatibility with standard dbm and ndbm.
	NDBM interface functions.
	DBM interface functions.

	Examine and modify a GDBM database.
	gdbmtool invocation
	gdbmtool interactive mode
	Shell Variables
	Gdbmtool Commands
	Data Definitions
	Startup Files

	The gdbm_dump utility
	The gdbm_load utility
	Export a database into a portable format.
	Exit codes
	Problems and bugs.
	Additional resources
	GNU Free Documentation License
	Index

