
GNU Coding Standards

Richard Stallman
last updated March 13, 1998

Copyright c© 1992, 1993, 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Chapter 2: Keeping Free Software Free 1

1 About the GNU Coding Standards

The GNU Coding Standards were written by Richard Stallman and other GNU Project
volunteers. Their purpose is to make the GNU system clean, consistent, and easy to install.
This document can also be read as a guide to writing portable, robust and reliable programs.
It focuses on programs written in C, but many of the rules and principles are useful even if
you write in another programming language. The rules often state reasons for writing in a
certain way.

Corrections or suggestions for this document should be sent to gnu@gnu.org. If you
make a suggestion, please include a suggested new wording for it; our time is limited. We
prefer a context diff to the ‘standards.texi’ or ‘make-stds.texi’ files, but if you don’t
have those files, please mail your suggestion anyway.

This release of the GNU Coding Standards was last updated March 13, 1998.

2 Keeping Free Software Free

This chapter discusses how you can make sure that GNU software remains unencum-
bered.

2.1 Referring to Proprietary Programs

Don’t in any circumstances refer to Unix source code for or during your work on GNU!
(Or to any other proprietary programs.)

If you have a vague recollection of the internals of a Unix program, this does not abso-
lutely mean you can’t write an imitation of it, but do try to organize the imitation internally
along different lines, because this is likely to make the details of the Unix version irrelevant
and dissimilar to your results.

For example, Unix utilities were generally optimized to minimize memory use; if you go
for speed instead, your program will be very different. You could keep the entire input file
in core and scan it there instead of using stdio. Use a smarter algorithm discovered more
recently than the Unix program. Eliminate use of temporary files. Do it in one pass instead
of two (we did this in the assembler).

Or, on the contrary, emphasize simplicity instead of speed. For some applications, the
speed of today’s computers makes simpler algorithms adequate.

Or go for generality. For example, Unix programs often have static tables or fixed-size
strings, which make for arbitrary limits; use dynamic allocation instead. Make sure your
program handles NULs and other funny characters in the input files. Add a programming
language for extensibility and write part of the program in that language.

Or turn some parts of the program into independently usable libraries. Or use a simple
garbage collector instead of tracking precisely when to free memory, or use a new GNU
facility such as obstacks.

Chapter 3: General Program Design 2

2.2 Accepting Contributions

If someone else sends you a piece of code to add to the program you are working on,
we need legal papers to use it—the same sort of legal papers we will need to get from you.
Each significant contributor to a program must sign some sort of legal papers in order for
us to have clear title to the program. The main author alone is not enough.

So, before adding in any contributions from other people, please tell us, so we can arrange
to get the papers. Then wait until we tell you that we have received the signed papers,
before you actually use the contribution.

This applies both before you release the program and afterward. If you receive diffs to
fix a bug, and they make significant changes, we need legal papers for that change.

This also applies to comments and documentation files. For copyright law, comments
and code are just text. Copyright applies to all kinds of text, so we need legal papers for
all kinds.

You don’t need papers for changes of a few lines here or there, since they are not
significant for copyright purposes. Also, you don’t need papers if all you get from the
suggestion is some ideas, not actual code which you use. For example, if you write a
different solution to the problem, you don’t need to get papers.

We know this is frustrating; it’s frustrating for us as well. But if you don’t wait, you
are going out on a limb—for example, what if the contributor’s employer won’t sign a
disclaimer? You might have to take that code out again!

The very worst thing is if you forget to tell us about the other contributor. We could be
very embarrassed in court some day as a result.

We have more detailed advice for maintainers of programs; if you have reached the stage
of actually maintaining a program for GNU (whether released or not), please ask us for a
copy.

3 General Program Design

This chapter discusses some of the issues you should take into account when designing
your program.

3.1 Compatibility with Other Implementations

With occasional exceptions, utility programs and libraries for GNU should be upward
compatible with those in Berkeley Unix, and upward compatible with ansi C if ansi C
specifies their behavior, and upward compatible with POSIX if POSIX specifies their
behavior.

When these standards conflict, it is useful to offer compatibility modes for each of them.

ansi C and POSIX prohibit many kinds of extensions. Feel free to make the extensions
anyway, and include a ‘--ansi’, ‘--posix’, or ‘--compatible’ option to turn them off.
However, if the extension has a significant chance of breaking any real programs or scripts,
then it is not really upward compatible. Try to redesign its interface.

Chapter 3: General Program Design 3

Many GNU programs suppress extensions that conflict with POSIX if the environment
variable POSIXLY_CORRECT is defined (even if it is defined with a null value). Please make
your program recognize this variable if appropriate.

When a feature is used only by users (not by programs or command files), and it is done
poorly in Unix, feel free to replace it completely with something totally different and better.
(For example, vi is replaced with Emacs.) But it is nice to offer a compatible feature as
well. (There is a free vi clone, so we offer it.)

Additional useful features not in Berkeley Unix are welcome.

3.2 Using Non-standard Features

Many GNU facilities that already exist support a number of convenient extensions over
the comparable Unix facilities. Whether to use these extensions in implementing your
program is a difficult question.

On the one hand, using the extensions can make a cleaner program. On the other hand,
people will not be able to build the program unless the other GNU tools are available. This
might cause the program to work on fewer kinds of machines.

With some extensions, it might be easy to provide both alternatives. For example, you
can define functions with a “keyword” INLINE and define that as a macro to expand into
either inline or nothing, depending on the compiler.

In general, perhaps it is best not to use the extensions if you can straightforwardly do
without them, but to use the extensions if they are a big improvement.

An exception to this rule are the large, established programs (such as Emacs) which run
on a great variety of systems. Such programs would be broken by use of GNU extensions.

Another exception is for programs that are used as part of compilation: anything that
must be compiled with other compilers in order to bootstrap the GNU compilation facilities.
If these require the GNU compiler, then no one can compile them without having them
installed already. That would be no good.

3.3 ansi C and pre-ansi C

Do not ever use the “trigraph” feature of ansi C.
ansi C is widespread enough now that it is ok to write new programs that use ansi C

features (and therefore will not work in non-ansi compilers). And if a program is already
written in ansi C, there’s no need to convert it to support non-ansi compilers.

However, it is easy to support non-ansi compilers in most programs, so you might still
consider doing so when you write a program. Instead of writing function definitions in ansi
prototype form,

int
foo (int x, int y)
...

write the definition in pre-ansi style like this,
int
foo (x, y)

Chapter 4: Program Behavior for All Programs 4

int x, y;
...

and use a separate declaration to specify the argument prototype:
int foo (int, int);

You need such a declaration anyway, in a header file, to get the benefit of ansi C
prototypes in all the files where the function is called. And once you have it, you lose
nothing by writing the function definition in the pre-ansi style.

If you don’t know non-ansi C, there’s no need to learn it; just write in ansi C.

3.4 Using Languages Other Than C

Using a language other than C is like using a non-standard feature: it will cause trouble
for users. Even if GCC supports the other language, users may find it inconvenient to have
to install the compiler for that other language in order to build your program. For example,
if you write your program in C++, people will have to install the C++ compiler in order to
compile your program. Thus, it is better if you write in C.

But there are three situations when there is no disadvantage in using some other lan-
guage:
• It is okay to use another language if your program contains an interpreter for that

language.
For example, if your program links with GUILE, it is ok to write part of the program
in Scheme or another language supported by GUILE.

• It is okay to use another language in a tool specifically intended for use with that
language.
This is okay because the only people who want to build the tool will be those who have
installed the other language anyway.

• If an application is of interest to a narrow community, then perhaps it’s not important
if the application is inconvenient to install.

C has one other advantage over C++ and other compiled languages: more people know
C, so more people will find it easy to read and modify the program if it is written in C.

4 Program Behavior for All Programs

This chapter describes how to write robust software. It also describes general standards
for error messages, the command line interface, and how libraries should behave.

4.1 Writing Robust Programs

Avoid arbitrary limits on the length or number of any data structure, including file
names, lines, files, and symbols, by allocating all data structures dynamically. In most
Unix utilities, “long lines are silently truncated”. This is not acceptable in a GNU utility.

Utilities reading files should not drop NUL characters, or any other nonprinting charac-
ters including those with codes above 0177. The only sensible exceptions would be utilities

Chapter 4: Program Behavior for All Programs 5

specifically intended for interface to certain types of printers that can’t handle those char-
acters.

Check every system call for an error return, unless you know you wish to ignore errors.
Include the system error text (from perror or equivalent) in every error message resulting
from a failing system call, as well as the name of the file if any and the name of the utility.
Just “cannot open foo.c” or “stat failed” is not sufficient.

Check every call to malloc or realloc to see if it returned zero. Check realloc even
if you are making the block smaller; in a system that rounds block sizes to a power of 2,
realloc may get a different block if you ask for less space.

In Unix, realloc can destroy the storage block if it returns zero. GNU realloc does
not have this bug: if it fails, the original block is unchanged. Feel free to assume the bug
is fixed. If you wish to run your program on Unix, and wish to avoid lossage in this case,
you can use the GNU malloc.

You must expect free to alter the contents of the block that was freed. Anything you
want to fetch from the block, you must fetch before calling free.

If malloc fails in a noninteractive program, make that a fatal error. In an interactive
program (one that reads commands from the user), it is better to abort the command and
return to the command reader loop. This allows the user to kill other processes to free up
virtual memory, and then try the command again.

Use getopt_long to decode arguments, unless the argument syntax makes this unrea-
sonable.

When static storage is to be written in during program execution, use explicit C code
to initialize it. Reserve C initialized declarations for data that will not be changed.

Try to avoid low-level interfaces to obscure Unix data structures (such as file directories,
utmp, or the layout of kernel memory), since these are less likely to work compatibly. If
you need to find all the files in a directory, use readdir or some other high-level interface.
These will be supported compatibly by GNU.

By default, the GNU system will provide the signal handling functions of BSD and of
POSIX. So GNU software should be written to use these.

In error checks that detect “impossible” conditions, just abort. There is usually no point
in printing any message. These checks indicate the existence of bugs. Whoever wants to fix
the bugs will have to read the source code and run a debugger. So explain the problem with
comments in the source. The relevant data will be in variables, which are easy to examine
with the debugger, so there is no point moving them elsewhere.

Do not use a count of errors as the exit status for a program. That does not work, because
exit status values are limited to 8 bits (0 through 255). A single run of the program might
have 256 errors; if you try to return 256 as the exit status, the parent process will see 0 as
the status, and it will appear that the program succeeded.

If you make temporary files, check the TMPDIR environment variable; if that variable is
defined, use the specified directory instead of ‘/tmp’.

4.2 Library Behavior

Try to make library functions reentrant. If they need to do dynamic storage allocation,
at least try to avoid any nonreentrancy aside from that of malloc itself.

Chapter 4: Program Behavior for All Programs 6

Here are certain name conventions for libraries, to avoid name conflicts.
Choose a name prefix for the library, more than two characters long. All external function

and variable names should start with this prefix. In addition, there should only be one of
these in any given library member. This usually means putting each one in a separate
source file.

An exception can be made when two external symbols are always used together, so that
no reasonable program could use one without the other; then they can both go in the same
file.

External symbols that are not documented entry points for the user should have names
beginning with ‘_’. They should also contain the chosen name prefix for the library, to
prevent collisions with other libraries. These can go in the same files with user entry points
if you like.

Static functions and variables can be used as you like and need not fit any naming
convention.

4.3 Formatting Error Messages

Error messages from compilers should look like this:
source-file-name:lineno: message

Error messages from other noninteractive programs should look like this:
program:source-file-name:lineno: message

when there is an appropriate source file, or like this:
program: message

when there is no relevant source file.
In an interactive program (one that is reading commands from a terminal), it is better

not to include the program name in an error message. The place to indicate which program
is running is in the prompt or with the screen layout. (When the same program runs with
input from a source other than a terminal, it is not interactive and would do best to print
error messages using the noninteractive style.)

The string message should not begin with a capital letter when it follows a program
name and/or file name. Also, it should not end with a period.

Error messages from interactive programs, and other messages such as usage messages,
should start with a capital letter. But they should not end with a period.

4.4 Standards for Command Line Interfaces

Please don’t make the behavior of a utility depend on the name used to invoke it. It
is useful sometimes to make a link to a utility with a different name, and that should not
change what it does.

Instead, use a run time option or a compilation switch or both to select among the
alternate behaviors.

Likewise, please don’t make the behavior of the program depend on the type of output
device it is used with. Device independence is an important principle of the system’s design;
do not compromise it merely to save someone from typing an option now and then.

Chapter 4: Program Behavior for All Programs 7

If you think one behavior is most useful when the output is to a terminal, and another
is most useful when the output is a file or a pipe, then it is usually best to make the default
behavior the one that is useful with output to a terminal, and have an option for the other
behavior.

Compatibility requires certain programs to depend on the type of output device. It
would be disastrous if ls or sh did not do so in the way all users expect. In some of these
cases, we supplement the program with a preferred alternate version that does not depend
on the output device type. For example, we provide a dir program much like ls except
that its default output format is always multi-column format.

It is a good idea to follow the POSIX guidelines for the command-line options of a
program. The easiest way to do this is to use getopt to parse them. Note that the GNU
version of getopt will normally permit options anywhere among the arguments unless the
special argument ‘--’ is used. This is not what POSIX specifies; it is a GNU extension.

Please define long-named options that are equivalent to the single-letter Unix-style op-
tions. We hope to make GNU more user friendly this way. This is easy to do with the GNU
function getopt_long.

One of the advantages of long-named options is that they can be consistent from program
to program. For example, users should be able to expect the “verbose” option of any GNU
program which has one, to be spelled precisely ‘--verbose’. To achieve this uniformity,
look at the table of common long-option names when you choose the option names for your
program (see Section 4.5 [Option Table], page 9).

It is usually a good idea for file names given as ordinary arguments to be input files only;
any output files would be specified using options (preferably ‘-o’ or ‘--output’). Even if
you allow an output file name as an ordinary argument for compatibility, try to provide
an option as another way to specify it. This will lead to more consistency among GNU
utilities, and fewer idiosyncracies for users to remember.

All programs should support two standard options: ‘--version’ and ‘--help’.

--version
This option should direct the program to information about its name, version,
origin and legal status, all on standard output, and then exit successfully. Other
options and arguments should be ignored once this is seen, and the program
should not perform its normal function.

The first line is meant to be easy for a program to parse; the version number
proper starts after the last space. In addition, it contains the canonical name
for this program, in this format:

GNU Emacs 19.30

The program’s name should be a constant string; don’t compute it from
argv[0]. The idea is to state the standard or canonical name for the program,
not its file name. There are other ways to find out the precise file name where
a command is found in PATH.

If the program is a subsidiary part of a larger package, mention the package
name in parentheses, like this:

emacsserver (GNU Emacs) 19.30

Chapter 4: Program Behavior for All Programs 8

If the package has a version number which is different from this program’s
version number, you can mention the package version number just before the
close-parenthesis.

If you need to mention the version numbers of libraries which are distributed
separately from the package which contains this program, you can do so by
printing an additional line of version info for each library you want to mention.
Use the same format for these lines as for the first line.

Please do not mention all of the libraries that the program uses “just for
completeness”—that would produce a lot of unhelpful clutter. Please men-
tion library version numbers only if you find in practice that they are very
important to you in debugging.

The following line, after the version number line or lines, should be a copyright
notice. If more than one copyright notice is called for, put each on a separate
line.

Next should follow a brief statement that the program is free software, and that
users are free to copy and change it on certain conditions. If the program is
covered by the GNU GPL, say so here. Also mention that there is no warranty,
to the extent permitted by law.

It is ok to finish the output with a list of the major authors of the program, as
a way of giving credit.

Here’s an example of output that follows these rules:

GNU Emacs 19.34.5
Copyright (C) 1996 Free Software Foundation, Inc.
GNU Emacs comes with NO WARRANTY,
to the extent permitted by law.
You may redistribute copies of GNU Emacs
under the terms of the GNU General Public License.
For more information about these matters,
see the files named COPYING.

You should adapt this to your program, of course, filling in the proper year,
copyright holder, name of program, and the references to distribution terms,
and changing the rest of the wording as necessary.

This copyright notice only needs to mention the most recent year in which
changes were made—there’s no need to list the years for previous versions’
changes. You don’t have to mention the name of the program in these notices,
if that is inconvenient, since it appeared in the first line.

--help This option should output brief documentation for how to invoke the program,
on standard output, then exit successfully. Other options and arguments should
be ignored once this is seen, and the program should not perform its normal
function.

Near the end of the ‘--help’ option’s output there should be a line that says
where to mail bug reports. It should have this format:

Report bugs to mailing-address.

Chapter 4: Program Behavior for All Programs 9

4.5 Table of Long Options

Here is a table of long options used by GNU programs. It is surely incomplete, but
we aim to list all the options that a new program might want to be compatible with. If
you use names not already in the table, please send gnu@gnu.org a list of them, with their
meanings, so we can update the table.

‘after-date’
‘-N’ in tar.

‘all’ ‘-a’ in du, ls, nm, stty, uname, and unexpand.

‘all-text’
‘-a’ in diff.

‘almost-all’
‘-A’ in ls.

‘append’ ‘-a’ in etags, tee, time; ‘-r’ in tar.

‘archive’ ‘-a’ in cp.

‘archive-name’
‘-n’ in shar.

‘arglength’
‘-l’ in m4.

‘ascii’ ‘-a’ in diff.

‘assign’ ‘-v’ in gawk.

‘assume-new’
‘-W’ in Make.

‘assume-old’
‘-o’ in Make.

‘auto-check’
‘-a’ in recode.

‘auto-pager’
‘-a’ in wdiff.

‘auto-reference’
‘-A’ in ptx.

‘avoid-wraps’
‘-n’ in wdiff.

‘backward-search’
‘-B’ in ctags.

‘basename’
‘-f’ in shar.

‘batch’ Used in GDB.

Chapter 4: Program Behavior for All Programs 10

‘baud’ Used in GDB.

‘before’ ‘-b’ in tac.

‘binary’ ‘-b’ in cpio and diff.

‘bits-per-code’
‘-b’ in shar.

‘block-size’
Used in cpio and tar.

‘blocks’ ‘-b’ in head and tail.

‘break-file’
‘-b’ in ptx.

‘brief’ Used in various programs to make output shorter.

‘bytes’ ‘-c’ in head, split, and tail.

‘c++’ ‘-C’ in etags.

‘catenate’
‘-A’ in tar.

‘cd’ Used in various programs to specify the directory to use.

‘changes’ ‘-c’ in chgrp and chown.

‘classify’
‘-F’ in ls.

‘colons’ ‘-c’ in recode.

‘command’ ‘-c’ in su; ‘-x’ in GDB.

‘compare’ ‘-d’ in tar.

‘compat’ Used in gawk.

‘compress’
‘-Z’ in tar and shar.

‘concatenate’
‘-A’ in tar.

‘confirmation’
‘-w’ in tar.

‘context’ Used in diff.

‘copyleft’
‘-W copyleft’ in gawk.

‘copyright’
‘-C’ in ptx, recode, and wdiff; ‘-W copyright’ in gawk.

‘core’ Used in GDB.

‘count’ ‘-q’ in who.

Chapter 4: Program Behavior for All Programs 11

‘count-links’
‘-l’ in du.

‘create’ Used in tar and cpio.

‘cut-mark’
‘-c’ in shar.

‘cxref’ ‘-x’ in ctags.

‘date’ ‘-d’ in touch.

‘debug’ ‘-d’ in Make and m4; ‘-t’ in Bison.

‘define’ ‘-D’ in m4.

‘defines’ ‘-d’ in Bison and ctags.

‘delete’ ‘-D’ in tar.

‘dereference’
‘-L’ in chgrp, chown, cpio, du, ls, and tar.

‘dereference-args’
‘-D’ in du.

‘diacritics’
‘-d’ in recode.

‘dictionary-order’
‘-d’ in look.

‘diff’ ‘-d’ in tar.

‘digits’ ‘-n’ in csplit.

‘directory’
Specify the directory to use, in various programs. In ls, it means to show
directories themselves rather than their contents. In rm and ln, it means to not
treat links to directories specially.

‘discard-all’
‘-x’ in strip.

‘discard-locals’
‘-X’ in strip.

‘dry-run’ ‘-n’ in Make.

‘ed’ ‘-e’ in diff.

‘elide-empty-files’
‘-z’ in csplit.

‘end-delete’
‘-x’ in wdiff.

‘end-insert’
‘-z’ in wdiff.

Chapter 4: Program Behavior for All Programs 12

‘entire-new-file’
‘-N’ in diff.

‘environment-overrides’
‘-e’ in Make.

‘eof’ ‘-e’ in xargs.

‘epoch’ Used in GDB.

‘error-limit’
Used in makeinfo.

‘error-output’
‘-o’ in m4.

‘escape’ ‘-b’ in ls.

‘exclude-from’
‘-X’ in tar.

‘exec’ Used in GDB.

‘exit’ ‘-x’ in xargs.

‘exit-0’ ‘-e’ in unshar.

‘expand-tabs’
‘-t’ in diff.

‘expression’
‘-e’ in sed.

‘extern-only’
‘-g’ in nm.

‘extract’ ‘-i’ in cpio; ‘-x’ in tar.

‘faces’ ‘-f’ in finger.

‘fast’ ‘-f’ in su.

‘fatal-warnings’
‘-E’ in m4.

‘file’ ‘-f’ in info, gawk, Make, mt, and tar; ‘-n’ in sed; ‘-r’ in touch.

‘field-separator’
‘-F’ in gawk.

‘file-prefix’
‘-b’ in Bison.

‘file-type’
‘-F’ in ls.

‘files-from’
‘-T’ in tar.

Chapter 4: Program Behavior for All Programs 13

‘fill-column’
Used in makeinfo.

‘flag-truncation’
‘-F’ in ptx.

‘fixed-output-files’
‘-y’ in Bison.

‘follow’ ‘-f’ in tail.

‘footnote-style’
Used in makeinfo.

‘force’ ‘-f’ in cp, ln, mv, and rm.

‘force-prefix’
‘-F’ in shar.

‘format’ Used in ls, time, and ptx.

‘freeze-state’
‘-F’ in m4.

‘fullname’
Used in GDB.

‘gap-size’
‘-g’ in ptx.

‘get’ ‘-x’ in tar.

‘graphic’ ‘-i’ in ul.

‘graphics’
‘-g’ in recode.

‘group’ ‘-g’ in install.

‘gzip’ ‘-z’ in tar and shar.

‘hashsize’
‘-H’ in m4.

‘header’ ‘-h’ in objdump and recode

‘heading’ ‘-H’ in who.

‘help’ Used to ask for brief usage information.

‘here-delimiter’
‘-d’ in shar.

‘hide-control-chars’
‘-q’ in ls.

‘idle’ ‘-u’ in who.

‘ifdef’ ‘-D’ in diff.

Chapter 4: Program Behavior for All Programs 14

‘ignore’ ‘-I’ in ls; ‘-x’ in recode.

‘ignore-all-space’
‘-w’ in diff.

‘ignore-backups’
‘-B’ in ls.

‘ignore-blank-lines’
‘-B’ in diff.

‘ignore-case’
‘-f’ in look and ptx; ‘-i’ in diff and wdiff.

‘ignore-errors’
‘-i’ in Make.

‘ignore-file’
‘-i’ in ptx.

‘ignore-indentation’
‘-I’ in etags.

‘ignore-init-file’
‘-f’ in Oleo.

‘ignore-interrupts’
‘-i’ in tee.

‘ignore-matching-lines’
‘-I’ in diff.

‘ignore-space-change’
‘-b’ in diff.

‘ignore-zeros’
‘-i’ in tar.

‘include’ ‘-i’ in etags; ‘-I’ in m4.

‘include-dir’
‘-I’ in Make.

‘incremental’
‘-G’ in tar.

‘info’ ‘-i’, ‘-l’, and ‘-m’ in Finger.

‘initial’ ‘-i’ in expand.

‘initial-tab’
‘-T’ in diff.

‘inode’ ‘-i’ in ls.

‘interactive’
‘-i’ in cp, ln, mv, rm; ‘-e’ in m4; ‘-p’ in xargs; ‘-w’ in tar.

Chapter 4: Program Behavior for All Programs 15

‘intermix-type’
‘-p’ in shar.

‘jobs’ ‘-j’ in Make.

‘just-print’
‘-n’ in Make.

‘keep-going’
‘-k’ in Make.

‘keep-files’
‘-k’ in csplit.

‘kilobytes’
‘-k’ in du and ls.

‘language’
‘-l’ in etags.

‘less-mode’
‘-l’ in wdiff.

‘level-for-gzip’
‘-g’ in shar.

‘line-bytes’
‘-C’ in split.

‘lines’ Used in split, head, and tail.

‘link’ ‘-l’ in cpio.

‘lint’
‘lint-old’

Used in gawk.

‘list’ ‘-t’ in cpio; ‘-l’ in recode.

‘list’ ‘-t’ in tar.

‘literal’ ‘-N’ in ls.

‘load-average’
‘-l’ in Make.

‘login’ Used in su.

‘machine’ No listing of which programs already use this; someone should check to see if
any actually do, and tell gnu@gnu.org.

‘macro-name’
‘-M’ in ptx.

‘mail’ ‘-m’ in hello and uname.

‘make-directories’
‘-d’ in cpio.

Chapter 4: Program Behavior for All Programs 16

‘makefile’
‘-f’ in Make.

‘mapped’ Used in GDB.

‘max-args’
‘-n’ in xargs.

‘max-chars’
‘-n’ in xargs.

‘max-lines’
‘-l’ in xargs.

‘max-load’
‘-l’ in Make.

‘max-procs’
‘-P’ in xargs.

‘mesg’ ‘-T’ in who.

‘message’ ‘-T’ in who.

‘minimal’ ‘-d’ in diff.

‘mixed-uuencode’
‘-M’ in shar.

‘mode’ ‘-m’ in install, mkdir, and mkfifo.

‘modification-time’
‘-m’ in tar.

‘multi-volume’
‘-M’ in tar.

‘name-prefix’
‘-a’ in Bison.

‘nesting-limit’
‘-L’ in m4.

‘net-headers’
‘-a’ in shar.

‘new-file’
‘-W’ in Make.

‘no-builtin-rules’
‘-r’ in Make.

‘no-character-count’
‘-w’ in shar.

‘no-check-existing’
‘-x’ in shar.

Chapter 4: Program Behavior for All Programs 17

‘no-common’
‘-3’ in wdiff.

‘no-create’
‘-c’ in touch.

‘no-defines’
‘-D’ in etags.

‘no-deleted’
‘-1’ in wdiff.

‘no-dereference’
‘-d’ in cp.

‘no-inserted’
‘-2’ in wdiff.

‘no-keep-going’
‘-S’ in Make.

‘no-lines’
‘-l’ in Bison.

‘no-piping’
‘-P’ in shar.

‘no-prof’ ‘-e’ in gprof.

‘no-regex’
‘-R’ in etags.

‘no-sort’ ‘-p’ in nm.

‘no-split’
Used in makeinfo.

‘no-static’
‘-a’ in gprof.

‘no-time’ ‘-E’ in gprof.

‘no-timestamp’
‘-m’ in shar.

‘no-validate’
Used in makeinfo.

‘no-wait’ Used in emacsclient.

‘no-warn’ Used in various programs to inhibit warnings.

‘node’ ‘-n’ in info.

‘nodename’
‘-n’ in uname.

‘nonmatching’
‘-f’ in cpio.

Chapter 4: Program Behavior for All Programs 18

‘nstuff’ ‘-n’ in objdump.

‘null’ ‘-0’ in xargs.

‘number’ ‘-n’ in cat.

‘number-nonblank’
‘-b’ in cat.

‘numeric-sort’
‘-n’ in nm.

‘numeric-uid-gid’
‘-n’ in cpio and ls.

‘nx’ Used in GDB.

‘old-archive’
‘-o’ in tar.

‘old-file’
‘-o’ in Make.

‘one-file-system’
‘-l’ in tar, cp, and du.

‘only-file’
‘-o’ in ptx.

‘only-prof’
‘-f’ in gprof.

‘only-time’
‘-F’ in gprof.

‘output’ In various programs, specify the output file name.

‘output-prefix’
‘-o’ in shar.

‘override’
‘-o’ in rm.

‘overwrite’
‘-c’ in unshar.

‘owner’ ‘-o’ in install.

‘paginate’
‘-l’ in diff.

‘paragraph-indent’
Used in makeinfo.

‘parents’ ‘-p’ in mkdir and rmdir.

‘pass-all’
‘-p’ in ul.

Chapter 4: Program Behavior for All Programs 19

‘pass-through’
‘-p’ in cpio.

‘port’ ‘-P’ in finger.

‘portability’
‘-c’ in cpio and tar.

‘posix’ Used in gawk.

‘prefix-builtins’
‘-P’ in m4.

‘prefix’ ‘-f’ in csplit.

‘preserve’
Used in tar and cp.

‘preserve-environment’
‘-p’ in su.

‘preserve-modification-time’
‘-m’ in cpio.

‘preserve-order’
‘-s’ in tar.

‘preserve-permissions’
‘-p’ in tar.

‘print’ ‘-l’ in diff.

‘print-chars’
‘-L’ in cmp.

‘print-data-base’
‘-p’ in Make.

‘print-directory’
‘-w’ in Make.

‘print-file-name’
‘-o’ in nm.

‘print-symdefs’
‘-s’ in nm.

‘printer’ ‘-p’ in wdiff.

‘prompt’ ‘-p’ in ed.

‘query-user’
‘-X’ in shar.

‘question’
‘-q’ in Make.

‘quiet’ Used in many programs to inhibit the usual output. Note: every program
accepting ‘--quiet’ should accept ‘--silent’ as a synonym.

Chapter 4: Program Behavior for All Programs 20

‘quiet-unshar’
‘-Q’ in shar

‘quote-name’
‘-Q’ in ls.

‘rcs’ ‘-n’ in diff.

‘re-interval’
Used in gawk.

‘read-full-blocks’
‘-B’ in tar.

‘readnow’ Used in GDB.

‘recon’ ‘-n’ in Make.

‘record-number’
‘-R’ in tar.

‘recursive’
Used in chgrp, chown, cp, ls, diff, and rm.

‘reference-limit’
Used in makeinfo.

‘references’
‘-r’ in ptx.

‘regex’ ‘-r’ in tac and etags.

‘release’ ‘-r’ in uname.

‘reload-state’
‘-R’ in m4.

‘relocation’
‘-r’ in objdump.

‘rename’ ‘-r’ in cpio.

‘replace’ ‘-i’ in xargs.

‘report-identical-files’
‘-s’ in diff.

‘reset-access-time’
‘-a’ in cpio.

‘reverse’ ‘-r’ in ls and nm.

‘reversed-ed’
‘-f’ in diff.

‘right-side-defs’
‘-R’ in ptx.

‘same-order’
‘-s’ in tar.

Chapter 4: Program Behavior for All Programs 21

‘same-permissions’
‘-p’ in tar.

‘save’ ‘-g’ in stty.

‘se’ Used in GDB.

‘sentence-regexp’
‘-S’ in ptx.

‘separate-dirs’
‘-S’ in du.

‘separator’
‘-s’ in tac.

‘sequence’
Used by recode to chose files or pipes for sequencing passes.

‘shell’ ‘-s’ in su.

‘show-all’
‘-A’ in cat.

‘show-c-function’
‘-p’ in diff.

‘show-ends’
‘-E’ in cat.

‘show-function-line’
‘-F’ in diff.

‘show-tabs’
‘-T’ in cat.

‘silent’ Used in many programs to inhibit the usual output. Note: every program
accepting ‘--silent’ should accept ‘--quiet’ as a synonym.

‘size’ ‘-s’ in ls.

‘sort’ Used in ls.

‘source’ ‘-W source’ in gawk.

‘sparse’ ‘-S’ in tar.

‘speed-large-files’
‘-H’ in diff.

‘split-at’
‘-E’ in unshar.

‘split-size-limit’
‘-L’ in shar.

‘squeeze-blank’
‘-s’ in cat.

Chapter 4: Program Behavior for All Programs 22

‘start-delete’
‘-w’ in wdiff.

‘start-insert’
‘-y’ in wdiff.

‘starting-file’
Used in tar and diff to specify which file within a directory to start processing
with.

‘statistics’
‘-s’ in wdiff.

‘stdin-file-list’
‘-S’ in shar.

‘stop’ ‘-S’ in Make.

‘strict’ ‘-s’ in recode.

‘strip’ ‘-s’ in install.

‘strip-all’
‘-s’ in strip.

‘strip-debug’
‘-S’ in strip.

‘submitter’
‘-s’ in shar.

‘suffix’ ‘-S’ in cp, ln, mv.

‘suffix-format’
‘-b’ in csplit.

‘sum’ ‘-s’ in gprof.

‘summarize’
‘-s’ in du.

‘symbolic’
‘-s’ in ln.

‘symbols’ Used in GDB and objdump.

‘synclines’
‘-s’ in m4.

‘sysname’ ‘-s’ in uname.

‘tabs’ ‘-t’ in expand and unexpand.

‘tabsize’ ‘-T’ in ls.

‘terminal’
‘-T’ in tput and ul. ‘-t’ in wdiff.

‘text’ ‘-a’ in diff.

Chapter 4: Program Behavior for All Programs 23

‘text-files’
‘-T’ in shar.

‘time’ Used in ls and touch.

‘to-stdout’
‘-O’ in tar.

‘total’ ‘-c’ in du.

‘touch’ ‘-t’ in Make, ranlib, and recode.

‘trace’ ‘-t’ in m4.

‘traditional’
‘-t’ in hello; ‘-W traditional’ in gawk; ‘-G’ in ed, m4, and ptx.

‘tty’ Used in GDB.

‘typedefs’
‘-t’ in ctags.

‘typedefs-and-c++’
‘-T’ in ctags.

‘typeset-mode’
‘-t’ in ptx.

‘uncompress’
‘-z’ in tar.

‘unconditional’
‘-u’ in cpio.

‘undefine’
‘-U’ in m4.

‘undefined-only’
‘-u’ in nm.

‘update’ ‘-u’ in cp, ctags, mv, tar.

‘usage’ Used in gawk; same as ‘--help’.

‘uuencode’
‘-B’ in shar.

‘vanilla-operation’
‘-V’ in shar.

‘verbose’ Print more information about progress. Many programs support this.

‘verify’ ‘-W’ in tar.

‘version’ Print the version number.

‘version-control’
‘-V’ in cp, ln, mv.

‘vgrind’ ‘-v’ in ctags.

Chapter 5: Making The Best Use of C 24

‘volume’ ‘-V’ in tar.

‘what-if’ ‘-W’ in Make.

‘whole-size-limit’
‘-l’ in shar.

‘width’ ‘-w’ in ls and ptx.

‘word-regexp’
‘-W’ in ptx.

‘writable’
‘-T’ in who.

‘zeros’ ‘-z’ in gprof.

4.6 Memory Usage

If it typically uses just a few meg of memory, don’t bother making any effort to reduce
memory usage. For example, if it is impractical for other reasons to operate on files more
than a few meg long, it is reasonable to read entire input files into core to operate on them.

However, for programs such as cat or tail, that can usefully operate on very large files,
it is important to avoid using a technique that would artificially limit the size of files it can
handle. If a program works by lines and could be applied to arbitrary user-supplied input
files, it should keep only a line in memory, because this is not very hard and users will want
to be able to operate on input files that are bigger than will fit in core all at once.

If your program creates complicated data structures, just make them in core and give a
fatal error if malloc returns zero.

5 Making The Best Use of C

This chapter provides advice on how best to use the C language when writing GNU
software.

5.1 Formatting Your Source Code

It is important to put the open-brace that starts the body of a C function in column
zero, and avoid putting any other open-brace or open-parenthesis or open-bracket in column
zero. Several tools look for open-braces in column zero to find the beginnings of C functions.
These tools will not work on code not formatted that way.

It is also important for function definitions to start the name of the function in column
zero. This helps people to search for function definitions, and may also help certain tools
recognize them. Thus, the proper format is this:

static char *
concat (s1, s2) /* Name starts in column zero here */

char *s1, *s2;
{ /* Open brace in column zero here */
...

Chapter 5: Making The Best Use of C 25

}

or, if you want to use ansi C, format the definition like this:
static char *
concat (char *s1, char *s2)
{
...

}

In ansi C, if the arguments don’t fit nicely on one line, split it like this:
int
lots_of_args (int an_integer, long a_long, short a_short,

double a_double, float a_float)
...

For the body of the function, we prefer code formatted like this:
if (x < foo (y, z))
haha = bar[4] + 5;

else
{
while (z)
{
haha += foo (z, z);
z--;

}
return ++x + bar ();

}

We find it easier to read a program when it has spaces before the open-parentheses and
after the commas. Especially after the commas.

When you split an expression into multiple lines, split it before an operator, not after
one. Here is the right way:

if (foo_this_is_long && bar > win (x, y, z)
&& remaining_condition)

Try to avoid having two operators of different precedence at the same level of indentation.
For example, don’t write this:

mode = (inmode[j] == VOIDmode
|| GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j])
? outmode[j] : inmode[j]);

Instead, use extra parentheses so that the indentation shows the nesting:
mode = ((inmode[j] == VOIDmode

|| (GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j])))
? outmode[j] : inmode[j]);

Insert extra parentheses so that Emacs will indent the code properly. For example, the
following indentation looks nice if you do it by hand, but Emacs would mess it up:

v = rup->ru_utime.tv_sec*1000 + rup->ru_utime.tv_usec/1000
+ rup->ru_stime.tv_sec*1000 + rup->ru_stime.tv_usec/1000;

But adding a set of parentheses solves the problem:

Chapter 5: Making The Best Use of C 26

v = (rup->ru_utime.tv_sec*1000 + rup->ru_utime.tv_usec/1000
+ rup->ru_stime.tv_sec*1000 + rup->ru_stime.tv_usec/1000);

Format do-while statements like this:
do
{
a = foo (a);

}
while (a > 0);

Please use formfeed characters (control-L) to divide the program into pages at logical
places (but not within a function). It does not matter just how long the pages are, since
they do not have to fit on a printed page. The formfeeds should appear alone on lines by
themselves.

5.2 Commenting Your Work

Every program should start with a comment saying briefly what it is for. Example: ‘fmt
- filter for simple filling of text’.

Please write the comments in a GNU program in English, because English is the one
language that nearly all programmers in all countries can read. If you do not write English
well, please write comments in English as well as you can, then ask other people to help
rewrite them. If you can’t write comments in English, please find someone to work with
you and translate your comments into English.

Please put a comment on each function saying what the function does, what sorts of
arguments it gets, and what the possible values of arguments mean and are used for. It
is not necessary to duplicate in words the meaning of the C argument declarations, if a C
type is being used in its customary fashion. If there is anything nonstandard about its use
(such as an argument of type char * which is really the address of the second character of a
string, not the first), or any possible values that would not work the way one would expect
(such as, that strings containing newlines are not guaranteed to work), be sure to say so.

Also explain the significance of the return value, if there is one.

Please put two spaces after the end of a sentence in your comments, so that the Emacs
sentence commands will work. Also, please write complete sentences and capitalize the first
word. If a lower-case identifier comes at the beginning of a sentence, don’t capitalize it!
Changing the spelling makes it a different identifier. If you don’t like starting a sentence
with a lower case letter, write the sentence differently (e.g., “The identifier lower-case is
. . . ”).

The comment on a function is much clearer if you use the argument names to speak
about the argument values. The variable name itself should be lower case, but write it in
upper case when you are speaking about the value rather than the variable itself. Thus,
“the inode number NODE NUM” rather than “an inode”.

There is usually no purpose in restating the name of the function in the comment before
it, because the reader can see that for himself. There might be an exception when the
comment is so long that the function itself would be off the bottom of the screen.

There should be a comment on each static variable as well, like this:

Chapter 5: Making The Best Use of C 27

/* Nonzero means truncate lines in the display;
zero means continue them. */

int truncate_lines;

Every ‘#endif’ should have a comment, except in the case of short conditionals (just a
few lines) that are not nested. The comment should state the condition of the conditional
that is ending, including its sense. ‘#else’ should have a comment describing the condition
and sense of the code that follows. For example:

#ifdef foo
...

#else /* not foo */
...

#endif /* not foo */
#ifdef foo
...

#endif /* foo */

but, by contrast, write the comments this way for a ‘#ifndef’:
#ifndef foo
...

#else /* foo */
...

#endif /* foo */
#ifndef foo
...

#endif /* not foo */

5.3 Clean Use of C Constructs

Please explicitly declare all arguments to functions. Don’t omit them just because they
are ints.

Declarations of external functions and functions to appear later in the source file should
all go in one place near the beginning of the file (somewhere before the first function
definition in the file), or else should go in a header file. Don’t put extern declarations
inside functions.

It used to be common practice to use the same local variables (with names like tem) over
and over for different values within one function. Instead of doing this, it is better declare
a separate local variable for each distinct purpose, and give it a name which is meaningful.
This not only makes programs easier to understand, it also facilitates optimization by good
compilers. You can also move the declaration of each local variable into the smallest scope
that includes all its uses. This makes the program even cleaner.

Don’t use local variables or parameters that shadow global identifiers.

Don’t declare multiple variables in one declaration that spans lines. Start a new decla-
ration on each line, instead. For example, instead of this:

int foo,
bar;

write either this:

Chapter 5: Making The Best Use of C 28

int foo, bar;

or this:
int foo;
int bar;

(If they are global variables, each should have a comment preceding it anyway.)
When you have an if-else statement nested in another if statement, always put braces

around the if-else. Thus, never write like this:
if (foo)
if (bar)
win ();

else
lose ();

always like this:
if (foo)
{
if (bar)
win ();

else
lose ();

}

If you have an if statement nested inside of an else statement, either write else if on
one line, like this,

if (foo)
...

else if (bar)
...

with its then-part indented like the preceding then-part, or write the nested if within
braces like this:

if (foo)
...

else
{
if (bar)
...

}

Don’t declare both a structure tag and variables or typedefs in the same declaration.
Instead, declare the structure tag separately and then use it to declare the variables or
typedefs.

Try to avoid assignments inside if-conditions. For example, don’t write this:
if ((foo = (char *) malloc (sizeof *foo)) == 0)
fatal ("virtual memory exhausted");

instead, write this:
foo = (char *) malloc (sizeof *foo);
if (foo == 0)
fatal ("virtual memory exhausted");

Chapter 5: Making The Best Use of C 29

Don’t make the program ugly to placate lint. Please don’t insert any casts to void.
Zero without a cast is perfectly fine as a null pointer constant, except when calling a varargs
function.

5.4 Naming Variables and Functions

The names of global variables and functions in a program serve as comments of a sort.
So don’t choose terse names—instead, look for names that give useful information about
the meaning of the variable or function. In a GNU program, names should be English, like
other comments.

Local variable names can be shorter, because they are used only within one context,
where (presumably) comments explain their purpose.

Please use underscores to separate words in a name, so that the Emacs word commands
can be useful within them. Stick to lower case; reserve upper case for macros and enum
constants, and for name-prefixes that follow a uniform convention.

For example, you should use names like ignore_space_change_flag; don’t use names
like iCantReadThis.

Variables that indicate whether command-line options have been specified should be
named after the meaning of the option, not after the option-letter. A comment should state
both the exact meaning of the option and its letter. For example,

/* Ignore changes in horizontal whitespace (-b). */
int ignore_space_change_flag;

When you want to define names with constant integer values, use enum rather than
‘#define’. GDB knows about enumeration constants.

Use file names of 14 characters or less, to avoid creating gratuitous problems on older
System V systems. You can use the program doschk to test for this. doschk also tests for
potential name conflicts if the files were loaded onto an MS-DOS file system—something
you may or may not care about.

5.5 Portability between System Types

In the Unix world, “portability” refers to porting to different Unix versions. For a GNU
program, this kind of portability is desirable, but not paramount.

The primary purpose of GNU software is to run on top of the GNU kernel, compiled with
the GNU C compiler, on various types of cpu. The amount and kinds of variation among
GNU systems on different cpus will be comparable to the variation among Linux-based
GNU systems or among BSD systems today. So the kinds of portability that are absolutely
necessary are quite limited.

But many users do run GNU software on non-GNU Unix or Unix-like systems. So
supporting a variety of Unix-like systems is desirable, although not paramount.

The easiest way to achieve portability to most Unix-like systems is to use Autoconf. It’s
unlikely that your program needs to know more information about the host platform than
Autoconf can provide, simply because most of the programs that need such knowledge have
already been written.

Chapter 5: Making The Best Use of C 30

Avoid using the format of semi-internal data bases (e.g., directories) when there is a
higher-level alternative (readdir).

As for systems that are not like Unix, such as MSDOS, Windows, the Macintosh, VMS,
and MVS, supporting them is usually so much work that it is better if you don’t.

The planned GNU kernel is not finished yet, but you can tell which facilities it will
provide by looking at the GNU C Library Manual. The GNU kernel is based on Mach,
so the features of Mach will also be available. However, if you use Mach features, you’ll
probably have trouble debugging your program today.

5.6 Portability between cpus

Even GNU systems will differ because of differences among cpu types—for example,
difference in byte ordering and alignment requirements. It is absolutely essential to handle
these differences. However, don’t make any effort to cater to the possibility that an int
will be less than 32 bits. We don’t support 16-bit machines in GNU.

Don’t assume that the address of an int object is also the address of its least-significant
byte. This is false on big-endian machines. Thus, don’t make the following mistake:

int c;
...
while ((c = getchar()) != EOF)
write(file_descriptor, &c, 1);

When calling functions, you need not worry about the difference between pointers of
various types, or between pointers and integers. On most machines, there’s no difference
anyway. As for the few machines where there is a difference, all of them support ansi C,
so you can use prototypes (conditionalized to be active only in ansi C) to make the code
work on those systems.

In certain cases, it is ok to pass integer and pointer arguments indiscriminately to the
same function, and use no prototype on any system. For example, many GNU programs
have error-reporting functions that pass their arguments along to printf and friends:

error (s, a1, a2, a3)
char *s;
int a1, a2, a3;

{
fprintf (stderr, "error: ");
fprintf (stderr, s, a1, a2, a3);

}

In practice, this works on all machines, and it is much simpler than any “correct” alternative.
Be sure not to use a prototype for such functions.

However, avoid casting pointers to integers unless you really need to. These assump-
tions really reduce portability, and in most programs they are easy to avoid. In the cases
where casting pointers to integers is essential—such as, a Lisp interpreter which stores type
information as well as an address in one word—it is ok to do so, but you’ll have to make
explicit provisions to handle different word sizes.

Chapter 5: Making The Best Use of C 31

5.7 Calling System Functions

C implementations differ substantially. ansi C reduces but does not eliminate the incom-
patibilities; meanwhile, many users wish to compile GNU software with pre-ansi compilers.
This chapter gives recommendations for how to use the more or less standard C library
functions to avoid unnecessary loss of portability.
• Don’t use the value of sprintf. It returns the number of characters written on some

systems, but not on all systems.
• main should be declared to return type int. It should terminate either by calling exit

or by returning the integer status code; make sure it cannot ever return an undefined
value.

• Don’t declare system functions explicitly.
Almost any declaration for a system function is wrong on some system. To minimize
conflicts, leave it to the system header files to declare system functions. If the headers
don’t declare a function, let it remain undeclared.
While it may seem unclean to use a function without declaring it, in practice this works
fine for most system library functions on the systems where this really happens; thus,
the disadvantage is only theoretical. By contrast, actual declarations have frequently
caused actual conflicts.

• If you must declare a system function, don’t specify the argument types. Use an old-
style declaration, not an ansi prototype. The more you specify about the function, the
more likely a conflict.

• In particular, don’t unconditionally declare malloc or realloc.
Most GNU programs use those functions just once, in functions conventionally named
xmalloc and xrealloc. These functions call malloc and realloc, respectively, and
check the results.
Because xmalloc and xrealloc are defined in your program, you can declare them in
other files without any risk of type conflict.
On most systems, int is the same length as a pointer; thus, the calls to malloc and
realloc work fine. For the few exceptional systems (mostly 64-bit machines), you can
use conditionalized declarations of malloc and realloc—or put these declarations in
configuration files specific to those systems.

• The string functions require special treatment. Some Unix systems have a header file
‘string.h’; others have ‘strings.h’. Neither file name is portable. There are two
things you can do: use Autoconf to figure out which file to include, or don’t include
either file.

• If you don’t include either strings file, you can’t get declarations for the string functions
from the header file in the usual way.
That causes less of a problem than you might think. The newer ansi string functions
should be avoided anyway because many systems still don’t support them. The string
functions you can use are these:

strcpy strncpy strcat strncat
strlen strcmp strncmp
strchr strrchr

Chapter 5: Making The Best Use of C 32

The copy and concatenate functions work fine without a declaration as long as you
don’t use their values. Using their values without a declaration fails on systems where
the width of a pointer differs from the width of int, and perhaps in other cases. It is
trivial to avoid using their values, so do that.

The compare functions and strlen work fine without a declaration on most systems,
possibly all the ones that GNU software runs on. You may find it necessary to declare
them conditionally on a few systems.

The search functions must be declared to return char *. Luckily, there is no variation
in the data type they return. But there is variation in their names. Some systems give
these functions the names index and rindex; other systems use the names strchr and
strrchr. Some systems support both pairs of names, but neither pair works on all
systems.

You should pick a single pair of names and use it throughout your program. (Nowa-
days, it is better to choose strchr and strrchr for new programs, since those are the
standard ansi names.) Declare both of those names as functions returning char *. On
systems which don’t support those names, define them as macros in terms of the other
pair. For example, here is what to put at the beginning of your file (or in a header) if
you want to use the names strchr and strrchr throughout:

#ifndef HAVE_STRCHR
#define strchr index
#endif
#ifndef HAVE_STRRCHR
#define strrchr rindex
#endif

char *strchr ();
char *strrchr ();

Here we assume that HAVE_STRCHR and HAVE_STRRCHR are macros defined in systems
where the corresponding functions exist. One way to get them properly defined is to use
Autoconf.

5.8 Internationalization

GNU has a library called GNU gettext that makes it easy to translate the messages in a
program into various languages. You should use this library in every program. Use English
for the messages as they appear in the program, and let gettext provide the way to translate
them into other languages.

Using GNU gettext involves putting a call to the gettext macro around each string that
might need translation—like this:

printf (gettext ("Processing file ‘%s’..."));

This permits GNU gettext to replace the string "Processing file ‘%s’..." with a trans-
lated version.

Once a program uses gettext, please make a point of writing calls to gettext when you
add new strings that call for translation.

Chapter 5: Making The Best Use of C 33

Using GNU gettext in a package involves specifying a text domain name for the pack-
age. The text domain name is used to separate the translations for this package from the
translations for other packages. Normally, the text domain name should be the same as the
name of the package—for example, ‘fileutils’ for the GNU file utilities.

To enable gettext to work well, avoid writing code that makes assumptions about the
structure of words or sentences. When you want the precise text of a sentence to vary
depending on the data, use two or more alternative string constants each containing a
complete sentences, rather than inserting conditionalized words or phrases into a single
sentence framework.

Here is an example of what not to do:
printf ("%d file%s processed", nfiles,

nfiles != 1 ? "s" : "");

The problem with that example is that it assumes that plurals are made by adding ‘s’. If
you apply gettext to the format string, like this,

printf (gettext ("%d file%s processed"), nfiles,
nfiles != 1 ? "s" : "");

the message can use different words, but it will still be forced to use ‘s’ for the plural. Here
is a better way:

printf ((nfiles != 1 ? "%d files processed"
: "%d file processed"),

nfiles);

This way, you can apply gettext to each of the two strings independently:
printf ((nfiles != 1 ? gettext ("%d files processed")

: gettext ("%d file processed")),
nfiles);

This can be any method of forming the plural of the word for “file”, and also handles
languages that require agreement in the word for “processed”.

A similar problem appears at the level of sentence structure with this code:
printf ("# Implicit rule search has%s been done.\n",

f->tried_implicit ? "" : " not");

Adding gettext calls to this code cannot give correct results for all languages, because
negation in some languages requires adding words at more than one place in the sentence.
By contrast, adding gettext calls does the job straightfowardly if the code starts out like
this:

printf (f->tried_implicit
? "# Implicit rule search has been done.\n",
: "# Implicit rule search has not been done.\n");

5.9 Mmap

Don’t assume that mmap either works on all files or fails for all files. It may work on
some files and fail on others.

The proper way to use mmap is to try it on the specific file for which you want to use
it—and if mmap doesn’t work, fall back on doing the job in another way using read and
write.

Chapter 6: Documenting Programs 34

The reason this precaution is needed is that the GNU kernel (the HURD) provides a
user-extensible file system, in which there can be many different kinds of “ordinary files.”
Many of them support mmap, but some do not. It is important to make programs handle all
these kinds of files.

6 Documenting Programs

6.1 GNU Manuals

The preferred way to document part of the GNU system is to write a manual in the
Texinfo formatting language. See the Texinfo manual, either the hardcopy, or the on-line
version available through info or the Emacs Info subsystem (C-h i).

Programmers often find it most natural to structure the documentation following the
structure of the implementation, which they know. But this structure is not necessarily
good for explaining how to use the program; it may be irrelevant and confusing for a user.

At every level, from the sentences in a paragraph to the grouping of topics into sepa-
rate manuals, the right way to structure documentation is according to the concepts and
questions that a user will have in mind when reading it. Sometimes this structure of ideas
matches the structure of the implementation of the software being documented—but often
they are different. Often the most important part of learning to write good documentation
is learning to notice when you are structuring the documentation like the implementation,
and think about better alternatives.

For example, each program in the GNU system probably ought to be documented in one
manual; but this does not mean each program should have its own manual. That would be
following the structure of the implementation, rather than the structure that helps the user
understand.

Instead, each manual should cover a coherent topic. For example, instead of a manual
for diff and a manual for diff3, we have one manual for “comparison of files” which covers
both of those programs, as well as cmp. By documenting these programs together, we can
make the whole subject clearer.

The manual which discusses a program should document all of the program’s command-
line options and all of its commands. It should give examples of their use. But don’t organize
the manual as a list of features. Instead, organize it logically, by subtopics. Address the
questions that a user will ask when thinking about the job that the program does.

In general, a GNU manual should serve both as tutorial and reference. It should be
set up for convenient access to each topic through Info, and for reading straight through
(appendixes aside). A GNU manual should give a good introduction to a beginner reading
through from the start, and should also provide all the details that hackers want.

That is not as hard as it first sounds. Arrange each chapter as a logical breakdown of
its topic, but order the sections, and write their text, so that reading the chapter straight
through makes sense. Do likewise when structuring the book into chapters, and when
structuring a section into paragraphs. The watchword is, at each point, address the most
fundamental and important issue raised by the preceding text.

Chapter 6: Documenting Programs 35

If necessary, add extra chapters at the beginning of the manual which are purely tuto-
rial and cover the basics of the subject. These provide the framework for a beginner to
understand the rest of the manual. The Bison manual provides a good example of how to
do this.

Don’t use Unix man pages as a model for how to write GNU documentation; most
of them are terse, badly structured, and give inadequate explanation of the underlying
concepts. (There are, of course exceptions.) Also Unix man pages use a particular format
which is different from what we use in GNU manuals.

Please do not use the term “pathname” that is used in Unix documentation; use “file
name” (two words) instead. We use the term “path” only for search paths, which are lists
of file names.

Please do not use the term “illegal” to refer to erroneous input to a computer program.
Please use “invalid” for this, and reserve the term “illegal” for violations of law.

6.2 Manual Structure Details

The title page of the manual should state the version of the programs or packages doc-
umented in the manual. The Top node of the manual should also contain this information.
If the manual is changing more frequently than or independent of the program, also state a
version number for the manual in both of these places.

Each program documented in the manual should should have a node named ‘program
Invocation’ or ‘Invoking program’. This node (together with its subnodes, if any) should
describe the program’s command line arguments and how to run it (the sort of information
people would look in a man page for). Start with an ‘@example’ containing a template for
all the options and arguments that the program uses.

Alternatively, put a menu item in some menu whose item name fits one of the above
patterns. This identifies the node which that item points to as the node for this purpose,
regardless of the node’s actual name.

There will be automatic features for specifying a program name and quickly reading just
this part of its manual.

If one manual describes several programs, it should have such a node for each program
described.

6.3 The NEWS File

In addition to its manual, the package should have a file named ‘NEWS’ which contains
a list of user-visible changes worth mentioning. In each new release, add items to the front
of the file and identify the version they pertain to. Don’t discard old items; leave them in
the file after the newer items. This way, a user upgrading from any previous version can
see what is new.

If the ‘NEWS’ file gets very long, move some of the older items into a file named ‘ONEWS’
and put a note at the end referring the user to that file.

Chapter 6: Documenting Programs 36

6.4 Change Logs

Keep a change log to describe all the changes made to program source files. The purpose
of this is so that people investigating bugs in the future will know about the changes
that might have introduced the bug. Often a new bug can be found by looking at what
was recently changed. More importantly, change logs can help you eliminate conceptual
inconsistencies between different parts of a program, by giving you a history of how the
conflicting concepts arose and who they came from.

6.4.1 Change Log Concepts

You can think of the change log as a conceptual “undo list” which explains how earlier
versions were different from the current version. People can see the current version; they
don’t need the change log to tell them what is in it. What they want from a change log is
a clear explanation of how the earlier version differed.

The change log file is normally called ‘ChangeLog’ and covers an entire directory. Each
directory can have its own change log, or a directory can use the change log of its parent
directory–it’s up to you.

Another alternative is to record change log information with a version control system
such as RCS or CVS. This can be converted automatically to a ‘ChangeLog’ file.

There’s no need to describe the full purpose of the changes or how they work together. If
you think that a change calls for explanation, you’re probably right. Please do explain it—
but please put the explanation in comments in the code, where people will see it whenever
they see the code. For example, “New function” is enough for the change log when you add
a function, because there should be a comment before the function definition to explain
what it does.

However, sometimes it is useful to write one line to describe the overall purpose of a
batch of changes.

The easiest way to add an entry to ‘ChangeLog’ is with the Emacs command M-x add-

change-log-entry. An entry should have an asterisk, the name of the changed file, and
then in parentheses the name of the changed functions, variables or whatever, followed by
a colon. Then describe the changes you made to that function or variable.

6.4.2 Style of Change Logs

Here are some examples of change log entries:
* register.el (insert-register): Return nil.
(jump-to-register): Likewise.

* sort.el (sort-subr): Return nil.

* tex-mode.el (tex-bibtex-file, tex-file, tex-region):
Restart the tex shell if process is gone or stopped.
(tex-shell-running): New function.

* expr.c (store_one_arg): Round size up for move_block_to_reg.
(expand_call): Round up when emitting USE insns.

Chapter 6: Documenting Programs 37

* stmt.c (assign_parms): Round size up for move_block_from_reg.

It’s important to name the changed function or variable in full. Don’t abbreviate function
or variable names, and don’t combine them. Subsequent maintainers will often search for
a function name to find all the change log entries that pertain to it; if you abbreviate the
name, they won’t find it when they search.

For example, some people are tempted to abbreviate groups of function names by writing
‘* register.el ({insert,jump-to}-register)’; this is not a good idea, since searching
for jump-to-register or insert-register would not find that entry.

Separate unrelated change log entries with blank lines. When two entries represent parts
of the same change, so that they work together, then don’t put blank lines between them.
Then you can omit the file name and the asterisk when successive entries are in the same
file.

6.4.3 Simple Changes

Certain simple kinds of changes don’t need much detail in the change log.
When you change the calling sequence of a function in a simple fashion, and you change

all the callers of the function, there is no need to make individual entries for all the callers
that you changed. Just write in the entry for the function being called, “All callers changed.”

* keyboard.c (Fcommand_execute): New arg SPECIAL.
All callers changed.

When you change just comments or doc strings, it is enough to write an entry for the
file, without mentioning the functions. Just “Doc fixes” is enough for the change log.

There’s no need to make change log entries for documentation files. This is because
documentation is not susceptible to bugs that are hard to fix. Documentation does not
consist of parts that must interact in a precisely engineered fashion. To correct an error,
you need not know the history of the erroneous passage; it is enough to compare what the
documentation says with the way the program actually works.

6.4.4 Conditional Changes

C programs often contain compile-time #if conditionals. Many changes are conditional;
sometimes you add a new definition which is entirely contained in a conditional. It is very
useful to indicate in the change log the conditions for which the change applies.

Our convention for indicating conditional changes is to use square brackets around the
name of the condition.

Here is a simple example, describing a change which is conditional but does not have a
function or entity name associated with it:

* xterm.c [SOLARIS2]: Include string.h.

Here is an entry describing a new definition which is entirely conditional. This new
definition for the macro FRAME_WINDOW_P is used only when HAVE_X_WINDOWS is defined:

* frame.h [HAVE_X_WINDOWS] (FRAME_WINDOW_P): Macro defined.

Here is an entry for a change within the function init_display, whose definition
as a whole is unconditional, but the changes themselves are contained in a ‘#ifdef
HAVE_LIBNCURSES’ conditional:

Chapter 7: The Release Process 38

* dispnew.c (init_display) [HAVE_LIBNCURSES]: If X, call tgetent.

Here is an entry for a change that takes affect only when a certain macro is not defined:
(gethostname) [!HAVE_SOCKETS]: Replace with winsock version.

6.5 Man Pages

In the GNU project, man pages are secondary. It is not necessary or expected for every
GNU program to have a man page, but some of them do. It’s your choice whether to include
a man page in your program.

When you make this decision, consider that supporting a man page requires continual
effort each time the program is changed. The time you spend on the man page is time taken
away from more useful work.

For a simple program which changes little, updating the man page may be a small job.
Then there is little reason not to include a man page, if you have one.

For a large program that changes a great deal, updating a man page may be a substantial
burden. If a user offers to donate a man page, you may find this gift costly to accept. It may
be better to refuse the man page unless the same person agrees to take full responsibility for
maintaining it—so that you can wash your hands of it entirely. If this volunteer later ceases
to do the job, then don’t feel obliged to pick it up yourself; it may be better to withdraw
the man page from the distribution until someone else agrees to update it.

When a program changes only a little, you may feel that the discrepancies are small
enough that the man page remains useful without updating. If so, put a prominent note
near the beginning of the man page explaining that you don’t maintain it and that the
Texinfo manual is more authoritative. The note should say how to access the Texinfo
documentation.

6.6 Reading other Manuals

There may be non-free books or documentation files that describe the program you are
documenting.

It is ok to use these documents for reference, just as the author of a new algebra textbook
can read other books on algebra. A large portion of any non-fiction book consists of facts,
in this case facts about how a certain program works, and these facts are necessarily the
same for everyone who writes about the subject. But be careful not to copy your outline
structure, wording, tables or examples from preexisting non-free documentation. Copying
from free documentation may be ok; please check with the FSF about the individual case.

7 The Release Process

Making a release is more than just bundling up your source files in a tar file and putting
it up for FTP. You should set up your software so that it can be configured to run on a
variety of systems. Your Makefile should conform to the GNU standards described below,
and your directory layout should also conform to the standards discussed below. Doing so
makes it easy to include your package into the larger framework of all GNU software.

Chapter 7: The Release Process 39

7.1 How Configuration Should Work

Each GNU distribution should come with a shell script named configure. This script
is given arguments which describe the kind of machine and system you want to compile the
program for.

The configure script must record the configuration options so that they affect compi-
lation.

One way to do this is to make a link from a standard name such as ‘config.h’ to the
proper configuration file for the chosen system. If you use this technique, the distribution
should not contain a file named ‘config.h’. This is so that people won’t be able to build
the program without configuring it first.

Another thing that configure can do is to edit the Makefile. If you do this, the dis-
tribution should not contain a file named ‘Makefile’. Instead, it should include a file
‘Makefile.in’ which contains the input used for editing. Once again, this is so that people
won’t be able to build the program without configuring it first.

If configure does write the ‘Makefile’, then ‘Makefile’ should have a target named
‘Makefile’ which causes configure to be rerun, setting up the same configuration that
was set up last time. The files that configure reads should be listed as dependencies of
‘Makefile’.

All the files which are output from the configure script should have comments at the
beginning explaining that they were generated automatically using configure. This is so
that users won’t think of trying to edit them by hand.

The configure script should write a file named ‘config.status’ which describes which
configuration options were specified when the program was last configured. This file should
be a shell script which, if run, will recreate the same configuration.

The configure script should accept an option of the form ‘--srcdir=dirname’ to specify
the directory where sources are found (if it is not the current directory). This makes it
possible to build the program in a separate directory, so that the actual source directory is
not modified.

If the user does not specify ‘--srcdir’, then configure should check both ‘.’ and ‘..’
to see if it can find the sources. If it finds the sources in one of these places, it should use
them from there. Otherwise, it should report that it cannot find the sources, and should
exit with nonzero status.

Usually the easy way to support ‘--srcdir’ is by editing a definition of VPATH into the
Makefile. Some rules may need to refer explicitly to the specified source directory. To make
this possible, configure can add to the Makefile a variable named srcdir whose value is
precisely the specified directory.

The configure script should also take an argument which specifies the type of system
to build the program for. This argument should look like this:

cpu-company-system

For example, a Sun 3 might be ‘m68k-sun-sunos4.1’.

The configure script needs to be able to decode all plausible alternatives for how to
describe a machine. Thus, ‘sun3-sunos4.1’ would be a valid alias. For many programs,

Chapter 7: The Release Process 40

‘vax-dec-ultrix’ would be an alias for ‘vax-dec-bsd’, simply because the differences be-
tween Ultrix and BSD are rarely noticeable, but a few programs might need to distinguish
them.

There is a shell script called ‘config.sub’ that you can use as a subroutine to validate
system types and canonicalize aliases.

Other options are permitted to specify in more detail the software or hardware present
on the machine, and include or exclude optional parts of the package:

‘--enable-feature[=parameter]’
Configure the package to build and install an optional user-level facility called
feature. This allows users to choose which optional features to include. Giving
an optional parameter of ‘no’ should omit feature, if it is built by default.
No ‘--enable’ option should ever cause one feature to replace another. No
‘--enable’ option should ever substitute one useful behavior for another useful
behavior. The only proper use for ‘--enable’ is for questions of whether to
build part of the program or exclude it.

‘--with-package’
The package package will be installed, so configure this package to work with
package.
Possible values of package include ‘gnu-as’ (or ‘gas’), ‘gnu-ld’, ‘gnu-libc’,
‘gdb’, ‘x’, and ‘x-toolkit’.
Do not use a ‘--with’ option to specify the file name to use to find certain files.
That is outside the scope of what ‘--with’ options are for.

‘--nfp’ The target machine has no floating point processor.

‘--gas’ The target machine assembler is GAS, the GNU assembler. This is obsolete;
users should use ‘--with-gnu-as’ instead.

‘--x’ The target machine has the X Window System installed. This is obsolete; users
should use ‘--with-x’ instead.

All configure scripts should accept all of these “detail” options, whether or not they
make any difference to the particular package at hand. In particular, they should accept any
option that starts with ‘--with-’ or ‘--enable-’. This is so users will be able to configure
an entire GNU source tree at once with a single set of options.

You will note that the categories ‘--with-’ and ‘--enable-’ are narrow: they do not
provide a place for any sort of option you might think of. That is deliberate. We want to
limit the possible configuration options in GNU software. We do not want GNU programs
to have idiosyncratic configuration options.

Packages that perform part of the compilation process may support cross-compilation. In
such a case, the host and target machines for the program may be different. The configure
script should normally treat the specified type of system as both the host and the target,
thus producing a program which works for the same type of machine that it runs on.

The way to build a cross-compiler, cross-assembler, or what have you, is to specify the
option ‘--host=hosttype’ when running configure. This specifies the host system without
changing the type of target system. The syntax for hosttype is the same as described above.

Chapter 7: The Release Process 41

Bootstrapping a cross-compiler requires compiling it on a machine other than the host
it will run on. Compilation packages accept a configuration option ‘--build=hosttype’ for
specifying the configuration on which you will compile them, in case that is different from
the host.

Programs for which cross-operation is not meaningful need not accept the ‘--host’ op-
tion, because configuring an entire operating system for cross-operation is not a meaningful
thing.

Some programs have ways of configuring themselves automatically. If your program is
set up to do this, your configure script can simply ignore most of its arguments.

7.2 Makefile Conventions

This section describes conventions for writing the Makefiles for GNU programs.

7.2.1 General Conventions for Makefiles

Every Makefile should contain this line:
SHELL = /bin/sh

to avoid trouble on systems where the SHELL variable might be inherited from the environ-
ment. (This is never a problem with GNU make.)

Different make programs have incompatible suffix lists and implicit rules, and this some-
times creates confusion or misbehavior. So it is a good idea to set the suffix list explicitly
using only the suffixes you need in the particular Makefile, like this:

.SUFFIXES:

.SUFFIXES: .c .o

The first line clears out the suffix list, the second introduces all suffixes which may be
subject to implicit rules in this Makefile.

Don’t assume that ‘.’ is in the path for command execution. When you need to run
programs that are a part of your package during the make, please make sure that it uses
‘./’ if the program is built as part of the make or ‘$(srcdir)/’ if the file is an unchanging
part of the source code. Without one of these prefixes, the current search path is used.

The distinction between ‘./’ (the build directory) and ‘$(srcdir)/’ (the source direc-
tory) is important because users can build in a separate directory using the ‘--srcdir’
option to ‘configure’. A rule of the form:

foo.1 : foo.man sedscript
sed -e sedscript foo.man > foo.1

will fail when the build directory is not the source directory, because ‘foo.man’ and
‘sedscript’ are in the the source directory.

When using GNU make, relying on ‘VPATH’ to find the source file will work in the case
where there is a single dependency file, since the make automatic variable ‘$<’ will represent
the source file wherever it is. (Many versions of make set ‘$<’ only in implicit rules.) A
Makefile target like

foo.o : bar.c
$(CC) -I. -I$(srcdir) $(CFLAGS) -c bar.c -o foo.o

should instead be written as

Chapter 7: The Release Process 42

foo.o : bar.c
$(CC) -I. -I$(srcdir) $(CFLAGS) -c $< -o $@

in order to allow ‘VPATH’ to work correctly. When the target has multiple dependencies,
using an explicit ‘$(srcdir)’ is the easiest way to make the rule work well. For example,
the target above for ‘foo.1’ is best written as:

foo.1 : foo.man sedscript
sed -e $(srcdir)/sedscript $(srcdir)/foo.man > $@

GNU distributions usually contain some files which are not source files—for example, Info
files, and the output from Autoconf, Automake, Bison or Flex. Since these files normally
appear in the source directory, they should always appear in the source directory, not in
the build directory. So Makefile rules to update them should put the updated files in the
source directory.

However, if a file does not appear in the distribution, then the Makefile should not put
it in the source directory, because building a program in ordinary circumstances should not
modify the source directory in any way.

Try to make the build and installation targets, at least (and all their subtargets) work
correctly with a parallel make.

7.2.2 Utilities in Makefiles

Write the Makefile commands (and any shell scripts, such as configure) to run in sh,
not in csh. Don’t use any special features of ksh or bash.

The configure script and the Makefile rules for building and installation should not use
any utilities directly except these:

cat cmp cp diff echo egrep expr false grep install-info
ln ls mkdir mv pwd rm rmdir sed sleep sort tar test touch true

The compression program gzip can be used in the dist rule.
Stick to the generally supported options for these programs. For example, don’t use

‘mkdir -p’, convenient as it may be, because most systems don’t support it.
It is a good idea to avoid creating symbolic links in makefiles, since a few systems don’t

support them.
The Makefile rules for building and installation can also use compilers and related pro-

grams, but should do so via make variables so that the user can substitute alternatives.
Here are some of the programs we mean:

ar bison cc flex install ld ldconfig lex
make makeinfo ranlib texi2dvi yacc

Use the following make variables to run those programs:
$(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LDCONFIG) $(LEX)
$(MAKE) $(MAKEINFO) $(RANLIB) $(TEXI2DVI) $(YACC)

When you use ranlib or ldconfig, you should make sure nothing bad happens if the
system does not have the program in question. Arrange to ignore an error from that
command, and print a message before the command to tell the user that failure of this
command does not mean a problem. (The Autoconf ‘AC_PROG_RANLIB’ macro can help
with this.)

Chapter 7: The Release Process 43

If you use symbolic links, you should implement a fallback for systems that don’t have
symbolic links.

Additional utilities that can be used via Make variables are:
chgrp chmod chown mknod

It is ok to use other utilities in Makefile portions (or scripts) intended only for particular
systems where you know those utilities exist.

7.2.3 Variables for Specifying Commands

Makefiles should provide variables for overriding certain commands, options, and so on.
In particular, you should run most utility programs via variables. Thus, if you use Bison,

have a variable named BISON whose default value is set with ‘BISON = bison’, and refer to
it with $(BISON) whenever you need to use Bison.

File management utilities such as ln, rm, mv, and so on, need not be referred to through
variables in this way, since users don’t need to replace them with other programs.

Each program-name variable should come with an options variable that is used to supply
options to the program. Append ‘FLAGS’ to the program-name variable name to get the
options variable name—for example, BISONFLAGS. (The names CFLAGS for the C compiler,
YFLAGS for yacc, and LFLAGS for lex, are exceptions to this rule, but we keep them because
they are standard.) Use CPPFLAGS in any compilation command that runs the preprocessor,
and use LDFLAGS in any compilation command that does linking as well as in any direct use
of ld.

If there are C compiler options that must be used for proper compilation of certain files,
do not include them in CFLAGS. Users expect to be able to specify CFLAGS freely themselves.
Instead, arrange to pass the necessary options to the C compiler independently of CFLAGS,
by writing them explicitly in the compilation commands or by defining an implicit rule, like
this:

CFLAGS = -g
ALL_CFLAGS = -I. $(CFLAGS)
.c.o:

$(CC) -c $(CPPFLAGS) $(ALL_CFLAGS) $<

Do include the ‘-g’ option in CFLAGS, because that is not required for proper compilation.
You can consider it a default that is only recommended. If the package is set up so that it
is compiled with GCC by default, then you might as well include ‘-O’ in the default value
of CFLAGS as well.

Put CFLAGS last in the compilation command, after other variables containing compiler
options, so the user can use CFLAGS to override the others.

CFLAGS should be used in every invocation of the C compiler, both those which do
compilation and those which do linking.

Every Makefile should define the variable INSTALL, which is the basic command for
installing a file into the system.

Every Makefile should also define the variables INSTALL_PROGRAM and INSTALL_DATA.
(The default for each of these should be $(INSTALL).) Then it should use those variables
as the commands for actual installation, for executables and nonexecutables respectively.
Use these variables as follows:

Chapter 7: The Release Process 44

$(INSTALL_PROGRAM) foo $(bindir)/foo
$(INSTALL_DATA) libfoo.a $(libdir)/libfoo.a

Optionally, you may prepend the value of DESTDIR to the target filename. Doing this
allows the installer to create a snapshot of the installation to be copied onto the real target
filesystem later. Do not set the value of DESTDIR in your Makefile, and do not include it in
any installed files. With support for DESTDIR, the above examples become:

$(INSTALL_PROGRAM) foo $(DESTDIR)$(bindir)/foo
$(INSTALL_DATA) libfoo.a $(DESTDIR)$(libdir)/libfoo.a

Always use a file name, not a directory name, as the second argument of the installation
commands. Use a separate command for each file to be installed.

7.2.4 Variables for Installation Directories

Installation directories should always be named by variables, so it is easy to install in
a nonstandard place. The standard names for these variables are described below. They
are based on a standard filesystem layout; variants of it are used in SVR4, 4.4BSD, Linux,
Ultrix v4, and other modern operating systems.

These two variables set the root for the installation. All the other installation directories
should be subdirectories of one of these two, and nothing should be directly installed into
these two directories.

‘prefix’ A prefix used in constructing the default values of the variables listed below.
The default value of prefix should be ‘/usr/local’. When building the com-
plete GNU system, the prefix will be empty and ‘/usr’ will be a symbolic link
to ‘/’. (If you are using Autoconf, write it as ‘@prefix@’.)
Running ‘make install’ with a different value of prefix from the one used to
build the program should not recompile the program.

‘exec_prefix’
A prefix used in constructing the default values of some of the variables listed
below. The default value of exec_prefix should be $(prefix). (If you are
using Autoconf, write it as ‘@exec_prefix@’.)
Generally, $(exec_prefix) is used for directories that contain machine-specific
files (such as executables and subroutine libraries), while $(prefix) is used
directly for other directories.
Running ‘make install’ with a different value of exec_prefix from the one
used to build the program should not recompile the program.

Executable programs are installed in one of the following directories.

‘bindir’ The directory for installing executable programs that users can run. This should
normally be ‘/usr/local/bin’, but write it as ‘$(exec_prefix)/bin’. (If you
are using Autoconf, write it as ‘@bindir@’.)

‘sbindir’ The directory for installing executable programs that can be run from the shell,
but are only generally useful to system administrators. This should normally be
‘/usr/local/sbin’, but write it as ‘$(exec_prefix)/sbin’. (If you are using
Autoconf, write it as ‘@sbindir@’.)

Chapter 7: The Release Process 45

‘libexecdir’
The directory for installing executable programs to be run by other programs
rather than by users. This directory should normally be ‘/usr/local/libexec’,
but write it as ‘$(exec_prefix)/libexec’. (If you are using Autoconf, write
it as ‘@libexecdir@’.)

Data files used by the program during its execution are divided into categories in two
ways.
• Some files are normally modified by programs; others are never normally modified

(though users may edit some of these).
• Some files are architecture-independent and can be shared by all machines at a site;

some are architecture-dependent and can be shared only by machines of the same kind
and operating system; others may never be shared between two machines.

This makes for six different possibilities. However, we want to discourage the use of
architecture-dependent files, aside from object files and libraries. It is much cleaner to
make other data files architecture-independent, and it is generally not hard.

Therefore, here are the variables Makefiles should use to specify directories:

‘datadir’ The directory for installing read-only architecture independent data files. This
should normally be ‘/usr/local/share’, but write it as ‘$(prefix)/share’.
(If you are using Autoconf, write it as ‘@datadir@’.) As a special exception,
see ‘$(infodir)’ and ‘$(includedir)’ below.

‘sysconfdir’
The directory for installing read-only data files that pertain to a single machine–
that is to say, files for configuring a host. Mailer and network configuration
files, ‘/etc/passwd’, and so forth belong here. All the files in this direc-
tory should be ordinary ASCII text files. This directory should normally be
‘/usr/local/etc’, but write it as ‘$(prefix)/etc’. (If you are using Autoconf,
write it as ‘@sysconfdir@’.)
Do not install executables here in this directory (they probably belong in
‘$(libexecdir)’ or ‘$(sbindir)’). Also do not install files that are modified in
the normal course of their use (programs whose purpose is to change the configu-
ration of the system excluded). Those probably belong in ‘$(localstatedir)’.

‘sharedstatedir’
The directory for installing architecture-independent data files which the pro-
grams modify while they run. This should normally be ‘/usr/local/com’,
but write it as ‘$(prefix)/com’. (If you are using Autoconf, write it as
‘@sharedstatedir@’.)

‘localstatedir’
The directory for installing data files which the programs modify while they run,
and that pertain to one specific machine. Users should never need to modify
files in this directory to configure the package’s operation; put such configura-
tion information in separate files that go in ‘$(datadir)’ or ‘$(sysconfdir)’.
‘$(localstatedir)’ should normally be ‘/usr/local/var’, but write it as
‘$(prefix)/var’. (If you are using Autoconf, write it as ‘@localstatedir@’.)

Chapter 7: The Release Process 46

‘libdir’ The directory for object files and libraries of object code. Do not install
executables here, they probably ought to go in ‘$(libexecdir)’ instead.
The value of libdir should normally be ‘/usr/local/lib’, but write it as
‘$(exec_prefix)/lib’. (If you are using Autoconf, write it as ‘@libdir@’.)

‘infodir’ The directory for installing the Info files for this package. By default, it should
be ‘/usr/local/info’, but it should be written as ‘$(prefix)/info’. (If you
are using Autoconf, write it as ‘@infodir@’.)

‘lispdir’ The directory for installing any Emacs Lisp files in this package. By default, it
should be ‘/usr/local/share/emacs/site-lisp’, but it should be written as
‘$(prefix)/share/emacs/site-lisp’.
If you are using Autoconf, write the default as ‘@lispdir@’. In order to make
‘@lispdir@’ work, you need the following lines in your ‘configure.in’ file:

lispdir=’${datadir}/emacs/site-lisp’
AC_SUBST(lispdir)

‘includedir’
The directory for installing header files to be included by user programs
with the C ‘#include’ preprocessor directive. This should normally be
‘/usr/local/include’, but write it as ‘$(prefix)/include’. (If you are
using Autoconf, write it as ‘@includedir@’.)
Most compilers other than GCC do not look for header files in directory
‘/usr/local/include’. So installing the header files this way is only useful
with GCC. Sometimes this is not a problem because some libraries are only
really intended to work with GCC. But some libraries are intended to work
with other compilers. They should install their header files in two places, one
specified by includedir and one specified by oldincludedir.

‘oldincludedir’
The directory for installing ‘#include’ header files for use with compilers other
than GCC. This should normally be ‘/usr/include’. (If you are using Auto-
conf, you can write it as ‘@oldincludedir@’.)
The Makefile commands should check whether the value of oldincludedir is
empty. If it is, they should not try to use it; they should cancel the second
installation of the header files.
A package should not replace an existing header in this directory unless the
header came from the same package. Thus, if your Foo package provides a
header file ‘foo.h’, then it should install the header file in the oldincludedir
directory if either (1) there is no ‘foo.h’ there or (2) the ‘foo.h’ that exists
came from the Foo package.
To tell whether ‘foo.h’ came from the Foo package, put a magic string in the
file—part of a comment—and grep for that string.

Unix-style man pages are installed in one of the following:

‘mandir’ The top-level directory for installing the man pages (if any) for this package. It
will normally be ‘/usr/local/man’, but you should write it as ‘$(prefix)/man’.
(If you are using Autoconf, write it as ‘@mandir@’.)

Chapter 7: The Release Process 47

‘man1dir’ The directory for installing section 1 man pages. Write it as ‘$(mandir)/man1’.

‘man2dir’ The directory for installing section 2 man pages. Write it as ‘$(mandir)/man2’

‘...’
Don’t make the primary documentation for any GNU software be a man page.
Write a manual in Texinfo instead. Man pages are just for the sake of people
running GNU software on Unix, which is a secondary application only.

‘manext’ The file name extension for the installed man page. This should contain a
period followed by the appropriate digit; it should normally be ‘.1’.

‘man1ext’ The file name extension for installed section 1 man pages.

‘man2ext’ The file name extension for installed section 2 man pages.

‘...’ Use these names instead of ‘manext’ if the package needs to install man pages
in more than one section of the manual.

And finally, you should set the following variable:

‘srcdir’ The directory for the sources being compiled. The value of this variable is
normally inserted by the configure shell script. (If you are using Autconf, use
‘srcdir = @srcdir@’.)

For example:
Common prefix for installation directories.
NOTE: This directory must exist when you start the install.
prefix = /usr/local
exec_prefix = $(prefix)
Where to put the executable for the command ‘gcc’.
bindir = $(exec_prefix)/bin
Where to put the directories used by the compiler.
libexecdir = $(exec_prefix)/libexec
Where to put the Info files.
infodir = $(prefix)/info

If your program installs a large number of files into one of the standard user-specified
directories, it might be useful to group them into a subdirectory particular to that program.
If you do this, you should write the install rule to create these subdirectories.

Do not expect the user to include the subdirectory name in the value of any of the
variables listed above. The idea of having a uniform set of variable names for installation
directories is to enable the user to specify the exact same values for several different GNU
packages. In order for this to be useful, all the packages must be designed so that they will
work sensibly when the user does so.

7.2.5 Standard Targets for Users

All GNU programs should have the following targets in their Makefiles:

‘all’ Compile the entire program. This should be the default target. This target need
not rebuild any documentation files; Info files should normally be included in
the distribution, and DVI files should be made only when explicitly asked for.

Chapter 7: The Release Process 48

By default, the Make rules should compile and link with ‘-g’, so that executable
programs have debugging symbols. Users who don’t mind being helpless can
strip the executables later if they wish.

‘install’ Compile the program and copy the executables, libraries, and so on to the file
names where they should reside for actual use. If there is a simple test to verify
that a program is properly installed, this target should run that test.
Do not strip executables when installing them. Devil-may-care users can use
the install-strip target to do that.
If possible, write the install target rule so that it does not modify anything in
the directory where the program was built, provided ‘make all’ has just been
done. This is convenient for building the program under one user name and
installing it under another.
The commands should create all the directories in which files are to be installed,
if they don’t already exist. This includes the directories specified as the values
of the variables prefix and exec_prefix, as well as all subdirectories that are
needed. One way to do this is by means of an installdirs target as described
below.
Use ‘-’ before any command for installing a man page, so that make will ignore
any errors. This is in case there are systems that don’t have the Unix man page
documentation system installed.
The way to install Info files is to copy them into ‘$(infodir)’ with $(INSTALL_
DATA) (see Section 7.2.3 [Command Variables], page 43), and then run the
install-info program if it is present. install-info is a program that edits
the Info ‘dir’ file to add or update the menu entry for the given Info file; it is
part of the Texinfo package. Here is a sample rule to install an Info file:

$(DESTDIR)$(infodir)/foo.info: foo.info
$(POST_INSTALL)

There may be a newer info file in . than in srcdir.
-if test -f foo.info; then d=.; \
else d=$(srcdir); fi; \
$(INSTALL_DATA) $$d/foo.info $(DESTDIR)$@; \

Run install-info only if it exists.
Use ‘if’ instead of just prepending ‘-’ to the
line so we notice real errors from install-info.
We use ‘$(SHELL) -c’ because some shells do not
fail gracefully when there is an unknown command.

if $(SHELL) -c ’install-info --version’ \
>/dev/null 2>&1; then \
install-info --dir-file=$(DESTDIR)$(infodir)/dir \

$(DESTDIR)$(infodir)/foo.info; \
else true; fi

When writing the install target, you must classify all the commands into
three categories: normal ones, pre-installation commands and post-installation
commands. See Section 7.2.6 [Install Command Categories], page 51.

‘uninstall’
Delete all the installed files—the copies that the ‘install’ target creates.

Chapter 7: The Release Process 49

This rule should not modify the directories where compilation is done, only the
directories where files are installed.
The uninstallation commands are divided into three categories, just like the in-
stallation commands. See Section 7.2.6 [Install Command Categories], page 51.

‘install-strip’
Like install, but strip the executable files while installing them. In many
cases, the definition of this target can be very simple:

install-strip:
$(MAKE) INSTALL_PROGRAM=’$(INSTALL_PROGRAM) -s’ \

install

Normally we do not recommend stripping an executable unless you are sure the
program has no bugs. However, it can be reasonable to install a stripped exe-
cutable for actual execution while saving the unstripped executable elsewhere
in case there is a bug.

‘clean’
Delete all files from the current directory that are normally created by build-
ing the program. Don’t delete the files that record the configuration. Also
preserve files that could be made by building, but normally aren’t because the
distribution comes with them.
Delete ‘.dvi’ files here if they are not part of the distribution.

‘distclean’
Delete all files from the current directory that are created by configuring or
building the program. If you have unpacked the source and built the program
without creating any other files, ‘make distclean’ should leave only the files
that were in the distribution.

‘mostlyclean’
Like ‘clean’, but may refrain from deleting a few files that people normally
don’t want to recompile. For example, the ‘mostlyclean’ target for GCC does
not delete ‘libgcc.a’, because recompiling it is rarely necessary and takes a lot
of time.

‘maintainer-clean’
Delete almost everything from the current directory that can be reconstructed
with this Makefile. This typically includes everything deleted by distclean,
plus more: C source files produced by Bison, tags tables, Info files, and so on.
The reason we say “almost everything” is that running the command ‘make
maintainer-clean’ should not delete ‘configure’ even if ‘configure’ can be
remade using a rule in the Makefile. More generally, ‘make maintainer-clean’
should not delete anything that needs to exist in order to run ‘configure’ and
then begin to build the program. This is the only exception; maintainer-clean
should delete everything else that can be rebuilt.
The ‘maintainer-clean’ target is intended to be used by a maintainer of the
package, not by ordinary users. You may need special tools to reconstruct
some of the files that ‘make maintainer-clean’ deletes. Since these files are

Chapter 7: The Release Process 50

normally included in the distribution, we don’t take care to make them easy to
reconstruct. If you find you need to unpack the full distribution again, don’t
blame us.
To help make users aware of this, the commands for the special maintainer-
clean target should start with these two:

@echo ’This command is intended for maintainers to use; it’
@echo ’deletes files that may need special tools to rebuild.’

‘TAGS’ Update a tags table for this program.

‘info’ Generate any Info files needed. The best way to write the rules is as follows:
info: foo.info

foo.info: foo.texi chap1.texi chap2.texi
$(MAKEINFO) $(srcdir)/foo.texi

You must define the variable MAKEINFO in the Makefile. It should run the
makeinfo program, which is part of the Texinfo distribution.
Normally a GNU distribution comes with Info files, and that means the Info
files are present in the source directory. Therefore, the Make rule for an info
file should update it in the source directory. When users build the package,
ordinarily Make will not update the Info files because they will already be up
to date.

‘dvi’ Generate DVI files for all Texinfo documentation. For example:
dvi: foo.dvi

foo.dvi: foo.texi chap1.texi chap2.texi
$(TEXI2DVI) $(srcdir)/foo.texi

You must define the variable TEXI2DVI in the Makefile. It should run the
program texi2dvi, which is part of the Texinfo distribution.1 Alternatively,
write just the dependencies, and allow GNU make to provide the command.

‘dist’ Create a distribution tar file for this program. The tar file should be set up so
that the file names in the tar file start with a subdirectory name which is the
name of the package it is a distribution for. This name can include the version
number.
For example, the distribution tar file of GCC version 1.40 unpacks into a sub-
directory named ‘gcc-1.40’.
The easiest way to do this is to create a subdirectory appropriately named, use
ln or cp to install the proper files in it, and then tar that subdirectory.
Compress the tar file file with gzip. For example, the actual distribution file
for GCC version 1.40 is called ‘gcc-1.40.tar.gz’.
The dist target should explicitly depend on all non-source files that are in
the distribution, to make sure they are up to date in the distribution. See
Section 7.3 [Making Releases], page 53.

1 texi2dvi uses TEX to do the real work of formatting. TEX is not distributed with Texinfo.

Chapter 7: The Release Process 51

‘check’ Perform self-tests (if any). The user must build the program before running
the tests, but need not install the program; you should write the self-tests so
that they work when the program is built but not installed.

The following targets are suggested as conventional names, for programs in which they
are useful.

installcheck
Perform installation tests (if any). The user must build and install the program
before running the tests. You should not assume that ‘$(bindir)’ is in the
search path.

installdirs
It’s useful to add a target named ‘installdirs’ to create the directories
where files are installed, and their parent directories. There is a script called
‘mkinstalldirs’ which is convenient for this; you can find it in the Texinfo
package. You can use a rule like this:

Make sure all installation directories (e.g. $(bindir))
actually exist by making them if necessary.
installdirs: mkinstalldirs

$(srcdir)/mkinstalldirs $(bindir) $(datadir) \
$(libdir) $(infodir) \
$(mandir)

This rule should not modify the directories where compilation is done. It should
do nothing but create installation directories.

7.2.6 Install Command Categories

When writing the install target, you must classify all the commands into three cate-
gories: normal ones, pre-installation commands and post-installation commands.

Normal commands move files into their proper places, and set their modes. They may
not alter any files except the ones that come entirely from the package they belong to.

Pre-installation and post-installation commands may alter other files; in particular, they
can edit global configuration files or data bases.

Pre-installation commands are typically executed before the normal commands, and
post-installation commands are typically run after the normal commands.

The most common use for a post-installation command is to run install-info. This
cannot be done with a normal command, since it alters a file (the Info directory) which
does not come entirely and solely from the package being installed. It is a post-installation
command because it needs to be done after the normal command which installs the package’s
Info files.

Most programs don’t need any pre-installation commands, but we have the feature just
in case it is needed.

To classify the commands in the install rule into these three categories, insert category
lines among them. A category line specifies the category for the commands that follow.

A category line consists of a tab and a reference to a special Make variable, plus an
optional comment at the end. There are three variables you can use, one for each category;

Chapter 7: The Release Process 52

the variable name specifies the category. Category lines are no-ops in ordinary execution
because these three Make variables are normally undefined (and you should not define them
in the makefile).

Here are the three possible category lines, each with a comment that explains what it
means:

$(PRE_INSTALL) # Pre-install commands follow.
$(POST_INSTALL) # Post-install commands follow.
$(NORMAL_INSTALL) # Normal commands follow.

If you don’t use a category line at the beginning of the install rule, all the commands
are classified as normal until the first category line. If you don’t use any category lines, all
the commands are classified as normal.

These are the category lines for uninstall:
$(PRE_UNINSTALL) # Pre-uninstall commands follow.
$(POST_UNINSTALL) # Post-uninstall commands follow.
$(NORMAL_UNINSTALL) # Normal commands follow.

Typically, a pre-uninstall command would be used for deleting entries from the Info
directory.

If the install or uninstall target has any dependencies which act as subroutines of
installation, then you should start each dependency’s commands with a category line, and
start the main target’s commands with a category line also. This way, you can ensure
that each command is placed in the right category regardless of which of the dependencies
actually run.

Pre-installation and post-installation commands should not run any programs except for
these:

[basename bash cat chgrp chmod chown cmp cp dd diff echo
egrep expand expr false fgrep find getopt grep gunzip gzip
hostname install install-info kill ldconfig ln ls md5sum
mkdir mkfifo mknod mv printenv pwd rm rmdir sed sort tee
test touch true uname xargs yes

The reason for distinguishing the commands in this way is for the sake of making binary
packages. Typically a binary package contains all the executables and other files that need
to be installed, and has its own method of installing them—so it does not need to run the
normal installation commands. But installing the binary package does need to execute the
pre-installation and post-installation commands.

Programs to build binary packages work by extracting the pre-installation and post-
installation commands. Here is one way of extracting the pre-installation commands:

make -n install -o all \
PRE_INSTALL=pre-install \
POST_INSTALL=post-install \
NORMAL_INSTALL=normal-install \

| gawk -f pre-install.awk

where the file ‘pre-install.awk’ could contain this:
$0 ~ /^\t[\t]*(normal_install|post_install)[\t]*$/ {on = 0}
on {print $0}
$0 ~ /^\t[\t]*pre_install[\t]*$/ {on = 1}

Chapter 7: The Release Process 53

The resulting file of pre-installation commands is executed as a shell script as part of
installing the binary package.

7.3 Making Releases

Package the distribution of Foo version 69.96 up in a gzipped tar file with the name
‘foo-69.96.tar.gz’. It should unpack into a subdirectory named ‘foo-69.96’.

Building and installing the program should never modify any of the files contained in the
distribution. This means that all the files that form part of the program in any way must
be classified into source files and non-source files. Source files are written by humans and
never changed automatically; non-source files are produced from source files by programs
under the control of the Makefile.

Naturally, all the source files must be in the distribution. It is okay to include non-
source files in the distribution, provided they are up-to-date and machine-independent, so
that building the distribution normally will never modify them. We commonly include
non-source files produced by Bison, lex, TEX, and makeinfo; this helps avoid unnecessary
dependencies between our distributions, so that users can install whichever packages they
want to install.

Non-source files that might actually be modified by building and installing the program
should never be included in the distribution. So if you do distribute non-source files, always
make sure they are up to date when you make a new distribution.

Make sure that the directory into which the distribution unpacks (as well as any sub-
directories) are all world-writable (octal mode 777). This is so that old versions of tar
which preserve the ownership and permissions of the files from the tar archive will be able
to extract all the files even if the user is unprivileged.

Make sure that all the files in the distribution are world-readable.
Make sure that no file name in the distribution is more than 14 characters long. Likewise,

no file created by building the program should have a name longer than 14 characters. The
reason for this is that some systems adhere to a foolish interpretation of the POSIX standard,
and refuse to open a longer name, rather than truncating as they did in the past.

Don’t include any symbolic links in the distribution itself. If the tar file contains symbolic
links, then people cannot even unpack it on systems that don’t support symbolic links. Also,
don’t use multiple names for one file in different directories, because certain file systems
cannot handle this and that prevents unpacking the distribution.

Try to make sure that all the file names will be unique on MS-DOS. A name on MS-
DOS consists of up to 8 characters, optionally followed by a period and up to three
characters. MS-DOS will truncate extra characters both before and after the period.
Thus, ‘foobarhacker.c’ and ‘foobarhacker.o’ are not ambiguous; they are truncated
to ‘foobarha.c’ and ‘foobarha.o’, which are distinct.

Include in your distribution a copy of the ‘texinfo.tex’ you used to test print any
‘*.texinfo’ or ‘*.texi’ files.

Likewise, if your program uses small GNU software packages like regex, getopt, obstack,
or termcap, include them in the distribution file. Leaving them out would make the distri-
bution file a little smaller at the expense of possible inconvenience to a user who doesn’t
know what other files to get.

i

Table of Contents

1 About the GNU Coding Standards 1

2 Keeping Free Software Free 1
2.1 Referring to Proprietary Programs . 1
2.2 Accepting Contributions . 2

3 General Program Design 2
3.1 Compatibility with Other Implementations 2
3.2 Using Non-standard Features . 3
3.3 ansi C and pre-ansi C . 3
3.4 Using Languages Other Than C . 4

4 Program Behavior for All Programs. 4
4.1 Writing Robust Programs . 4
4.2 Library Behavior . 5
4.3 Formatting Error Messages. 6
4.4 Standards for Command Line Interfaces 6
4.5 Table of Long Options . 9
4.6 Memory Usage . 24

5 Making The Best Use of C 24
5.1 Formatting Your Source Code . 24
5.2 Commenting Your Work . 26
5.3 Clean Use of C Constructs . 27
5.4 Naming Variables and Functions . 29
5.5 Portability between System Types . 29
5.6 Portability between cpus . 30
5.7 Calling System Functions . 31
5.8 Internationalization . 32
5.9 Mmap . 33

6 Documenting Programs 34
6.1 GNU Manuals . 34
6.2 Manual Structure Details . 35
6.3 The NEWS File . 35
6.4 Change Logs . 36

6.4.1 Change Log Concepts . 36
6.4.2 Style of Change Logs . 36
6.4.3 Simple Changes . 37
6.4.4 Conditional Changes . 37

6.5 Man Pages. 38
6.6 Reading other Manuals . 38

ii

7 The Release Process . 38
7.1 How Configuration Should Work . 39
7.2 Makefile Conventions . 41

7.2.1 General Conventions for Makefiles 41
7.2.2 Utilities in Makefiles . 42
7.2.3 Variables for Specifying Commands 43
7.2.4 Variables for Installation Directories 44
7.2.5 Standard Targets for Users . 47
7.2.6 Install Command Categories . 51

7.3 Making Releases . 53

