libbfd

The Binary File Descriptor Library

First Edition—BFD version < 3.0 % Since no product is stable before version 3.0 :-)
Original Document Created: April 1991

Steve Chamberlain
Cygnus Support

Free Software Foundation
sac@Qwww.gnu.org

BFD, 1.5

TrXinfo 2007-06-20.13

Copyright (©) 1991, 2001, 2003, 2006, 2008 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Table of Contents

1 Introduction..................., 1
1.1 HiStOry «ooe et 1
1.2 How To Use BFD ... 1
1.3 What BFD Version 2 Can Do, 2

1.3.1 Information LOSS......... ..o, 2
1.3.2 The BFD canonical object-file format...................... 3

2 BFDFront End................................. 5
2.1 typedef bfd...... ... 5)
2.2 BEITOr TepOrtingottt 11

2.2.1 Type bfd_error_typecooviiiiiiiiiiiiiiiia... 11
2.21.1 bfd_get_error..........oiiiiiiiii 11
2.2.1.2 bfd_set_error....... ...t 12
2213 bfd_errmsg....... ... 12
2214 bEA_Perrorot 12

2.2.2 BFDerrorhandler.......... 12
2.2.2.1 bfd_set_error_handler...............c.cuuiieio... 12
2.2.2.2 bfd_set_error_program Name 12
2.2.2.3 bfd_get_error_handler............................ 13

2.3 Miscellaneouso 13

2.3.1 Miscellaneous functions.o . 13
2.3.1.1 bfd_get_reloc_upper_bound....................... 13
2.3.1.2 bfd_canonicalize_reloC..........ccoiiiiiinaain.. 13
2.3.1.3 bfd_set_reloC. ..ot 13
2.3.14 Dbfd_set_file_flags...............ccooiiiiiiiiann. 14
2.3.1.5 bfd_get_arch_size............ 14
2.3.1.6 bfd_get_sign_extend_vma.......................... 14
2.3.1.7 bfd_set_start_address.............oiiiiiiiiiiinn. 14
2.3.1.8 bfd_get_gp_size.......... ... i, 15
2.3.1.9 Dbfd_set_gp_size ... 15
2.3.1.10 bfd_SCan_VIMa.ttt 15
2.3.1.11 bfd_copy_private_header_data................... 15
2.3.1.12 bfd_copy_private_bfd_data...................... 15
2.3.1.13 bfd_merge_private_bfd_data..................... 16
2.3.1.14 bfd_set_private_flags................coiiiiin 16
2.3.1.15 Other functionsoiiiiiiiiiiniinna... 16
2.3.1.16 bfd_alt_mach_code...........ccoiiiiiiiniiiina.n. 18
2.3.1.17 bfd_preserve_save...............oiiiiiiiiiiiin.. 19
2.3.1.18 bfd_preserve_restore...................iiia... 19
2.3.1.19 bfd_preserve_finish................., 19
2.3.1.20 bfd_emul_get_maxpagesize 19
2.3.1.21 bfd_emul_set_maxpagesize 19
2.3.1.22 bfd_emul_get_commonpagesize.................... 20

2.3.1.23 bfd_emul_set_commonpagesize.................... 20
2.3.1.24 bfd_demangle.......... 20
2.3.1.25 struct bfd_iovec i 20
2.3.1.26 bfd_get_mtime il 21
2.3.1.27 bfd_get_size......... ... i 21
2.3.1.28 bfd_mmap ...t 21
24 Memory Usage ... oottt 22
2.5 Initialization........ ..o i 22
2.5.1 Imitialization functions oo 22
2511 bfd_init ... 22
2.6 SECHIONS. .\ttt 22
2.6.1 Section INPUb.ouin e 22
2.6.2 Section output ... 23
2.6.3 Link orders ... 23
2.6.4 typedef asection........... .o 24
2.6.5 Section PrototyPesttt 36
2.6.5.1 bfd_section_list_clear........................... 36
2.6.5.2 bfd_get_section_by name.......................... 36
2.6.5.3 bfd_get_section_by name_if 36
2.6.5.4 bfd_get_unique_section_name..................... 36
2.6.5.5 bfd_make_section_old way......................... 37
2.6.5.6 bfd_make_section_anyway_with_flags............. 37
2.6.5.7 bfd_make_section_anyway.................oooinn... 37
2.6.5.8 bfd_make_section_with_flags..................... 37
2.6.5.9 bfd_make_section............. ... 38
2.6.5.10 bfd_set_section_flags........................... 38
2.6.5.11 bfd_rename_sectionccoiiiiiiininin.. 38
2.6.5.12 bfd_map_over_sections................. 38
2.6.5.13 bfd_sections_find_ if.........L. 39
2.6.5.14 bfd_set_section_size................ 39
2.6.5.15 bfd_set_section_contents 39
2.6.5.16 bfd_get_section_contents 39
2.6.5.17 bfd_malloc_and_get_section..................... 40
2.6.5.18 bfd_copy_private_section_data 40
2.6.5.19 bfd_generic_is_group_section................... 40
2.6.5.20 bfd_generic_discard_group...................... 40
2.7 Symbols . ..o 40
2.7.1 Reading symbols......... ... o i 41
2.7.2 Writing symbols.o 41
2.7.3 Mini Symbolso 42
2.7.4 typedef asymbol........ ... 43
2.7.5 Symbol handling functions, 46
2.7.5.1 bfd_get_symtab_upper_bound...................... 46
2.7.5.2 bfd_is_local_label.............cviiiiiiiiininnnnnn. 46
2.7.5.3 bfd_is_local_label name.................oouunnn. 46
2.7.5.4 bfd_is_target_special_symbol.................... 46
2.7.5.5 bfd_canonicalize_symtab.......................... 47

2.7.5.6 bfd_set_symtab.......... il 47

ii

2.7.5.7 bfd_print_symbol_vandf.................
2.7.5.8 bfd_make_empty_symbol...............
2.7.5.9 _bfd_generic_make_empty_symbol
2.7.5.10 bfd_make_debug_symbol.................
2.7.5.11 bfd_decode_symclasscccuiuuiiiiinnn...
2.7.5.12 bfd_is_undefined_symclass
2.7.5.13 bfd_symbol_info............... i il
2.7.5.14 bfd_copy_private_symbol_data...................
2.8 ATChivVes
2.8.1 Archive functions.........
2.8.1.1 bfd_get_next_mapent
2.8.1.2 Dbfd_set_archive_head......................
2.8.1.3 bfd_openr_next_archived_file....................
2.9 File formats.o
2.9.1 File format functions.........o
2.9.1.1 bfd_check_format...........couiiiiiiiiiiiiin...
2.9.1.2 bfd_check_format_matches.........................
2.9.1.3 bfd_set_format i
2.9.1.4 Dbfd_format_string.............
2,10 Relocations......... ..o
2.10.1 typedef arelent.......... ..o
2.10.1.1 enum complain_overflow...............ovviiiion..
2.10.1.2 reloc_howto_type..........coiiiiiiiiiii...
2.10.1.3 The HOWTO MaCTO ... vvvvttteeeiiiiiiiieeeeeeeeann
2.10.1.4 bfd_get_reloc_sizeoiiiiiiiiia.
2.10.1.5 arelent_chaincooiiiiiininnnnnn..
2.10.1.6 bfd_check_overflowcoovuiuiuininininin..
2.10.1.7 bfd_perform_relocation..........................
2.10.1.8 bfd_install_relocation..............ccouuuno...
2.10.2 The howto manager............ccoviiiiiiiiieniieeann.
2.10.2.1 bfd_reloc_code_typecciuiiiiiiiiiia,
2.10.2.2 bfd_reloc_type_lookUp..........cvviiiiiunnnnn..
2.10.2.3 bfd_default_reloc_type_lookup................
2.10.2.4 bfd_get_reloc_code name
2.10.2.5 bfd_generic_relax_section.....................
2.10.2.6 bfd_generic_gc_sections
2.10.2.7 bfd_generic_lookup_section_flags.............
2.10.2.8 bfd_generic_merge_sections....................
2.10.2.9 bfd_generic_get_relocated_section_contents
211 Core files . oo
2.11.1 Core file functions. ...
2.11.1.1 bfd_core_file_failing command
2.11.1.2 bfd_core_file_failing signal..................
2.11.1.3 bfd_core_file_pid................. ...l
2.11.1.4 core_file_matches_executable_p...............
2.11.1.5 generic_core_file_matches_executable_p......

2.12 Targets

iii

2.12.1 bfd_target ...t 113
2.12.1.1 bfd_set_default_target......................... 123
2.12.1.2 bfd_find_target.............. ...l 123
2.12.1.3 bfd_get_target_info............... 123
2.12.1.4 bfd_target_list..........coiiiiiiiiiiiiiii.. 124
2.12.1.5 bfd_seach_for_target........................... 124

2.13 Architecturesoueiiii 124

2.13.1 bfd_architecture........... ..o 124

2.13.2 bfd_arch_info 133
2.13.2.1 bfd_printable name 133
2.13.2.2 bfd_scan_arch.........c.ooiiiiiiiiiiiiiiii 133
2.13.2.3 bfd_arch_listo 134
2.13.2.4 bfd_arch_get_compatible 134
2.13.2.5 bfd_default_arch_struct 134
2.13.2.6 bfd_set_arch_info............t 134
2.13.2.7 bfd_default_set_arch mach..................... 134
2.13.2.8 bfd_get_arch.......... ... it 135
2.13.2.9 bfd_get_mach........... ... it 135
2.13.2.10 bfd_arch_bits_per_byte........................ 135
2.13.2.11 bfd_arch_bits_per_address.................... 135
2.13.2.12 bfd_default_compatible........................ 135
2.13.2.13 bfd_default_scan............ouviiiiiiiininnn... 135
2.13.2.14 bfd_get_arch_info.......... 135
2.13.2.15 bfd_lookup_arch...............cooiiiiiiii.n. 136
2.13.2.16 bfd_printable_arch_mach...................... 136
2.13.2.17 bfd_octets_per_byte.....................o.L. 136
2.13.2.18 bfd_arch_mach_octets_per_byte............... 136

2.14 Opening and closing BFDs.........o il 136

2.14.1 Functions for opening and closing 136
2.14.1.1 bfd_fopen...... ..o 136
2.14.1.2 bfd_OopenT.........uiiiii 137
2.14.1.3 bfd_fdopenr...........couiiiiiiiiiiiiii 137
2.14.1.4 bfd_openstreamr..................iiiiiiiiii.. 137
2.14.1.5 bfd_openr_iovec........... 137
2.14.1.6 bfd_openw...... ... 138
2.14.1.7 bfAd_Close ... 138
2.14.1.8 bfd_close_all _donec.ccovuiiiiinnnnnnnn.. 139
2.14.1.9 bfd_create.......ccoviiiiiiiiii i 139
2.14.1.10 bfd_make_writable, 139
2.14.1.11 bfd_make_readableoiiii... 139
214112 bfd_alloC. ..ot 140
2.14.1.13 bEd_alloc2. ... e 140
2.14.1.14 1fd_zalloC. ... 140
2.14.1.15 bfd_zalloc2..... ..ot 140
2.14.1.16 bfd_calc_gnu_debuglink_crc32................ 140
2.14.1.17 get_debug_link_info...................... 141
2.14.1.18 separate_debug_file_exists................... 141
2.14.1.19 find_separate_debug_file..................... 141

iv

2.14.1.20 bfd_follow_gnu_debuglink..................... 141

2.14.1.21 bfd_create_gnu_debuglink_section............ 141
2.14.1.22 bfd_fill_in_gnu_debuglink_section........... 142

2.15 Implementation details.............. ... i i 142
2.15.1 Internal functions........... ... i, 142
2.15.1.1 bfd_write_bigendian_4byte_int 142
2.15.1.2 bfd_put_SiZeoiiiiiiiii 142
2.15.1.3 bfd_get_size il 142
2.15.14 bfd_h_put_size..........., 144
2.15.1.5 bEA_L1og2 ..ottt 145

2.16 Filecaching. ... 145
2.16.1 Caching functions.......... ..., 145
2.16.1.1 bfd_cache_initcoiiiiiiiiiiinnnn .. 145
2.16.1.2 bfd_cache_closSe.........ooiiiiiiiinnnneeennnnnn, 146
2.16.1.3 bfd_cache_close_allccovviiiinnnnn. 146
2.16.1.4 bfd_open_fileccoiiiiiiiiiiiiiiiii.. 146

2.17 Linker Functions......... i 146
2.17.1 Creating a linker hash table............................ 147
2.17.2 Adding symbols to the hash table...................... 147
2.17.2.1 Differing file formats oL 147
2.17.2.2 Adding symbols from an object file................ 148
2.17.2.3 Adding symbols from an archive................... 148
2.17.3 Performing the final link, 149
2.17.3.1 Information provided by the linker 149
2.17.3.2 Relocating the section contents.................... 150
2.17.3.3 Writing the symbol table.......................... 150
2.17.3.4 bfd_link_split_section..............cceveer.... 151
2.17.3.5 bfd_section_already_linked.................... 151
2.17.3.6 bfd_generic_define_common_symbol............. 151
2.17.3.7 bfd_find_version_for_sym 152
2.17.3.8 bfd_hide_sym_by_version 152

2.18 Hash Tables ... 152
2.18.1 Creating and freeing a hash table 152
2.18.2 Looking up or entering a string......................... 153
2.18.3 Traversing a hash table 153
2.18.4 Deriving a new hash table type................ 153
2.18.4.1 Define the derived structures...................... 153
2.18.4.2 Write the derived creation routine................. 154

2.18.4.3 Write other derived routines....................... 155

3 BFDbackends................, 156
3.1 What to Put Where........ .. 156
3.2 a.out backends. 156

3.2.1 Relocations ... 157
3.2.2 Internal entry points....... i 157
3.2.2.1 aout_size_swap_exec_header_in................. 157
3.2.2.2 aout_size_swap_exec_header_out................ 157
3.2.2.3 aout_size_some_aout_object_p.................. 158
3.2.2.4 aout_size_mkobject il 158
3.2.2.5 aout_size_machine_type.......................... 158
3.2.2.6 aout_size_set_arch mach........................ 158
3.2.27 aout_size_new_section_hook..................... 159

3.3 coff backends 159
3.3.1 Porting to a new version of coff............., 159
3.3.2 How the coff backend works 159
3.3.21 Filelayoutccoooiiiiii 159
3.3.2.2 Coff long section namesccoooiieia... 160
3.3.2.3 Bittwiddling........ .o 161
3.3.2.4 Symbolreadingoiiiiiiiii 161
3.3.2.5 Symbol writing........ i 162
3.3.2.6 coff_symbol_type........... ... i, 162
3.3.2.7 bfd_coff_backend data............cooiiiiiiiii... 164
3.3.2.8 Writing relocations............ ... i 170
3.3.2.9 Reading linenumbersoiiiiia, 170
3.3.2.10 Reading relocations 170

3.4 ELF backends ... 171
3.5 mmo backend 171
3.5.1 Filelayout ..o 171
3.5.2 Symbol table format 173
3.5.3 mmo section MappPingoveiiiiiiiinnnnneean.. 175

BFD Index

vi

Chapter 1: Introduction 1

1 Introduction

BFD is a package which allows applications to use the same routines to operate on object
files whatever the object file format. A new object file format can be supported simply by
creating a new BFD back end and adding it to the library.

BFD is split into two parts: the front end, and the back ends (one for each object file
format).

e The front end of BFD provides the interface to the user. It manages memory and
various canonical data structures. The front end also decides which back end to use
and when to call back end routines.

e The back ends provide BFD its view of the real world. Each back end provides a set of

calls which the BFD front end can use to maintain its canonical form. The back ends
also may keep around information for their own use, for greater efficiency.

1.1 History

One spur behind BFD was the desire, on the part of the GNU 960 team at Intel Oregon, for
interoperability of applications on their COFF and b.out file formats. Cygnus was providing
GNU support for the team, and was contracted to provide the required functionality.

The name came from a conversation David Wallace was having with Richard Stallman
about the library: RMS said that it would be quite hard—David said “BFD”. Stallman was
right, but the name stuck.

At the same time, Ready Systems wanted much the same thing, but for different object file
formats: TEEE-695, Oasys, Srecords, a.out and 68k coff.

BFD was first implemented by members of Cygnus Support; Steve Chamber-
lain (sac@cygnus.com), John Gilmore (gnu@cygnus.com), K. Richard Pixley
(rich@cygnus.com) and David Henkel-Wallace (gumby@cygnus.com).

1.2 How To Use BFD
To use the library, include ‘bfd.h’ and link with ‘1ibbfd.a’.

BFD provides a common interface to the parts of an object file for a calling application.

When an application successfully opens a target file (object, archive, or whatever), a pointer
to an internal structure is returned. This pointer points to a structure called bfd, described
in ‘bfd.h’. Our convention is to call this pointer a BFD, and instances of it within code
abfd. All operations on the target object file are applied as methods to the BFD. The
mapping is defined within bfd.h in a set of macros, all beginning with ‘bfd_’ to reduce
namespace pollution.

For example, this sequence does what you would probably expect: return the number of
sections in an object file attached to a BFD abfd.

#include "bfd.h"

unsigned int number_of_sections (abfd)
bfd *abfd;
{

Chapter 1: Introduction 2

return bfd_count_sections (abfd);

}
The abstraction used within BFD is that an object file has:
e a header,
e a number of sections containing raw data (see Section 2.6 [Sections|, page 22),
e a set of relocations (see Section 2.10 [Relocations|, page 51), and

e some symbol information (see Section 2.7 [Symbols|, page 40).

Also, BFDs opened for archives have the additional attribute of an index and contain
subordinate BFDs. This approach is fine for a.out and coff, but loses efficiency when
applied to formats such as S-records and IEEE-695.

1.3 What BFD Version 2 Can Do

When an object file is opened, BFD subroutines automatically determine the format of the
input object file. They then build a descriptor in memory with pointers to routines that
will be used to access elements of the object file’s data structures.

As different information from the object files is required, BFD reads from different sections
of the file and processes them. For example, a very common operation for the linker is
processing symbol tables. Each BFD back end provides a routine for converting between
the object file’s representation of symbols and an internal canonical format. When the
linker asks for the symbol table of an object file, it calls through a memory pointer to the
routine from the relevant BFD back end which reads and converts the table into a canonical
form. The linker then operates upon the canonical form. When the link is finished and the
linker writes the output file’s symbol table, another BED back end routine is called to take
the newly created symbol table and convert it into the chosen output format.

1.3.1 Information Loss

Information can be lost during output. The output formats supported by BFD do not
provide identical facilities, and information which can be described in one form has nowhere
to go in another format. One example of this is alignment information in b.out. There is
nowhere in an a.out format file to store alignment information on the contained data, so
when a file is linked from b.out and an a.out image is produced, alignment information
will not propagate to the output file. (The linker will still use the alignment information
internally, so the link is performed correctly).

Another example is COFF section names. COFF files may contain an unlimited number of
sections, each one with a textual section name. If the target of the link is a format which
does not have many sections (e.g., a.out) or has sections without names (e.g., the Oasys
format), the link cannot be done simply. You can circumvent this problem by describing
the desired input-to-output section mapping with the linker command language.

Information can be lost during canonicalization. The BFD internal canonical form of the
external formats is not exhaustive; there are structures in input formats for which there is
no direct representation internally. This means that the BFD back ends cannot maintain
all possible data richness through the transformation between external to internal and back
to external formats.

Chapter 1: Introduction 3

This limitation is only a problem when an application reads one format and writes another.
Each BFD back end is responsible for maintaining as much data as possible, and the internal
BFD canonical form has structures which are opaque to the BFD core, and exported only
to the back ends. When a file is read in one format, the canonical form is generated for
BEFD and the application. At the same time, the back end saves away any information
which may otherwise be lost. If the data is then written back in the same format, the back
end routine will be able to use the canonical form provided by the BED core as well as the
information it prepared earlier. Since there is a great deal of commonality between back
ends, there is no information lost when linking or copying big endian COFF to little endian
COFF, or a.out to b.out. When a mixture of formats is linked, the information is only
lost from the files whose format differs from the destination.

1.3.2 The BFD canonical object-file format

The greatest potential for loss of information occurs when there is the least overlap between
the information provided by the source format, that stored by the canonical format, and
that needed by the destination format. A brief description of the canonical form may help
you understand which kinds of data you can count on preserving across conversions.

files Information stored on a per-file basis includes target machine architecture, par-
ticular implementation format type, a demand pageable bit, and a write pro-
tected bit. Information like Unix magic numbers is not stored here—only the
magic numbers’ meaning, so a ZMAGIC file would have both the demand page-
able bit and the write protected text bit set. The byte order of the target is
stored on a per-file basis, so that big- and little-endian object files may be used
with one another.

sections Each section in the input file contains the name of the section, the section’s
original address in the object file, size and alignment information, various flags,
and pointers into other BFD data structures.

symbols Each symbol contains a pointer to the information for the object file which
originally defined it, its name, its value, and various flag bits. When a BFD
back end reads in a symbol table, it relocates all symbols to make them relative
to the base of the section where they were defined. Doing this ensures that
each symbol points to its containing section. Each symbol also has a varying
amount of hidden private data for the BFD back end. Since the symbol points
to the original file, the private data format for that symbol is accessible. 1d can
operate on a collection of symbols of wildly different formats without problems.

Normal global and simple local symbols are maintained on output, so an output
file (no matter its format) will retain symbols pointing to functions and to
global, static, and common variables. Some symbol information is not worth
retaining; in a.out, type information is stored in the symbol table as long
symbol names. This information would be useless to most COFF debuggers;
the linker has command line switches to allow users to throw it away.

There is one word of type information within the symbol, so if the format
supports symbol type information within symbols (for example, COFF, IEEE,
Oasys) and the type is simple enough to fit within one word (nearly everything
but aggregates), the information will be preserved.

Chapter 1: Introduction 4

relocation level

Each canonical BFD relocation record contains a pointer to the symbol to re-
locate to, the offset of the data to relocate, the section the data is in, and
a pointer to a relocation type descriptor. Relocation is performed by passing
messages through the relocation type descriptor and the symbol pointer. There-
fore, relocations can be performed on output data using a relocation method
that is only available in one of the input formats. For instance, Oasys provides
a byte relocation format. A relocation record requesting this relocation type
would point indirectly to a routine to perform this, so the relocation may be
performed on a byte being written to a 68k COFF file, even though 68k COFF
has no such relocation type.

line numbers

Object formats can contain, for debugging purposes, some form of mapping
between symbols, source line numbers, and addresses in the output file. These
addresses have to be relocated along with the symbol information. Each symbol
with an associated list of line number records points to the first record of the list.
The head of a line number list consists of a pointer to the symbol, which allows
finding out the address of the function whose line number is being described.
The rest of the list is made up of pairs: offsets into the section and line numbers.
Any format which can simply derive this information can pass it successfully
between formats (COFF, IEEE and Oasys).

Chapter 2: BFD Front End 5)

2 BFD Front End

2.1 typedef bfd

A BFD has type bfd; objects of this type are the cornerstone of any application using BED.
Using BFD consists of making references though the BFD and to data in the BFD.

Here is the structure that defines the type bfd. It contains the major data about the file
and pointers to the rest of the data.

enum bfd_direction
{
no_direction = O,
read_direction = 1,
write_direction = 2,
both_direction = 3
};

struct bfd

{
/* A unique identifier of the BFD x*/
unsigned int id;

/* The filename the application opened the BFD with. */
const char *filename;

/* A pointer to the target jump table. */
const struct bfd_target *xvec;

/* The IOSTREAM, and corresponding I0 vector that provide access
to the file backing the BFD. */

void *iostream;

const struct bfd_iovec *iovec;

/* The caching routines use these to maintain a
least-recently-used list of BFDs. */
struct bfd *lru_prev, *lru_next;

/* When a file is closed by the caching routines, BFD retains
state information on the file here... */
ufile_ptr where;

/* File modified time, if mtime_set is TRUE. x*/
long mtime;

/* Reserved for an unimplemented file locking extension. */
int ifd;

Chapter 2: BFD Front End 6

/* The format which belongs to the BFD. (object, core, etc.) */
bfd_format format;

/* The direction with which the BFD was opened. */
enum bfd_direction direction;

/* Format_specific flags. */
flagword flags;

/* Values that may appear in the flags field of a BFD. These also
appear in the object_flags field of the bfd_target structure, where
they indicate the set of flags used by that backend (not all flags
are meaningful for all object file formats) (FIXME: at the moment,
the object_flags values have mostly just been copied from backend
to another, and are not necessarily correct). */

#define BFD_NO_FLAGS 0x00

/* BFD contains relocation entries. x*/
#define HAS_RELOC 0x01

/* BFD is directly executable. */
#define EXEC_P 0x02

/* BFD has line number information (basically used for F_LNNO in a
COFF header). */
#define HAS_LINENO 0x04

/* BFD has debugging information. */
#define HAS_DEBUG 0x08

/* BFD has symbols. */
#define HAS_SYMS 0x10

/* BFD has local symbols (basically used for F_LSYMS in a COFF
header). */
#define HAS_LOCALS 0x20

/* BFD is a dynamic object. */
#define DYNAMIC 0x40

/* Text section is write protected (if D_PAGED is not set, this is
like an a.out NMAGIC file) (the linker sets this by default, but
clears it for -r or -N). x*/

#define WP_TEXT 0x80

Chapter 2: BFD Front End 7

/* BFD is dynamically paged (this is like an a.out ZMAGIC file) (the
linker sets this by default, but clears it for -r or -n or -N). */
#define D_PAGED 0x100

/* BFD is relaxable (this means that bfd_relax_section may be able to
do something) (sometimes bfd_relax_section can do something even if
this is not set). */

#define BFD_IS_RELAXABLE 0x200

/* This may be set before writing out a BFD to request using a
traditional format. For example, this is used to request that when
writing out an a.out object the symbols not be hashed to eliminate
duplicates. */

#define BFD_TRADITIONAL_FORMAT 0x400

/* This flag indicates that the BFD contents are actually cached
in memory. If this is set, iostream points to a bfd_in_memory
struct. */

#define BFD_IN_MEMORY 0x800

/* The sections in this BFD specify a memory page. */
#define HAS_LOAD_PAGE 0x1000

/* This BFD has been created by the linker and doesn’t correspond
to any input file. */
#define BFD_LINKER_CREATED 0x2000

/* This may be set before writing out a BFD to request that it
be written using values for UIDs, GIDs, timestamps, etc. that
will be consistent from run to run. */

#define BFD_DETERMINISTIC_OUTPUT 0x4000

/* Compress sections in this BFD. */
#define BFD_COMPRESS 0x8000

/* Decompress sections in this BFD. */
#define BFD_DECOMPRESS 0x10000

/* BFD is a dummy, for plugins. */
#define BFD_PLUGIN 0x20000

/* Flags bits to be saved in bfd_preserve_save. */
#define BFD_FLAGS_SAVED \
(BFD_IN_MEMORY | BFD_COMPRESS | BFD_DECOMPRESS | BFD_PLUGIN)

/* Flags bits which are for BFD use only. */
#define BFD_FLAGS_FOR_BFD_USE_MASK \

Chapter 2: BFD Front End 8

(BFD_IN_MEMORY | BFD_COMPRESS | BFD_DECOMPRESS | BFD_LINKER_CREATED \
| BFD_PLUGIN | BFD_TRADITIONAL_FORMAT | BFD_DETERMINISTIC_OUTPUT)

/* Currently my_archive is tested before adding origin to
anything. I believe that this can become always an add of
origin, with origin set to O for non archive files. x*/

ufile_ptr origin;

/* The origin in the archive of the proxy entry. This will
normally be the same as origin, except for thin archives,
when it will contain the current offset of the proxy in the
thin archive rather than the offset of the bfd in its actual
container. */

ufile_ptr proxy_origin;

/* A hash table for section names. */
struct bfd_hash_table section_htab;

/* Pointer to linked list of sections. */
struct bfd_section *sections;

/* The last section on the section list. x*/
struct bfd_section *section_last;

/* The number of sections. */
unsigned int section_count;

/* Stuff only useful for object files:
The start address. */
bfd_vma start_address;

/* Used for input and output. */
unsigned int symcount;

/* Symbol table for output BFD (with symcount entries).
Also used by the linker to cache input BFD symbols. x/
struct bfd_symbol **outsymbols;

/* Used for slurped dynamic symbol tables. */
unsigned int dynsymcount;

/* Pointer to structure which contains architecture information. */
const struct bfd_arch_info *arch_info;

/* Stuff only useful for archives. */
void *arelt_data;
struct bfd *my_archive; /* The containing archive BFD. */

Chapter 2: BFD Front End 9

struct bfd *archive_next; /* The next BFD in the archive. x*/

struct bfd *archive_head; /* The first BFD in the archive. x/

struct bfd *nested_archives; /* List of nested archive in a flattened
thin archive. x*/

/* A chain of BFD structures involved in a link. x*/
struct bfd *link_next;

/* A field used by _bfd_generic_link_add_archive_symbols. This will
be used only for archive elements. */
int archive_pass;

/* Used by the back end to hold private data. */
union
{
struct aout_data_struct *aout_data;
struct artdata *aout_ar_data;
struct _oasys_data *oasys_obj_data;
struct _oasys_ar_data *oasys_ar_data;
struct coff_tdata *coff_obj_data;
struct pe_tdata *pe_obj_data;
struct xcoff_tdata *xcoff_obj_data;
struct ecoff_tdata *ecoff_obj_data;
struct ieee_data_struct *ieee_data;
struct ieee_ar_data_struct *ieee_ar_data;
struct srec_data_struct *srec_data;
struct verilog_data_struct *verilog_data;
struct ihex_data_struct *ihex_data;
struct tekhex_data_struct *tekhex_data;
struct elf_obj_tdata *elf_obj_data;
struct nlm_obj_tdata *nlm_obj_data;
struct bout_data_struct *bout_data;
struct mmo_data_struct *mmo_data;
struct sun_core_struct *sun_core_data;
struct scob_core_struct *scob5_core_data;
struct trad_core_struct *trad_core_data;
struct som_data_struct *som_data;
struct hpux_core_struct *hpux_core_data;
struct hppabsd_core_struct *hppabsd_core_data;
struct sgi_core_struct *sgi_core_data;
struct lynx_core_struct *lynx_core_data;
struct osf_core_struct *osf_core_data;
struct cisco_core_struct *cisco_core_data;
struct versados_data_struct *versados_data;
struct netbsd_core_struct *netbsd_core_data;
struct mach_o_data_struct *mach_o_data;
struct mach_o_fat_data_struct *mach_o_fat_data;

Chapter 2: BFD Front End 10

struct plugin_data_struct *plugin_data;
struct bfd_pef_data_struct *pef_data;
struct bfd_pef_xlib_data_struct *pef_xlib_data;
struct bfd_sym_data_struct *sym_data;
void *any;
b
tdata;

/* Used by the application to hold private data. */
void *usrdata;

/* Where all the allocated stuff under this BFD goes. This is a
struct objalloc *, but we use void * to avoid requiring the inclusion]]
of objalloc.h. */

void *memory;

/* Is the file descriptor being cached? That is, can it be closed as
needed, and re-opened when accessed later? */
unsigned int cacheable : 1;

/* Marks whether there was a default target specified when the
BFD was opened. This is used to select which matching algorithm
to use to choose the back end. */

unsigned int target_defaulted : 1;

/* ... and here: (‘‘once’’ means at least once). x*/
unsigned int opened_once : 1;

/* Set if we have a locally maintained mtime value, rather than
getting it from the file each time. */
unsigned int mtime_set : 1;

/* Flag set if symbols from this BFD should not be exported. */
unsigned int no_export : 1;

/* Remember when output has begun, to stop strange things
from happening. */
unsigned int output_has_begun : 1;

/* Have archive map. */
unsigned int has_armap : 1;

/* Set if this is a thin archive. */
unsigned int is_thin_archive : 1;

/* Set if only required symbols should be added in the link hash table forf]
this object. Used by VMS linkers. */

Chapter 2: BFD Front End 11

unsigned int selective_search : 1;

};

2.2 Error reporting

Most BFD functions return nonzero on success (check their individual documentation for
precise semantics). On an error, they call bfd_set_error to set an error condition that
callers can check by calling bfd_get_error. If that returns bfd_error_system_call, then
check errno.

The easiest way to report a BFD error to the user is to use bfd_perror.

2.2.1 Type bfd_error_type

The values returned by bfd_get_error are defined by the enumerated type bfd_error_
type.

typedef enum bfd_error

{
bfd_error_no_error = 0,
bfd_error_system_call,
bfd_error_invalid_target,
bfd_error_wrong_format,
bfd_error_wrong_object_format,
bfd_error_invalid_operation,
bfd_error_no_memory,
bfd_error_no_symbols,
bfd_error_no_armap,
bfd_error_no_more_archived_files,
bfd_error_malformed_archive,
bfd_error_file_not_recognized,
bfd_error_file_ambiguously_recognized,
bfd_error_no_contents,
bfd_error_nonrepresentable_section,
bfd_error_no_debug_section,
bfd_error_bad_value,
bfd_error_file_truncated,
bfd_error_file_too_big,
bfd_error_on_input,
bfd_error_invalid_error_code

3

bfd_error_type;

2.2.1.1 bfd_get_error
Synopsis
bfd_error_type bfd_get_error (void);

Chapter 2: BFD Front End 12

Description
Return the current BED error condition.

2.2.1.2 bfd_set_error
Synopsis
void bfd_set_error (bfd_error_type error_tag, ...);

Description

Set the BFD error condition to be error_tag. If error_tag is bfd_error_on_input, then
this function takes two more parameters, the input bfd where the error occurred, and
the bfd_error_type error.

2.2.1.3 bfd_errmsg
Synopsis
const char *bfd_errmsg (bfd_error_type error_tag);

Description
Return a string describing the error error_tag, or the system error if error_tag is bfd_error_
system_call.

2.2.1.4 bfd_perror
Synopsis
void bfd_perror (const char *message);

Description

Print to the standard error stream a string describing the last BFD error that occurred, or
the last system error if the last BFD error was a system call failure. If message is non-NULL
and non-empty, the error string printed is preceded by message, a colon, and a space. It is
followed by a newline.

2.2.2 BFD error handler

Some BFD functions want to print messages describing the problem. They call a BFD error
handler function. This function may be overridden by the program.

The BFD error handler acts like printf.

typedef void (*bfd_error_handler_type) (const char *, ...);

2.2.2.1 bfd_set_error_handler
Synopsis
bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);

Description
Set the BFD error handler function. Returns the previous function.

2.2.2.2 bfd_set_error_program_name
Synopsis

Chapter 2: BFD Front End 13

void bfd_set_error_program_name (const char *);

Description

Set the program name to use when printing a BFD error. This is printed before the error
message followed by a colon and space. The string must not be changed after it is passed
to this function.

2.2.2.3 bfd_get_error_handler
Synopsis
bfd_error_handler_type bfd_get_error_handler (void);

Description
Return the BFD error handler function.

2.3 Miscellaneous

2.3.1 Miscellaneous functions

2.3.1.1 bfd_get_reloc_upper_bound
Synopsis
long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect);

Description
Return the number of bytes required to store the relocation information associated with
section sect attached to bfd abfd. If an error occurs, return -1.

2.3.1.2 bfd_canonicalize_reloc
Synopsis

long bfd_canonicalize_reloc
(bfd *abfd, asection *sec, arelent **loc, asymbol **syms);

Description

Call the back end associated with the open BFD abfd and translate the external form of the
relocation information attached to sec into the internal canonical form. Place the table into
memory at loc, which has been preallocated, usually by a call to bfd_get_reloc_upper_
bound. Returns the number of relocs, or -1 on error.

The syms table is also needed for horrible internal magic reasons.

2.3.1.3 bfd_set_reloc
Synopsis

void bfd_set_reloc
(bfd *abfd, asection *sec, arelent #**rel, unsigned int count);

Description
Set the relocation pointer and count within section sec to the values rel and count. The
argument abfd is ignored.

Chapter 2: BFD Front End 14

2.3.1.4 bfd_set_file_flags
Synopsis
bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags);

Description
Set the flag word in the BFD abfd to the value flags.

Possible errors are:
e bfd_error_wrong_format - The target bfd was not of object format.
e bfd_error_invalid_operation - The target bfd was open for reading.

e bfd_error_invalid_operation - The flag word contained a bit which was not appli-
cable to the type of file. E.g., an attempt was made to set the D_PAGED bit on a BFD
format which does not support demand paging.

2.3.1.5 bfd_get_arch_size
Synopsis
int bfd_get_arch_size (bfd *abfd);

Description
Returns the architecture address size, in bits, as determined by the object file’s format. For
ELF, this information is included in the header.

Returns
Returns the arch size in bits if known, -1 otherwise.

2.3.1.6 bfd_get_sign_extend_vma
Synopsis
int bfd_get_sign_extend_vma (bfd *abfd);

Description

Indicates if the target architecture "naturally" sign extends an address. Some architectures
implicitly sign extend address values when they are converted to types larger than the size
of an address. For instance, bfd_get_start_address() will return an address sign extended
to fill a bfd_vma when this is the case.

Returns
Returns 1 if the target architecture is known to sign extend addresses, 0 if the target
architecture is known to not sign extend addresses, and -1 otherwise.

2.3.1.7 bfd_set_start_address
Synopsis
bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma);

Description
Make vma the entry point of output BFD abfd.

Returns
Returns TRUE on success, FALSE otherwise.

Chapter 2: BFD Front End 15

2.3.1.8 bfd_get_gp_size
Synopsis
unsigned int bfd_get_gp_size (bfd *abfd);

Description
Return the maximum size of objects to be optimized using the GP register under MIPS
ECOFF. This is typically set by the -G argument to the compiler, assembler or linker.

2.3.1.9 bfd_set_gp_size
Synopsis
void bfd_set_gp_size (bfd *abfd, unsigned int i);

Description
Set the maximum size of objects to be optimized using the GP register under ECOFF or
MIPS ELF. This is typically set by the -G argument to the compiler, assembler or linker.

2.3.1.10 bfd_scan_vma
Synopsis
bfd_vma bfd_scan_vma (const char *string, const char **end, int base);

Description

Convert, like strtoul, a numerical expression string into a bfd_vma integer, and return
that integer. (Though without as many bells and whistles as strtoul.) The expression is
assumed to be unsigned (i.e., positive). If given a base, it is used as the base for conversion.
A base of 0 causes the function to interpret the string in hex if a leading "0x" or "0X" is
found, otherwise in octal if a leading zero is found, otherwise in decimal.

If the value would overflow, the maximum bfd_vma value is returned.

2.3.1.11 bfd_copy_private_header_data
Synopsis
bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd);

Description

Copy private BED header information from the BFD ibfd to the the BED obfd. This copies
information that may require sections to exist, but does not require symbol tables. Return
true on success, false on error. Possible error returns are:

e bfd_error_no_memory - Not enough memory exists to create private data for obfd.
#define bfd_copy_private_header_data(ibfd, obfd) \
BFD_SEND (obfd, _bfd_copy_private_header_data, \
(ibfd, obfd))

2.3.1.12 bfd_copy_private_bfd_data
Synopsis
bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd);

Description
Copy private BFD information from the BFD ibfd to the the BFD obfd. Return TRUE on
success, FALSE on error. Possible error returns are:

Chapter 2: BFD Front End 16

e bfd_error_no_memory - Not enough memory exists to create private data for obfd.

#define bfd_copy_private_bfd_data(ibfd, obfd) \
BFD_SEND (obfd, _bfd_copy_private_bfd_data, \
(ibfd, obfd))

2.3.1.13 bfd_merge_private_bfd_data
Synopsis
bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd);
Description
Merge private BFD information from the BFD ibfd to the the output file BFD obfd when
linking. Return TRUE on success, FALSE on error. Possible error returns are:
e bfd_error_no_memory - Not enough memory exists to create private data for obfd.
#define bfd_merge_private_bfd_data(ibfd, obfd) \

BFD_SEND (obfd, _bfd_merge_private_bfd_data, \
(ibfd, obfd))

2.3.1.14 bfd_set_private_flags
Synopsis
bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags);
Description
Set private BFD flag information in the BFD abfd. Return TRUE on success, FALSE on error.
Possible error returns are:
e bfd_error_no_memory - Not enough memory exists to create private data for obfd.

#define bfd_set_private_flags(abfd, flags) \
BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags))

2.3.1.15 Other functions

Description
The following functions exist but have not yet been documented.

#define bfd_sizeof_headers(abfd, info) \
BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info))

#define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
BFD_SEND (abfd, _bfd_find_nearest_line, \
(abfd, sec, syms, off, file, func, line))

#define bfd_find_line(abfd, syms, sym, file, line) \
BFD_SEND (abfd, _bfd_find_line, \
(abfd, syms, sym, file, line))

#define bfd_find_inliner_info(abfd, file, func, line) \
BFD_SEND (abfd, _bfd_find_inliner_info, \
(abfd, file, func, line))

Chapter 2: BFD Front End 17

#define bfd_debug_info_start(abfd) \
BFD_SEND (abfd, _bfd_debug_info_start, (abfd))

#define bfd_debug_info_end(abfd) \
BFD_SEND (abfd, _bfd_debug_info_end, (abfd))

#define bfd_debug_info_accumulate(abfd, section) \
BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))

#define bfd_stat_arch_elt(abfd, stat) \
BFD_SEND (abfd, _bfd_stat_arch_elt, (abfd, stat))

#define bfd_update_armap_timestamp(abfd) \
BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))

#define bfd_set_arch_mach(abfd, arch, mach)\
BFD_SEND (abfd, _bfd_set_arch_mach, (abfd, arch, mach))

#define bfd_relax_section(abfd, section, link_info, again) \
BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))f]

#define bfd_gc_sections(abfd, link_info) \
BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info))

#define bfd_lookup_section_flags(link_info, flag_info) \
BFD_SEND (abfd, _bfd_lookup_section_flags, (link_info, flag_info))|}

#define bfd_merge_sections(abfd, link_info) \
BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info))

#define bfd_is_group_section(abfd, sec) \
BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec))

#define bfd_discard_group(abfd, sec) \
BFD_SEND (abfd, _bfd_discard_group, (abfd, sec))

#define bfd_link_hash_table_create(abfd) \
BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))

#define bfd_link_hash_table_free(abfd, hash) \
BFD_SEND (abfd, _bfd_link_hash_table_free, (hash))

#define bfd_link_add_symbols(abfd, info) \
BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))

#define bfd_link_just_syms(abfd, sec, info) \
BFD_SEND (abfd, _bfd_link_just_syms, (sec, info))

Chapter 2: BFD Front End 18

#define bfd_final_link(abfd, info) \
BFD_SEND (abfd, _bfd_final_link, (abfd, info))

#define bfd_free_cached_info(abfd) \
BFD_SEND (abfd, _bfd_free_cached_info, (abfd))

#define bfd_get_dynamic_symtab_upper_bound(abfd) \
BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))

#define bfd_print_private_bfd_data(abfd, file)\
BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))

#define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))]j

#define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \|j
BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \
dyncount, dynsyms, ret))]]

#define bfd_get_dynamic_reloc_upper_bound(abfd) \
BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))

#define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))]j

extern bfd_byte *bfd_get_relocated_section_contents
(bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *,
bfd_boolean, asymbol *x*);

2.3.1.16 bfd_alt_mach_code
Synopsis
bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternmative);

Description
When more than one machine code number is available for the same machine type, this
function can be used to switch between the preferred one (alternative == 0) and any

others. Currently, only ELF supports this feature, with up to two alternate machine codes.

struct bfd_preserve
{
void *marker;
void *tdata;
flagword flags;
const struct bfd_arch_info *arch_info;
struct bfd_section *sections;
struct bfd_section *section_last;

Chapter 2: BFD Front End 19

unsigned int section_count;
struct bfd_hash_table section_htab;
};

2.3.1.17 bfd_preserve_save
Synopsis
bfd_boolean bfd_preserve_save (bfd *, struct bfd_preserve *);

Description

When testing an object for compatibility with a particular target back-end, the back-end
object_p function needs to set up certain fields in the bfd on successfully recognizing the
object. This typically happens in a piecemeal fashion, with failures possible at many points.
On failure, the bfd is supposed to be restored to its initial state, which is virtually impossible.
However, restoring a subset of the bfd state works in practice. This function stores the subset
and reinitializes the bfd.

2.3.1.18 bfd_preserve_restore
Synopsis
void bfd_preserve_restore (bfd *, struct bfd_preserve *);

Description
This function restores bfd state saved by bfd_preserve_save. If MARKER is non-NULL in
struct bfd_preserve then that block and all subsequently bfd_alloc’d memory is freed.

2.3.1.19 bfd_preserve_finish
Synopsis
void bfd_preserve_finish (bfd *, struct bfd_preserve *);

Description
This function should be called when the bfd state saved by bfd_preserve_save is no longer
needed. ie. when the back-end object_p function returns with success.

2.3.1.20 bfd_emul_get_maxpagesize
Synopsis
bfd_vma bfd_emul_get_maxpagesize (const char *);

Description
Returns the maximum page size, in bytes, as determined by emulation.

Returns
Returns the maximum page size in bytes for ELF, 0 otherwise.

2.3.1.21 bfd_emul_set_maxpagesize
Synopsis
void bfd_emul_set_maxpagesize (const char *, bfd_vma);

Description
For ELF, set the maximum page size for the emulation. It is a no-op for other formats.

Chapter 2: BFD Front End 20

2.3.1.22 bfd_emul_get_commonpagesize
Synopsis
bfd_vma bfd_emul_get_commonpagesize (const char *);

Description
Returns the common page size, in bytes, as determined by emulation.

Returns
Returns the common page size in bytes for ELF, 0 otherwise.

2.3.1.23 bfd_emul_set_commonpagesize
Synopsis
void bfd_emul_set_commonpagesize (const char *, bfd_vma);

Description
For ELF, set the common page size for the emulation. It is a no-op for other formats.

2.3.1.24 bfd_demangle
Synopsis
char *bfd_demangle (bfd *, const char *, int);

Description

Wrapper around cplus_demangle. Strips leading underscores and other such chars that
would otherwise confuse the demangler. If passed a g++ v3 ABI mangled name, returns a
buffer allocated with malloc holding the demangled name. Returns NULL otherwise and
on memory alloc failure.

2.3.1.25 struct bfd_iovec

Description

The struct bfd_iovec contains the internal file I/O class. Each BFD has an instance of
this class and all file I/O is routed through it (it is assumed that the instance implements
all methods listed below).

struct bfd_iovec
{

/* To avoid problems with macros, a "b" rather than "f"
prefix is prepended to each method name. */

/* Attempt to read/write NBYTES on ABFD’s IOSTREAM storing/fetching
bytes starting at PTR. Return the number of bytes actually
transfered (a read past end-of-file returns less than NBYTES),
or -1 (setting bfd_error) if an error occurs. */

file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes);

file_ptr (*bwrite) (struct bfd *abfd, const void *ptr,

file_ptr nbytes);

/* Return the current IOSTREAM file offset, or -1 (setting bfd_error
if an error occurs. x/

file_ptr (*btell) (struct bfd *abfd);

/* For the following, on successful completion a value of O is returned.|]
Otherwise, a value of -1 is returned (and bfd_error is set). */

Chapter 2: BFD Front End 21

int (*bseek) (struct bfd *abfd, file_ptr offset, int whence);

int (*bclose) (struct bfd *abfd);

int (*bflush) (struct bfd *abfd);

int (*bstat) (struct bfd *abfd, struct stat *sb);

/* Mmap a part of the files. ADDR, LEN, PROT, FLAGS and OFFSET are the usuall]
mmap parameter, except that LEN and OFFSET do not need to be page
aligned. Returns (void *)-1 on failure, mmapped address on success.]]
Also write in MAP_ADDR the address of the page aligned buffer and inj}
MAP_LEN the size mapped (a page multiple). Use unmap with MAP_ADDR andl]
MAP_LEN to unmap. */

void *(*bmmap) (struct bfd *abfd, void *addr, bfd_size_type len,

int prot, int flags, file_ptr offset,
void **map_addr, bfd_size_type *map_len);
s

extern const struct bfd_iovec _bfd_memory_iovec;

2.3.1.26 bfd_get_mtime
Synopsis
long bfd_get_mtime (bfd *abfd);

Description
Return the file modification time (as read from the file system, or from the archive header
for archive members).

2.3.1.27 bfd_get_size
Synopsis
file_ptr bfd_get_size (bfd *abfd);

Description
Return the file size (as read from file system) for the file associated with BFD abfd.

The initial motivation for, and use of, this routine is not so we can get the exact size of the
object the BFD applies to, since that might not be generally possible (archive members for
example). It would be ideal if someone could eventually modify it so that such results were
guaranteed.

Instead, we want to ask questions like "is this NNN byte sized object I'm about to try read
from file offset YYY reasonable?" As as example of where we might do this, some object
formats use string tables for which the first sizeof (long) bytes of the table contain the
size of the table itself, including the size bytes. If an application tries to read what it
thinks is one of these string tables, without some way to validate the size, and for some
reason the size is wrong (byte swapping error, wrong location for the string table, etc.), the
only clue is likely to be a read error when it tries to read the table, or a "virtual memory
exhausted" error when it tries to allocate 15 bazillon bytes of space for the 15 bazillon byte
table it is about to read. This function at least allows us to answer the question, "is the
size reasonable?".

2.3.1.28 bfd_mmap
Synopsis

Chapter 2: BFD Front End 22

void *bfd_mmap (bfd *abfd, void *addr, bfd_size_type len,
int prot, int flags, file_ptr offset,
void **map_addr, bfd_size_type *map_len);
Description
Return mmap()ed region of the file, if possible and implemented. LEN and OFFSET do not
need to be page aligned. The page aligned address and length are written to MAP_ADDR
and MAP_LEN.

2.4 Memory Usage

BFD keeps all of its internal structures in obstacks. There is one obstack per open BFD
file, into which the current state is stored. When a BFD is closed, the obstack is deleted,
and so everything which has been allocated by BFD for the closing file is thrown away.

BFD does not free anything created by an application, but pointers into bfd structures
become invalid on a bfd_close; for example, after a bfd_close the vector passed to bfd_
canonicalize_symtab is still around, since it has been allocated by the application, but
the data that it pointed to are lost.

The general rule is to not close a BED until all operations dependent upon data from the
BED have been completed, or all the data from within the file has been copied. To help
with the management of memory, there is a function (bfd_alloc_size) which returns the
number of bytes in obstacks associated with the supplied BFD. This could be used to select
the greediest open BFD, close it to reclaim the memory, perform some operation and reopen
the BED again, to get a fresh copy of the data structures.

2.5 Initialization

2.5.1 Initialization functions
These are the functions that handle initializing a BFD.

2.5.1.1 bfd_init
Synopsis
void bfd_init (void);

Description
This routine must be called before any other BFD function to initialize magical internal
data structures.

2.6 Sections

The raw data contained within a BFD is maintained through the section abstraction. A
single BFD may have any number of sections. It keeps hold of them by pointing to the first;
each one points to the next in the list.

Sections are supported in BFD in section.c.

2.6.1 Section input

When a BFD is opened for reading, the section structures are created and attached to the
BFD.

Chapter 2: BFD Front End 23

Each section has a name which describes the section in the outside world—for example,
a.out would contain at least three sections, called .text, .data and .bss.

Names need not be unique; for example a COFF file may have several sections named .data.

Sometimes a BFD will contain more than the “natural” number of sections. A back end
may attach other sections containing constructor data, or an application may add a section
(using bfd_make_section) to the sections attached to an already open BFD. For example,
the linker creates an extra section COMMON for each input file’s BFD to hold information
about common storage.

The raw data is not necessarily read in when the section descriptor is created. Some targets
may leave the data in place until a bfd_get_section_contents call is made. Other back
ends may read in all the data at once. For example, an S-record file has to be read once to
determine the size of the data. An IEEE-695 file doesn’t contain raw data in sections, but
data and relocation expressions intermixed, so the data area has to be parsed to get out
the data and relocations.

2.6.2 Section output

To write a new object style BFD, the various sections to be written have to be created.
They are attached to the BFD in the same way as input sections; data is written to the
sections using bfd_set_section_contents.

Any program that creates or combines sections (e.g., the assembler and linker) must use the
asection fields output_section and output_offset to indicate the file sections to which
each section must be written. (If the section is being created from scratch, output_section
should probably point to the section itself and output_offset should probably be zero.)

The data to be written comes from input sections attached (via output_section pointers)
to the output sections. The output section structure can be considered a filter for the input
section: the output section determines the vma of the output data and the name, but the
input section determines the offset into the output section of the data to be written.

E.g., to create a section "O", starting at 0x100, 0x123 long, containing two subsections, "A"
at offset 0x0 (i.e., at vma 0x100) and "B" at offset 0x20 (i.e., at vima 0x120) the asection
structures would look like:

section name A"

output_offset 0x00

size 0x20

output_section —-——-———---—- > section name "o"

| vma 0x100

section name "B" | size 0x123

output_offset 0x20 |

size 0x103 |

output_section -------- |

2.6.3 Link orders

The data within a section is stored in a link_order. These are much like the fixups in gas.
The link_order abstraction allows a section to grow and shrink within itself.

A link_order knows how big it is, and which is the next link_order and where the raw data
for it is; it also points to a list of relocations which apply to it.

Chapter 2: BFD Front End 24

The link_order is used by the linker to perform relaxing on final code. The compiler creates
code which is as big as necessary to make it work without relaxing, and the user can select
whether to relax. Sometimes relaxing takes a lot of time. The linker runs around the
relocations to see if any are attached to data which can be shrunk, if so it does it on a
link_order by link_order basis.

2.6.4 typedef asection

Here is the section structure:

typedef struct bfd_section
{
/* The name of the section; the name isn’t a copy, the pointer is
the same as that passed to bfd_make_section. */
const char *name;

/* A unique sequence number. */
int id;

/* Which section in the bfd; 0..n-1 as sections are created in a bfd. x*/Jj
int index;

/* The next section in the list belonging to the BFD, or NULL. x*/
struct bfd_section *next;

/* The previous section in the list belonging to the BFD, or NULL. x*/
struct bfd_section *prev;

/* The field flags contains attributes of the section. Some
flags are read in from the object file, and some are
synthesized from other information. */

flagword flags;

#define SEC_NO_FLAGS 0x000

/* Tells the 0S to allocate space for this section when loading.
This is clear for a section containing debug information only. */
#define SEC_ALLOC 0x001

/* Tells the 0S to load the section from the file when loading.
This is clear for a .bss section. */
#define SEC_LOAD 0x002

/* The section contains data still to be relocated, so there is
some relocation information too. */
#define SEC_RELOC 0x004

Chapter 2: BFD Front End 25

/* A signal to the 0S that the section contains read only data. */
#define SEC_READONLY 0x008

/* The section contains code only. */
#define SEC_CODE 0x010

/* The section contains data only. */
#define SEC_DATA 0x020

/* The section will reside in ROM. */
#tdefine SEC_ROM 0x040

/* The section contains constructor information. This section
type is used by the linker to create lists of constructors and
destructors used by g++. When a back end sees a symbol
which should be used in a constructor list, it creates a new
section for the type of name (e.g., __CTOR_LIST__), attaches
the symbol to it, and builds a relocation. To build the lists
of constructors, all the linker has to do is catenate all the
sections called __CTOR_LIST__ and relocate the data
contained within - exactly the operations it would peform on
standard data. */

#define SEC_CONSTRUCTOR 0x080

/* The section has contents - a data section could be
SEC_ALLOC | SEC_HAS_CONTENTS; a debug section could be
SEC_HAS_CONTENTS */

#define SEC_HAS_CONTENTS 0x100

/* An instruction to the linker to not output the section
even if it has information which would normally be written. */
#define SEC_NEVER_LOAD 0x200

/* The section contains thread local data. */
#define SEC_THREAD_LOCAL 0x400

/* The section has GOT references. This flag is only for the
linker, and is currently only used by the elf32-hppa back end.
It will be set if global offset table references were detected
in this section, which indicate to the linker that the section
contains PIC code, and must be handled specially when doing a
static link. =*/
#define SEC_HAS_GOT_REF 0x800

/* The section contains common symbols (symbols may be defined
multiple times, the value of a symbol is the amount of
space it requires, and the largest symbol value is the one

Chapter 2: BFD Front End 26

used). Most targets have exactly one of these (which we
translate to bfd_com_section_ptr), but ECOFF has two. */
#define SEC_IS_COMMON 0x1000

/* The section contains only debugging information. For
example, this is set for ELF .debug and .stab sectioms.
strip tests this flag to see if a section can be
discarded. */

#define SEC_DEBUGGING 0x2000

/* The contents of this section are held in memory pointed to
by the contents field. This is checked by bfd_get_section_contents,|i
and the data is retrieved from memory if appropriate. */
#define SEC_IN_MEMORY 0x4000

/* The contents of this section are to be excluded by the
linker for executable and shared objects unless those
objects are to be further relocated. */

#define SEC_EXCLUDE 0x8000

/* The contents of this section are to be sorted based on the sum of
the symbol and addend values specified by the associated relocation
entries. Entries without associated relocation entries will be
appended to the end of the section in an unspecified order. */

#define SEC_SORT_ENTRIES 0x10000

/* When linking, duplicate sections of the same name should be
discarded, rather than being combined into a single section as
is usually done. This is similar to how common symbols are
handled. See SEC_LINK_DUPLICATES below. */

#define SEC_LINK_ONCE 0x20000

/* If SEC_LINK_ONCE is set, this bitfield describes how the linker
should handle duplicate sections. */
#define SEC_LINK_DUPLICATES 0xc0000

/* This value for SEC_LINK_DUPLICATES means that duplicate
sections with the same name should simply be discarded. */
#define SEC_LINK_DUPLICATES_DISCARD 0xO

/* This value for SEC_LINK_DUPLICATES means that the linker
should warn if there are any duplicate sections, although
it should still only link one copy. */

#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000

/* This value for SEC_LINK_DUPLICATES means that the linker
should warn if any duplicate sections are a different size. */

Chapter 2: BFD Front End 27

#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000

/* This value for SEC_LINK_DUPLICATES means that the linker
should warn if any duplicate sections contain different
contents. */

#define SEC_LINK_DUPLICATES_SAME_CONTENTS \

(SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)

/* This section was created by the linker as part of dynamic
relocation or other arcane processing. It is skipped when
going through the first-pass output, trusting that someone
else up the line will take care of it later. x*/

#define SEC_LINKER_CREATED 0x100000

/* This section should not be subject to garbage collection.
Also set to inform the linker that this section should not be
listed in the link map as discarded. */

#define SEC_KEEP 0x200000

/* This section contains "short" data, and should be placed
"near" the GP. x/
#define SEC_SMALL_DATA 0x400000

/* Attempt to merge identical entities in the section.
Entity size is given in the entsize field. */
#define SEC_MERGE 0x800000

/* If given with SEC_MERGE, entities to merge are zero terminated
strings where entsize specifies character size instead of fixed
size entries. */

#define SEC_STRINGS 0x1000000

/* This section contains data about section groups. */
#define SEC_GROUP 0x2000000

/* The section is a COFF shared library section. This flag is
only for the linker. If this type of section appears in
the input file, the linker must copy it to the output file
without changing the vma or size. FIXME: Although this
was originally intended to be general, it really is COFF
specific (and the flag was renamed to indicate this). It
might be cleaner to have some more general mechanism to
allow the back end to control what the linker does with
sections. */

#define SEC_COFF_SHARED_LIBRARY 0x4000000

/* This input section should be copied to output in reverse order

Chapter 2: BFD Front End 28

as an array of pointers. This is for ELF linker internal use
only. */
#define SEC_ELF_REVERSE_COPY 0x4000000

/* This section contains data which may be shared with other
executables or shared objects. This is for COFF only. */
#define SEC_COFF_SHARED 0x8000000

/* When a section with this flag is being linked, then if the size of
the input section is less than a page, it should not cross a page
boundary. If the size of the input section is one page or more,
it should be aligned on a page boundary. This is for TI
TMS320C54X only. */

#define SEC_TIC54X_BLOCK 0x10000000

/* Conditionally link this section; do not link if there are no
references found to any symbol in the section. This is for TI
TMS320C54X only. */

#define SEC_TIC54X_CLINK 0x20000000

/* Indicate that section has the no read flag set. This happens
when memory read flag isn’t set. */
#define SEC_COFF_NOREAD 0x40000000

/* End of section flags. */
/* Some internal packed boolean fields. */

/* See the vma field. */
unsigned int user_set_vma : 1;

/* A mark flag used by some of the linker backends. */
unsigned int linker_mark : 1;

/* Another mark flag used by some of the linker backends. Set for
output sections that have an input section. */
unsigned int linker_has_input : 1;

/* Mark flag used by some linker backends for garbage collection. */
unsigned int gc_mark : 1;

/* Section compression status. */
unsigned int compress_status 2
#define COMPRESS_SECTION_NONE 0
1

2

b

#define COMPRESS_SECTION_DONE
#define DECOMPRESS_SECTION_SIZED

Chapter 2: BFD Front End 29

/* The following flags are used by the ELF linker. x*/

/* Mark sections which have been allocated to segments. */
unsigned int segment_mark : 1;

/* Type of sec_info information. */

unsigned int sec_info_type:3;
#define ELF_INFO_TYPE_NONE
#define ELF_INFO_TYPE_STABS
#define ELF_INFO_TYPE_MERGE
#define ELF_INFO_TYPE_EH_FRAME 3
#define ELF_INFO_TYPE_JUST_SYMS 4

N = O

/* Nonzero if this section uses RELA relocations, rather than REL.
unsigned int use_rela_p:1;

/* Bits used by various backends. The generic code doesn’t touch
these fields. */

unsigned int sec_flgO:
unsigned int sec_flgl:
unsigned int sec_flg2:
unsigned int sec_flg3:
unsigned int sec_flgé:
unsigned int sec_flgh:

e
M ..

-

/* End of internal packed boolean fields. */

/* The virtual memory address of the section - where it will be
at run time. The symbols are relocated against this. The
user_set_vma flag is maintained by bfd; if it’s not set, the
backend can assign addresses (for example, in a.out, where
the default address for .data is dependent on the specific
target and various flags). */

bfd_vma vma;

/* The load address of the section - where it would be in a
rom image; really only used for writing section header
information. */

bfd_vma 1ma;

/* The size of the section in octets, as it will be output.
Contains a value even if the section has no contents (e.g., the
size of .bss). */

bfd_size_type size;

/* For input sections, the original size on disk of the section, in

*/

Chapter 2: BFD Front End 30

octets. This field should be set for any section whose size is
changed by linker relaxation. It is required for sections where
the linker relaxation scheme doesn’t cache altered section and
reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
targets), and thus the original size needs to be kept to read the
section multiple times. For output sections, rawsize holds the
section size calculated on a previous linker relaxation pass. */
bfd_size_type rawsize;

/* The compressed size of the section in octets. */
bfd_size_type compressed_size;

/* Relaxation table. */
struct relax_table *relax;

/* Count of used relaxation table entries. */
int relax_count;

/* If this section is going to be output, then this value is the
offset in *bytes* into the output section of the first byte in the
input section (byte ==> smallest addressable unit on the
target). In most cases, if this was going to start at the
100th octet (8-bit quantity) in the output section, this value
would be 100. However, if the target byte size is 16 bits
(bfd_octets_per_byte is "2"), this value would be 50. */

bfd_vma output_offset;

/* The output section through which to map on output. */
struct bfd_section *output_section;

/* The alignment requirement of the section, as an exponent of 2 -
e.g., 3 aligns to 273 (or 8). */
unsigned int alignment_power;

/* If an input section, a pointer to a vector of relocation
records for the data in this section. */
struct reloc_cache_entry *relocation;

/* If an output section, a pointer to a vector of pointers to
relocation records for the data in this section. */

struct reloc_cache_entry **orelocation;

/* The number of relocation records in one of the above. */
unsigned reloc_count;

/* Information below is back end specific - and not always used

Chapter 2: BFD Front End 31

or updated. */

/* File position of section data. */
file_ptr filepos;

/* File position of relocation info. */
file_ptr rel_filepos;

/* File position of line data. */
file_ptr line_filepos;

/* Pointer to data for applications. */
void *userdata;

/* If the SEC_IN_MEMORY flag is set, this points to the actual
contents. */
unsigned char *contents;

/* Attached line number information. */
alent *lineno;

/* Number of line number records. */
unsigned int lineno_count;

/* Entity size for merging purposes. */
unsigned int entsize;

/* Points to the kept section if this section is a link-once section,
and is discarded. */
struct bfd_section *kept_section;

/* When a section is being output, this value changes as more
linenumbers are written out. */
file_ptr moving_line_filepos;

/* What the section number is in the target world. =/
int target_index;

void *used_by_bfd;
/* If this is a constructor section then here is a list of the
relocations created to relocate items within it. x*/

struct relent_chain *constructor_chain;

/* The BFD which owns the section. */
bfd *owner;

Chapter 2: BFD Front End 32

/* INPUT_SECTION_FLAGS if specified in the linker script. x*/
struct flag_info *section_flag_info;

/* A symbol which points at this section only. */
struct bfd_symbol *symbol;
struct bfd_symbol **symbol_ptr_ptr;

/* Early in the link process, map_head and map_tail are used to build
a list of input sections attached to an output section. Later,
output sections use these fields for a list of bfd_link_order
structs. */

union {
struct bfd_link_order *1link_order;
struct bfd_section x*s;

} map_head, map_tail;

} asection;

/* Relax table contains information about instructions which can
be removed by relaxation -- replacing a long address with a
short address. */

struct relax_table {

/* Address where bytes may be deleted. */
bfd_vma addr;

/* Number of bytes to be deleted. */
int size;

};

/* These sections are global, and are managed by BFD. The application
and target back end are not permitted to change the values in
these sections. New code should use the section_ptr macros rather
than referring directly to the const sections. The const sections
may eventually vanish. */

#define BFD_ABS_SECTION_NAME "*ABS*"

#define BFD_UND_SECTION_NAME "*UND*"

#define BFD_COM_SECTION_NAME "*COMx"

#define BFD_IND_SECTION_NAME "*IND*"

/* The absolute section. */

extern asection bfd_abs_section;

#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
/* Pointer to the undefined section. */

extern asection bfd_und_section;

#define bfd_und_section_ptr ((asection *) &bfd_und_section)
#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
/* Pointer to the common section. */

Chapter 2: BFD Front End 33

extern asection bfd_com_section;

#define bfd_com_section_ptr ((asection *) &bfd_com_section)

/* Pointer to the indirect section. */

extern asection bfd_ind_section;

#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)

#define bfd_is_const_section(SEC)

(((SEC) == bfd_abs_section_ptr)
|| ((SEC) == bfd_und_section_ptr)
|| ((SEC) == bfd_com_section_ptr)
|| ((SEC) == bfd_ind_section_ptr))

~

/* Macros to handle insertion and deletion of a bfd’s sections. These
only handle the list pointers, ie. do not adjust section_count,
target_index etc. */

#define bfd_section_list_remove(ABFD, S) \

do \

{ \

asection *_s = S; \

asection *_next = _s->next; \

asection *_prev = _s->prev; \

if (_prev) \

_prev->next = _next; \

else \

(ABFD)->sections = _next; \

if (_next) \

_next->prev = _prev; \

else \

(ABFD)->section_last = _prev; \

} \

while (O)
#define bfd_section_list_append(ABFD, S) \

do
{

asection *_s = S;

bfd *_abfd = ABFD;
_s—->next = NULL;

if (_abfd->section_last)

{
_s—>prev = _abfd->section_last;
_abfd->section_last->next = _s;
}
else
{

_s—>prev = NULL;
_abfd->sections = _s;

PP A L g A A

Chapter 2: BFD Front End

}

}

_abfd->section_last = _s;

while (0)

#define bfd_section_list_prepend(ABFD, S) \

do

{

}

asection *_s = S;

bfd *_abfd = ABFD;

_s—>prev = NULL;
if (_abfd->sections)

{

_s—>next = _abfd->sections;
_abfd->sections->prev =

else

{

_s—->next = NULL;

_abfd->section_last =

}

_abfd->sections =

while (0)

#define bfd_section_list_insert_after(ABFD, A, S) \

do

{

}

asection *_a = A;
asection *_s = S;
asection *_next =

_s—>next
_S—>prev
_a—->next

if (_next)

_next->prev =

else

(ABFD)->section_last = _s;

while (0)

#define bfd_section_list_insert_before(ABFD, B, S) \

do

{

_next;
-a;
_8;

asection *_b = B;
asection *_s = S;

b
asection *_prev =

_s—>prev
_s—->next
_b->prev

_prev;
_b;
_s;

_5;3

_a—->next;

-5

_b->prev;

_5;

_5;

b

= =

P R Gl A A -

P A A A A

PP g A

34

Chapter 2: BFD Front End 35

if (_prev) \

_prev->next = _s; \

else \

(ABFD)->sections = _s; \

} \
while (0)

#define bfd_section_removed_from_list(ABFD, S) \
((8)->next == NULL 7 (ABFD)->section_last != (8) : (8)->next->prev != (S))J

#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX)

/* name, id, index, next, prev, flags, user_set_vma, x/

{ NAME, 1IDX, O, NULL, NULL, FLAGS, O,

/* linker_mark, linker_has_input, gc_mark, decompress_status, */
0, 0, 1, 0,

/* segment_mark, sec_info_type, use_rela_p, */
0, 0, 0,

/* sec_flg0, sec_flgl, sec_flg2, sec_flg3, sec_flg4, sec_flgh, */
0, 0, 0, 0, 0, 0,

/* vma, lma, size, rawsize, compressed_size, relax, relax_count, */

0, 0, 0, 0, 0, 0, 0,

/* output_offset, output_section, alignment_power, */
0, (struct bfd_section *) &SEC, O,

/* relocation, orelocation, reloc_count, filepos, rel_filepos, */
NULL, NULL, 0, 0, 0,

/* line_filepos, userdata, contents, lineno, lineno_count, */
0, NULL, NULL, NULL, 0,

/* entsize, kept_section, moving_line_filepos, */
0, NULL, 0,

/* target_index, used_by_bfd, constructor_chain, owner, */
0, NULL, NULL, NULL,

/* flag_info, x/
NULL,

/* symbol, symbol_ptr_ptr, */

(struct bfd_symbol *) SYM, &SEC.symbol,

PP A L A A O O L L L A A A A A A A A A A A A A A A A A A AV A A v 4

/* map_head, map_tail */

Chapter 2: BFD Front End 36

{ NULL }, { NULL }
+

2.6.5 Section prototypes
These are the functions exported by the section handling part of BFD.

2.6.5.1 bfd_section_list_clear
Synopsis
void bfd_section_list_clear (bfd *);

Description
Clears the section list, and also resets the section count and hash table entries.

2.6.5.2 bfd_get_section_by_name
Synopsis
asection *bfd_get_section_by_name (bfd *abfd, const char *name);

Description

Run through abfd and return the one of the asections whose name matches name, other-
wise NULL. See Section 2.6 [Sections], page 22, for more information.

This should only be used in special cases; the normal way to process all sections of a given
name is to use bfd_map_over_sections and strcmp on the name (or better yet, base it on
the section flags or something else) for each section.

2.6.5.3 bfd_get_section_by_name_if
Synopsis
asection *bfd_get_section_by_name_if

(bfd *abfd,

const char *name,

bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),

void *obj);
Description
Call the provided function func for each section attached to the BFD abfd whose name
matches name, passing obj as an argument. The function will be called as if by

func (abfd, the_section, obj);

It returns the first section for which func returns true, otherwise NULL.

2.6.5.4 bfd_get_unique_section_name
Synopsis
char *bfd_get_unique_section_name
(bfd *abfd, const char *templat, int *count);
Description
Invent a section name that is unique in abfd by tacking a dot and a digit suffix onto the

original templat. If count is non-NULL, then it specifies the first number tried as a suffix
to generate a unique name. The value pointed to by count will be incremented in this case.

Chapter 2: BFD Front End 37

2.6.5.5 bfd_make_section_old_way
Synopsis
asection *bfd_make_section_old_way (bfd *abfd, const char *name);

Description

Create a new empty section called name and attach it to the end of the chain of sections for
the BFD abfd. An attempt to create a section with a name which is already in use returns
its pointer without changing the section chain.

It has the funny name since this is the way it used to be before it was rewritten....
Possible errors are:
e bfd_error_invalid_operation - If output has already started for this BFD.

e bfd_error_no_memory - If memory allocation fails.

2.6.5.6 bfd_make_section_anyway_with_flags
Synopsis

asection *bfd_make_section_anyway_with_flags
(bfd *abfd, const char *name, flagword flags);

Description

Create a new empty section called name and attach it to the end of the chain of sections
for abfd. Create a new section even if there is already a section with that name. Also set
the attributes of the new section to the value flags.

Return NULL and set bfd_error on error; possible errors are:
e bfd_error_invalid_operation - If output has already started for abfd.

e bfd_error_no_memory - If memory allocation fails.

2.6.5.7 bfd_make_section_anyway
Synopsis
asection *bfd_make_section_anyway (bfd *abfd, const char *name);

Description
Create a new empty section called name and attach it to the end of the chain of sections
for abfd. Create a new section even if there is already a section with that name.

Return NULL and set bfd_error on error; possible errors are:
e bfd_error_invalid_operation - If output has already started for abfd.

e bfd_error_no_memory - If memory allocation fails.

2.6.5.8 bfd_make_section_with_flags
Synopsis
asection *bfd_make_section_with_flags
(bfd *, const char *name, flagword flags);

Description

Like bfd_make_section_anyway, but return NULL (without calling bfd_set_error ()) without
changing the section chain if there is already a section named name. Also set the attributes
of the new section to the value flags. If there is an error, return NULL and set bfd_error.

Chapter 2: BFD Front End 38

2.6.5.9 bfd_make_section
Synopsis
asection *bfd_make_section (bfd *, const char *name);

Description

Like bfd_make_section_anyway, but return NULL (without calling bfd_set_error ()) without
changing the section chain if there is already a section named name. If there is an error,
return NULL and set bfd_error.

2.6.5.10 bfd_set_section_flags
Synopsis

bfd_boolean bfd_set_section_flags
(bfd *abfd, asection *sec, flagword flags);

Description
Set the attributes of the section sec in the BFD abfd to the value flags. Return TRUE on
success, FALSE on error. Possible error returns are:

e bfd_error_invalid_operation - The section cannot have one or more of the at-
tributes requested. For example, a .bss section in a.out may not have the SEC_HAS_
CONTENTS field set.

2.6.5.11 bfd_rename_section
Synopsis

void bfd_rename_section
(bfd *abfd, asection *sec, const char *newname) ;

Description
Rename section sec in abfd to newname.

2.6.5.12 bfd_map_over_sections
Synopsis

void bfd_map_over_sections
(bfd *abfd,
void (*func) (bfd *abfd, asection *sect, void *obj),
void *obj);

Description
Call the provided function func for each section attached to the BFD abfd, passing obj as
an argument. The function will be called as if by

func (abfd, the_section, obj);

This is the preferred method for iterating over sections; an alternative would be to use a
loop:
section *p;
for (p = abfd->sections; p != NULL; p = p->next)
func (abfd, p, ...)

Chapter 2: BFD Front End 39

2.6.5.13 bfd_sections_find_if
Synopsis

asection *bfd_sections_find_if
(bfd *abfd,
bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
void *obj);

Description
Call the provided function operation for each section attached to the BFD abfd, passing
obj as an argument. The function will be called as if by

operation (abfd, the_section, obj);

It returns the first section for which operation returns true.

2.6.5.14 bfd_set_section_size
Synopsis

bfd_boolean bfd_set_section_size
(bfd *abfd, asection *sec, bfd_size_type val);

Description
Set sec to the size val. If the operation is ok, then TRUE is returned, else FALSE.

Possible error returns:
e bfd_error_invalid_operation - Writing has started to the BFD, so setting the size
is invalid.
2.6.5.15 bfd_set_section_contents
Synopsis

bfd_boolean bfd_set_section_contents
(bfd *abfd, asection *section, const void *data,
file_ptr offset, bfd_size_type count);

Description
Sets the contents of the section section in BFD abfd to the data starting in memory at
data. The data is written to the output section starting at offset offset for count octets.

Normally TRUE is returned, else FALSE. Possible error returns are:

e bfd_error_no_contents - The output section does not have the SEC_HAS_CONTENTS
attribute, so nothing can be written to it.

e and some more too

This routine is front end to the back end function _bfd_set_section_contents.

2.6.5.16 bfd_get_section_contents
Synopsis

bfd_boolean bfd_get_section_contents
(bfd *abfd, asection *section, void *location, file_ptr offset,
bfd_size_type count);

Chapter 2: BFD Front End 40

Description
Read data from section in BFD abfd into memory starting at location. The data is read at
an offset of offset from the start of the input section, and is read for count bytes.

If the contents of a constructor with the SEC_CONSTRUCTOR flag set are requested or if the
section does not have the SEC_HAS_CONTENTS flag set, then the location is filled with zeroes.
If no errors occur, TRUE is returned, else FALSE.

2.6.5.17 bfd_malloc_and_get_section
Synopsis

bfd_boolean bfd_malloc_and_get_section
(bfd *abfd, asection *section, bfd_byte **buf);

Description
Read all data from section in BFD abfd into a buffer, *buf, malloc’d by this function.

2.6.5.18 bfd_copy_private_section_data
Synopsis

bfd_boolean bfd_copy_private_section_data
(bfd *ibfd, asection *isec, bfd *obfd, asection *osec);

Description
Copy private section information from isec in the BFD ibfd to the section osec in the BFD
obfd. Return TRUE on success, FALSE on error. Possible error returns are:

e bfd_error_no_memory - Not enough memory exists to create private data for osec.

#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
BFD_SEND (obfd, _bfd_copy_private_section_data, \
(ibfd, isection, obfd, osection))

2.6.5.19 bfd_generic_is_group_section
Synopsis
bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);

Description
Returns TRUE if sec is a member of a group.

2.6.5.20 bfd_generic_discard_group
Synopsis
bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);

Description
Remove all members of group from the output.

2.7 Symbols

BFD tries to maintain as much symbol information as it can when it moves information
from file to file. BFD passes information to applications though the asymbol structure.
When the application requests the symbol table, BED reads the table in the native form and
translates parts of it into the internal format. To maintain more than the information passed

Chapter 2: BFD Front End 41

to applications, some targets keep some information “behind the scenes” in a structure only
the particular back end knows about. For example, the coff back end keeps the original
symbol table structure as well as the canonical structure when a BFD is read in. On output,
the coff back end can reconstruct the output symbol table so that no information is lost,
even information unique to coff which BFD doesn’t know or understand. If a coff symbol
table were read, but were written through an a.out back end, all the coff specific information
would be lost. The symbol table of a BFD is not necessarily read in until a canonicalize
request is made. Then the BFD back end fills in a table provided by the application with
pointers to the canonical information. To output symbols, the application provides BFD
with a table of pointers to pointers to asymbols. This allows applications like the linker
to output a symbol as it was read, since the “behind the scenes” information will be still
available.

2.7.1 Reading symbols

There are two stages to reading a symbol table from a BFD: allocating storage, and the
actual reading process. This is an excerpt from an application which reads the symbol table:

long storage_needed;
asymbol **symbol_table;
long number_of_symbols;
long 1i;

storage_needed = bfd_get_symtab_upper_bound (abfd);

if (storage_needed < 0)
FATIL

if (storage_needed == 0)
return;

symbol_table = xmalloc (storage_needed);

number_of_symbols =
bfd_canonicalize_symtab (abfd, symbol_table);

if (number_of_symbols < 0)
FATIL

for (i = 0; i < number_of_symbols; i++)
process_symbol (symbol_tablel[i]);

All storage for the symbols themselves is in an objalloc connected to the BFD; it is freed
when the BFD is closed.

2.7.2 Writing symbols

Writing of a symbol table is automatic when a BFD open for writing is closed. The appli-
cation attaches a vector of pointers to pointers to symbols to the BFD being written, and
fills in the symbol count. The close and cleanup code reads through the table provided and

Chapter 2: BFD Front End 42

performs all the necessary operations. The BFD output code must always be provided with
an “owned” symbol: one which has come from another BFD, or one which has been created
using bfd_make_empty_symbol. Here is an example showing the creation of a symbol table
with only one element:

#include "bfd.h"

int main (void)

{
bfd *abfd;
asymbol *ptrs([2];
asymbol *new;

abfd = bfd_openw ("foo","a.out-sunos-big");
bfd_set_format (abfd, bfd_object);
new = bfd_make_empty_symbol (abfd);

new->name = "dummy_symbol";

new->section = bfd_make_section_old_way (abfd, ".text");
new->flags = BSF_GLOBAL;

new->value = 0x12345;

ptrs[0] = new;
ptrs[i] 0;

bfd_set_symtab (abfd, ptrs, 1);
bfd_close (abfd);
return O;

. /makesym
nm foo
00012345 A dummy_symbol

Many formats cannot represent arbitrary symbol information; for instance, the a.out object
format does not allow an arbitrary number of sections. A symbol pointing to a section which
is not one of .text, .data or .bss cannot be described.

2.7.3 Mini Symbols

Mini symbols provide read-only access to the symbol table. They use less memory space,
but require more time to access. They can be useful for tools like nm or objdump, which
may have to handle symbol tables of extremely large executables.

The bfd_read_minisymbols function will read the symbols into memory in an internal
form. It will return a void * pointer to a block of memory, a symbol count, and the size
of each symbol. The pointer is allocated using malloc, and should be freed by the caller
when it is no longer needed.

The function bfd_minisymbol_to_symbol will take a pointer to a minisymbol, and a pointer
to a structure returned by bfd_make_empty_symbol, and return a asymbol structure. The
return value may or may not be the same as the value from bfd_make_empty_symbol which
was passed in.

Chapter 2: BFD Front End 43

2.7.4 typedef asymbol
An asymbol has the form:

typedef struct bfd_symbol
{

/* A pointer to the BFD which owns the symbol. This information
is necessary so that a back end can work out what additiomal
information (invisible to the application writer) is carried
with the symbol.

This field is *almost* redundant, since you can use section->owner
instead, except that some symbols point to the global sections
bfd_{abs,com,und}_section. This could be fixed by making
these globals be per-bfd (or per-target-flavor). FIXME. x*/

struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */Jj

/* The text of the symbol. The name is left alone, and not copied; the
application may not alter it. */
const char *name;

/* The value of the symbol. This really should be a union of a
numeric value with a pointer, since some flags indicate that
a pointer to another symbol is stored here. */

symvalue value;

/* Attributes of a symbol. %/
#define BSF_NO_FLAGS 0x00

/* The symbol has local scope; static in C. The value
is the offset into the section of the data. */
#define BSF_LOCAL (1 << 0)

/* The symbol has global scope; initialized data in C. The
value is the offset into the section of the data. */
#define BSF_GLOBAL (1 << 1)

/* The symbol has global scope and is exported. The value is
the offset into the section of the data. */
#define BSF_EXPORT BSF_GLOBAL /* No real difference. */

/* A normal C symbol would be one of:
BSF_LOCAL, BSF_COMMON, BSF_UNDEFINED or
BSF_GLOBAL. */

/* The symbol is a debugging record. The value has an arbitrary
meaning, unless BSF_DEBUGGING_RELOC is also set. */

Chapter 2: BFD Front End 44

#define BSF_DEBUGGING (1 << 2)

/* The symbol denotes a function entry point. Used in ELF,
perhaps others someday. */
#define BSF_FUNCTION (1 << 3)

/* Used by the linker. x*/
#define BSF_KEEP (1 << B)
#define BSF_KEEP_G (1 << 6)

/* A weak global symbol, overridable without warnings by
a regular global symbol of the same name. */
#define BSF_WEAK (1 <7

/* This symbol was created to point to a section, e.g. ELF’s
STT_SECTION symbols. */
#define BSF_SECTION_SYM (1 << 8)

/* The symbol used to be a common symbol, but now it is
allocated. */
#define BSF_OLD_COMMON (1 << 9)

/* In some files the type of a symbol sometimes alters its
location in an output file - ie in coff a ISFCN symbol
which is also C_EXT symbol appears where it was
declared and not at the end of a section. This bit is set
by the target BFD part to convey this information. */

#define BSF_NOT_AT_END (1 << 10)

/* Signal that the symbol is the label of constructor section. */
#define BSF_CONSTRUCTOR (1 << 11)

/* Signal that the symbol is a warning symbol. The name is a
warning. The name of the next symbol is the one to warn about;
if a reference is made to a symbol with the same name as the next
symbol, a warning is issued by the linker. x*/

#define BSF_WARNING (1 << 12)

/* Signal that the symbol is indirect. This symbol is an indirect
pointer to the symbol with the same name as the next symbol. */
#define BSF_INDIRECT (1 << 13)

/* BSF_FILE marks symbols that contain a file name. This is used
for ELF STT_FILE symbols. */
#define BSF_FILE (1 << 14)

/* Symbol is from dynamic linking information. */

Chapter 2: BFD Front End

#define BSF_DYNAMIC (1 << 15)

/* The symbol denotes a data object. Used in ELF, and perhaps
others someday. */
#define BSF_OBJECT (1 << 16)

/* This symbol is a debugging symbol. The value is the offset
into the section of the data. BSF_DEBUGGING should be set
as well. =%/

#define BSF_DEBUGGING_RELOC (1 << 17)

/* This symbol is thread local. Used in ELF. */
#define BSF_THREAD_LOCAL (1 << 18)

/* This symbol represents a complex relocation expression,
with the expression tree serialized in the symbol name. */
#define BSF_RELC (1 << 19)

/* This symbol represents a signed complex relocation expression,
with the expression tree serialized in the symbol name. */
#define BSF_SRELC (1 << 20)

/* This symbol was created by bfd_get_synthetic_symtab. */
#define BSF_SYNTHETIC (1 << 21)

45

/* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.

The dynamic linker will compute the value of this symbol by
calling the function that it points to. BSF_FUNCTION must
also be also set. */

#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)

/* This symbol is a globally unique data object. The dynamic linker
will make sure that in the entire process there is just one symbol

with this name and type in use. BSF_0OBJECT must also be set.
#define BSF_GNU_UNIQUE (1 << 23)

flagword flags;

/* A pointer to the section to which this symbol is
relative. This will always be non NULL, there are special
sections for undefined and absolute symbols. */

struct bfd_section *section;

/* Back end special data. */
union
{
void *p;
bfd_vma i;

*/

Chapter 2: BFD Front End 46

}
udata;
}

asymbol;

2.7.5 Symbol handling functions

2.7.5.1 bfd_get_symtab_upper_bound

Description

Return the number of bytes required to store a vector of pointers to asymbols for all the
symbols in the BFD abfd, including a terminal NULL pointer. If there are no symbols in
the BED, then return 0. If an error occurs, return -1.

#define bfd_get_symtab_upper_bound(abfd) \
BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))

2.7.5.2 bfd_is_local_label
Synopsis
bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);

Description
Return TRUE if the given symbol sym in the BFD abfd is a compiler generated local label,
else return FALSE.

2.7.5.3 bfd_is_local_label_name
Synopsis
bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);

Description
Return TRUE if a symbol with the name name in the BFD abfd is a compiler generated
local label, else return FALSE. This just checks whether the name has the form of a local
label.
#define bfd_is_local_label_name(abfd, name) \
BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))

2.7.5.4 bfd_is_target_special_symbol
Synopsis
bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
Description
Return TRUE iff a symbol sym in the BFD abfd is something special to the particular

target represented by the BFD. Such symbols should normally not be mentioned to the
user.

#define bfd_is_target_special_symbol(abfd, sym) \
BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))

Chapter 2: BFD Front End 47

2.7.5.5 bfd_canonicalize_symtab

Description
Read the symbols from the BFD abfd, and fills in the vector location with pointers to the
symbols and a trailing NULL. Return the actual number of symbol pointers, not including
the NULL.

#define bfd_canonicalize_symtab(abfd, location) \
BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))

2.7.5.6 bfd_set_symtab
Synopsis
bfd_boolean bfd_set_symtab
(bfd *abfd, asymbol **location, unsigned int count);

Description
Arrange that when the output BFD abfd is closed, the table location of count pointers to
symbols will be written.

2.7.5.7 bfd_print_symbol_vandf
Synopsis
void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);

Description
Print the value and flags of the symbol supplied to the stream file.

2.7.5.8 bfd_make_empty_symbol
Description
Create a new asymbol structure for the BFD abfd and return a pointer to it.

This routine is necessary because each back end has private information surrounding the
asymbol. Building your own asymbol and pointing to it will not create the private infor-
mation, and will cause problems later on.

#define bfd_make_empty_symbol (abfd) \
BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))

2.7.5.9 _bfd_generic_make_empty_symbol
Synopsis
asymbol *_bfd_generic_make_empty_symbol (bfd *);

Description
Create a new asymbol structure for the BFD abfd and return a pointer to it. Used by core
file routines, binary back-end and anywhere else where no private info is needed.

2.7.5.10 bfd_make_debug_symbol

Description
Create a new asymbol structure for the BFD abfd, to be used as a debugging symbol.
Further details of its use have yet to be worked out.

Chapter 2: BFD Front End 48

#define bfd_make_debug_symbol (abfd,ptr,size) \
BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))

2.7.5.11 bfd_decode_symclass

Description
Return a character corresponding to the symbol class of symbol, or ’?’ for an unknown
class.

Synopsis
int bfd_decode_symclass (asymbol *symbol);

2.7.5.12 bfd_is_undefined_symclass

Description
Returns non-zero if the class symbol returned by bfd_decode_symclass represents an unde-
fined symbol. Returns zero otherwise.

Synopsis
bfd_boolean bfd_is_undefined_symclass (int symclass);

2.7.5.13 bfd_symbol_info

Description
Fill in the basic info about symbol that nm needs. Additional info may be added by the
back-ends after calling this function.

Synopsis
void bfd_symbol_info (asymbol *symbol, symbol_info *ret);

2.7.5.14 bfd_copy_private_symbol_data
Synopsis
bfd_boolean bfd_copy_private_symbol_data
(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);

Description
Copy private symbol information from isym in the BFD ibfd to the symbol osym in the
BFD obfd. Return TRUE on success, FALSE on error. Possible error returns are:

e bfd_error_no_memory - Not enough memory exists to create private data for osec.

#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
(ibfd, isymbol, obfd, osymbol))

2.8 Archives

Description
An archive (or library) is just another BFD. It has a symbol table, although there’s not
much a user program will do with it.

The big difference between an archive BFD and an ordinary BFD is that the archive doesn’t
have sections. Instead it has a chain of BFDs that are considered its contents. These BFDs

Chapter 2: BFD Front End 49

can be manipulated like any other. The BFDs contained in an archive opened for reading
will all be opened for reading. You may put either input or output BFDs into an archive
opened for output; they will be handled correctly when the archive is closed.

Use bfd_openr_next_archived_file to step through the contents of an archive opened
for input. You don’t have to read the entire archive if you don’t want to! Read it until you
find what you want.

Archive contents of output BFDs are chained through the next pointer in a BFD. The
first one is findable through the archive_head slot of the archive. Set it with bfd_set_
archive_head (q.v.). A given BFD may be in only one open output archive at a time.

As expected, the BFD archive code is more general than the archive code of any given
environment. BFD archives may contain files of different formats (e.g., a.out and coff) and
even different architectures. You may even place archives recursively into archives!

This can cause unexpected confusion, since some archive formats are more expressive than
others. For instance, Intel COFF archives can preserve long filenames; SunOS a.out archives
cannot. If you move a file from the first to the second format and back again, the filename
may be truncated. Likewise, different a.out environments have different conventions as
to how they truncate filenames, whether they preserve directory names in filenames, etc.
When interoperating with native tools, be sure your files are homogeneous.

Beware: most of these formats do not react well to the presence of spaces in filenames.
We do the best we can, but can’t always handle this case due to restrictions in the format
of archives. Many Unix utilities are braindead in regards to spaces and such in filenames
anyway, so this shouldn’t be much of a restriction.

Archives are supported in BFD in archive.c.
2.8.1 Archive functions

2.8.1.1 bfd_get_next_mapent
Synopsis

symindex bfd_get_next_mapent
(bfd *abfd, symindex previous, carsym **sym);

Description
Step through archive abfd’s symbol table (if it has one). Successively update sym with the
next symbol’s information, returning that symbol’s (internal) index into the symbol table.

Supply BFD_NO_MORE_SYMBOLS as the previous entry to get the first one; returns BFD_NO_
MORE_SYMBOLS when you've already got the last one.

A carsym is a canonical archive symbol. The only user-visible element is its name, a null-
terminated string.

2.8.1.2 bfd_set_archive_head
Synopsis
bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head);

Description
Set the head of the chain of BFDs contained in the archive output to new_head.

Chapter 2: BFD Front End 50

2.8.1.3 bfd_openr_next_archived_file
Synopsis
bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous);

Description

Provided a BFD, archive, containing an archive and NULL, open an input BFD on the
first contained element and returns that. Subsequent calls should pass the archive and the
previous return value to return a created BFD to the next contained element. NULL is
returned when there are no more.

2.9 File formats

A format is a BFD concept of high level file contents type. The formats supported by BFD
are:

e bfd_object

The BFD may contain data, symbols, relocations and debug info.

e bfd_archive

The BFD contains other BFDs and an optional index.

e bfd_core

The BFD contains the result of an executable core dump.
2.9.1 File format functions

2.9.1.1 bfd_check_format
Synopsis
bfd_boolean bfd_check_format (bfd *abfd, bfd_format format);

Description
Verify if the file attached to the BFD abfd is compatible with the format format (i.e., one
of bfd_object, bfd_archive or bfd_core).

If the BFD has been set to a specific target before the call, only the named target and
format combination is checked. If the target has not been set, or has been set to default,
then all the known target backends is interrogated to determine a match. If the default
target matches, it is used. If not, exactly one target must recognize the file, or an error
results.

The function returns TRUE on success, otherwise FALSE with one of the following error codes:

e bfd_error_invalid_operation - if format is not one of bfd_object, bfd_archive
or bfd_core.

e bfd_error_system_call - if an error occured during a read - even some file mismatches
can cause bfd_error_system_calls.

e file_not_recognised - none of the backends recognised the file format.

e bfd_error_file_ambiguously_recognized - more than one backend recognised the
file format.

Chapter 2: BFD Front End 51

2.9.1.2 bfd_check_format_matches
Synopsis
bfd_boolean bfd_check_format_matches
(bfd *abfd, bfd_format format, char ***matching);

Description

Like bfd_check_format, except when it returns FALSE with bfd_errno set to bfd_error_
file_ambiguously_recognized. In that case, if matching is not NULL, it will be filled
in with a NULL-terminated list of the names of the formats that matched, allocated with
malloc. Then the user may choose a format and try again.

When done with the list that matching points to, the caller should free it.

2.9.1.3 bfd_set_format
Synopsis
bfd_boolean bfd_set_format (bfd *abfd, bfd_format format);

Description

This function sets the file format of the BFD abfd to the format format. If the target set
in the BED does not support the format requested, the format is invalid, or the BFD is not
open for writing, then an error occurs.

2.9.1.4 bfd_format_string
Synopsis
const char *bfd_format_string (bfd_format format);

Description
Return a pointer to a const string invalid, object, archive, core, or unknown, depending
upon the value of format.

2.10 Relocations

BFD maintains relocations in much the same way it maintains symbols: they are left alone
until required, then read in en-masse and translated into an internal form. A common
routine bfd_perform_relocation acts upon the canonical form to do the fixup.

Relocations are maintained on a per section basis, while symbols are maintained on a per
BFD basis.

All that a back end has to do to fit the BFD interface is to create a struct reloc_cache_
entry for each relocation in a particular section, and fill in the right bits of the structures.

2.10.1 typedef arelent

This is the structure of a relocation entry:

typedef enum bfd_reloc_status
{
/* No errors detected. */
bfd_reloc_ok,

Chapter 2: BFD Front End 52

t
{

/* The relocation was performed, but there was an overflow. */
bfd_reloc_overflow,

/* The address to relocate was not within the section supplied. */
bfd_reloc_outofrange,

/* Used by special functions. */
bfd_reloc_continue,

/* Unsupported relocation size requested. */
bfd_reloc_notsupported,

/* Unused. */
bfd_reloc_other,

/* The symbol to relocate against was undefined. */
bfd_reloc_undefined,

/* The relocation was performed, but may not be ok - presently
generated only when linking 1960 coff files with 1960 b.out
symbols. If this type is returned, the error_message argument
to bfd_perform_relocation will be set. */

bfd_reloc_dangerous

b
bfd_reloc_status_type;

ypedef struct reloc_cache_entry

/* A pointer into the canonical table of pointers. */
struct bfd_symbol **sym_ptr_ptr;

/* offset in section. */
bfd_size_type address;

/* addend for relocation value. x*/
bfd_vma addend;

/* Pointer to how to perform the required relocation. */
reloc_howto_type *howto;

¥

arelent;

Description

Here is

a description of each of the fields within an arelent:

Chapter 2: BFD Front End 53

e sym_ptr_ptr

The symbol table pointer points to a pointer to the symbol associated with the relocation
request. It is the pointer into the table returned by the back end’s canonicalize_symtab
action. See Section 2.7 [Symbols], page 40. The symbol is referenced through a pointer
to a pointer so that tools like the linker can fix up all the symbols of the same name by
modifying only one pointer. The relocation routine looks in the symbol and uses the base
of the section the symbol is attached to and the value of the symbol as the initial relocation
offset. If the symbol pointer is zero, then the section provided is looked up.

e address

The address field gives the offset in bytes from the base of the section data which owns
the relocation record to the first byte of relocatable information. The actual data relocated
will be relative to this point; for example, a relocation type which modifies the bottom two
bytes of a four byte word would not touch the first byte pointed to in a big endian world.

e addend

The addend is a value provided by the back end to be added (!) to the relocation offset. Its
interpretation is dependent upon the howto. For example, on the 68k the code:

char fool];
main()

{
return foo[0x12345678];

}
Could be compiled into:

linkw fp,#-4
moveb Q#12345678,d0

extbl dO
unlk fp
rts

This could create a reloc pointing to foo, but leave the offset in the data, something like:
RELOCATION RECORDS FOR [.text]:

offset type value

00000006 32 _foo

00000000 4eb56 fffc ; linkw fp,#-4
00000004 1039 1234 5678 ; moveb Q@#12345678,d0
0000000a 49c0 ; extbl dO

0000000c 4ebe ; unlk fp

0000000e 4e75 ; rts

Using coff and an 88k, some instructions don’t have enough space in them to represent the
full address range, and pointers have to be loaded in two parts. So you’d get something
like:

or.u r13,r0,hi16(_foo+0x12345678)

1d.b r2,r13,1016(_foo+0x12345678)

jmp rl

Chapter 2: BFD Front End 54

This should create two relocs, both pointing to _foo, and with 0x12340000 in their addend
field. The data would consist of:

RELOCATION RECORDS FOR [.text]:

offset type value

00000002 HVRT16 _f00+0x12340000

00000006 LVRT16 _foo+0x12340000

00000000 5da05678 ; or.u r13,r0,0x5678
00000004 1c4d5678 ; 1d.b r2,r13,0x5678
00000008 £400c001 ; jmp ri

The relocation routine digs out the value from the data, adds it to the addend to get the
original offset, and then adds the value of _foo. Note that all 32 bits have to be kept around
somewhere, to cope with carry from bit 15 to bit 16.

One further example is the sparc and the a.out format. The sparc has a similar problem
to the 88k, in that some instructions don’t have room for an entire offset, but on the sparc
the parts are created in odd sized lumps. The designers of the a.out format chose to not
use the data within the section for storing part of the offset; all the offset is kept within the
reloc. Anything in the data should be ignored.

save %sp,-112,%sp

sethi %hi(_foo+0x12345678) ,%g2

ldsb [%g2+%lo(_foo+0x12345678)1,%i0

ret

restore

Both relocs contain a pointer to foo, and the offsets contain junk.
RELOCATION RECORDS FOR [.text]:

offset type value
00000004 HI22 _foo+0x12345678
00000008 LO10 _foo+0x12345678
00000000 9de3bf90 ; save Y%sp,-112,%sp
00000004 05000000 ; sethi %hi(_foo+0),%g2
00000008 £048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
0000000c 81c7e008 ; ret
00000010 81e80000 ; restore
e howto

The howto field can be imagined as a relocation instruction. It is a pointer to a structure
which contains information on what to do with all of the other information in the reloc
record and data section. A back end would normally have a relocation instruction set and
turn relocations into pointers to the correct structure on input - but it would be possible
to create each howto field on demand.

2.10.1.1 enum complain_overflow

Indicates what sort of overflow checking should be done when performing a relocation.

Chapter 2: BFD Front End 55

enum complain_overflow

{

/* Do not complain on overflow. */
complain_overflow_dont,

/* Complain if the value overflows when considered as a signed
number one bit larger than the field. die. A bitfield of N bits
is allowed to represent -2**n to 2**n-1. */

complain_overflow_bitfield,

/* Complain if the value overflows when considered as a signed
number. x/
complain_overflow_signed,

/* Complain if the value overflows when considered as an
unsigned number. */
complain_overflow_unsigned

};

2.10.1.2 reloc_howto_type

The reloc_howto_type is a structure which contains all the information that libbfd needs
to know to tie up a back end’s data.

struct bfd_symbol; /* Forward declaration. x*/

struct reloc_howto_struct

{

/* The type field has mainly a documentary use - the back end can
do what it wants with it, though normally the back end’s
external idea of what a reloc number is stored
in this field. For example, a PC relative word relocation
in a coff environment has the type 023 - because that’s
what the outside world calls a R_PCRWORD reloc. */

unsigned int type;

/* The value the final relocation is shifted right by. This drops
unwanted data from the relocation. */
unsigned int rightshift;

/* The size of the item to be relocated. This is *not* a
power-of-two measure. To get the number of bytes operated
on by a type of relocation, use bfd_get_reloc_size. */

int size;

/* The number of bits in the item to be relocated. This is used
when doing overflow checking. */
unsigned int bitsize;

Chapter 2: BFD Front End 56

/* The relocation is relative to the field being relocated. */
bfd_boolean pc_relative;

/* The bit position of the reloc value in the destination.
The relocated value is left shifted by this amount. */
unsigned int bitpos;

/* What type of overflow error should be checked for when
relocating. */
enum complain_overflow complain_on_overflow;

/* If this field is non null, then the supplied function is
called rather than the normal function. This allows really
strange relocation methods to be accommodated (e.g., 1960 callj
instructions). */

bfd_reloc_status_type (*special_function)

(bfd *, arelent *, struct bfd_symbol *, void *, asection *,
bfd *, char *x*);

/* The textual name of the relocation type. */
char *name;

/* Some formats record a relocation addend in the section contents
rather than with the relocation. For ELF formats this is the
distinction between USE_REL and USE_RELA (though the code checks
for USE_REL == 1/0). The value of this field is TRUE if the
addend is recorded with the section contents; when performing a
partial link (1d -r) the section contents (the data) will be
modified. The value of this field is FALSE if addends are
recorded with the relocation (in arelent.addend); when performing
a partial link the relocation will be modified.

A1l relocations for all ELF USE_RELA targets should set this field

to FALSE (values of TRUE should be looked on with suspicion).

However, the converse is not true: not all relocations of all ELF

USE_REL targets set this field to TRUE. Why this is so is peculiar

to each particular target. For relocs that aren’t used in partial

links (e.g. GOT stuff) it doesn’t matter what this is set to. */
bfd_boolean partial_inplace;

/* src_mask selects the part of the instruction (or data) to be used
in the relocation sum. If the target relocations don’t have an
addend in the reloc, eg. ELF USE_REL, src_mask will normally equal
dst_mask to extract the addend from the section contents. If
relocations do have an addend in the reloc, eg. ELF USE_RELA, this
field should be zero. Non-zero values for ELF USE_RELA targets are
bogus as in those cases the value in the dst_mask part of the

Chapter 2: BFD Front End 57

section contents should be treated as garbage. */
bfd_vma src_mask;

/* dst_mask selects which parts of the instruction (or data) are
replaced with a relocated value. %/
bfd_vma dst_mask;

/* When some formats create PC relative instructions, they leave
the value of the pc of the place being relocated in the offset
slot of the instruction, so that a PC relative relocation can
be made just by adding in an ordinary offset (e.g., sun3 a.out).
Some formats leave the displacement part of an instruction
empty (e.g., m88k bcs); this flag signals the fact. */

bfd_boolean pcrel_offset;

s

2.10.1.3 The HOWTO Macro

Description

The HOWTO define is horrible and will go away.

#define HOWTO(C, R, S, B, P, BI, 0, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \l
{ (unsigned) C, R, S, B, P, BI, 0, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }j

Description
And will be replaced with the totally magic way. But for the moment, we are compatible,
so do it this way.

#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
HOWTO (0, O, SIZE, O, REL, O, complain_overflow_dont, FUNCTION, \
NAME, FALSE, 0, 0, IN)

Description
This is used to fill in an empty howto entry in an array.

#define EMPTY_HOWTO(C) \
HOWTO ((C), 0, 0, O, FALSE, 0, complain_overflow_dont, NULL, \
NULL, FALSE, O, O, FALSE)

Description
Helper routine to turn a symbol into a relocation value.

#define HOWTO_PREPARE(relocation, symbol)
{
if (symbol !'= NULL)
{
if (bfd_is_com_section (symbol->section))
{
relocation = O;

}

P

Chapter 2: BFD Front End 58

else \

{ \
relocation = symbol->value; \

b \

b \

2.10.1.4 bfd_get_reloc_size
Synopsis
unsigned int bfd_get_reloc_size (reloc_howto_type *);

Description
For a reloc_howto_type that operates on a fixed number of bytes, this returns the number
of bytes operated on.

2.10.1.5 arelent_chain

Description
How relocs are tied together in an asection:

typedef struct relent_chain
{

arelent relent;

struct relent_chain *next;

¥

arelent_chain;

2.10.1.6 bfd_check_overflow
Synopsis
bfd_reloc_status_type bfd_check_overflow

(enum complain_overflow how,

unsigned int bitsize,

unsigned int rightshift,

unsigned int addrsize,

bfd_vma relocation);
Description
Perform overflow checking on relocation which has bitsize significant bits and will be shifted
right by rightshift bits, on a machine with addresses containing addrsize significant bits.
The result is either of bfd_reloc_ok or bfd_reloc_overflow.

2.10.1.7 bfd_perform_relocation
Synopsis
bfd_reloc_status_type bfd_perform_relocation
(bfd *abfd,
arelent *reloc_entry,
void *data,

Chapter 2: BFD Front End 59

asection *input_section,
bfd *output_bfd,
char **error_message);

Description

If output_bfd is supplied to this function, the generated image will be relocatable; the
relocations are copied to the output file after they have been changed to reflect the new
state of the world. There are two ways of reflecting the results of partial linkage in an output
file: by modifying the output data in place, and by modifying the relocation record. Some
native formats (e.g., basic a.out and basic coff) have no way of specifying an addend in the
relocation type, so the addend has to go in the output data. This is no big deal since in
these formats the output data slot will always be big enough for the addend. Complex reloc
types with addends were invented to solve just this problem. The error_message argument
is set to an error message if this return bfd_reloc_dangerous.

2.10.1.8 bfd_install_relocation
Synopsis
bfd_reloc_status_type bfd_install_relocation
(bfd *abfd,
arelent *reloc_entry,
void *data, bfd_vma data_start,
asection *input_section,
char **error_message) ;

Description

This looks remarkably like bfd_perform_relocation, except it does not expect that the
section contents have been filled in. l.e., it’s suitable for use when creating, rather than
applying a relocation.

For now, this function should be considered reserved for the assembler.

2.10.2 The howto manager

When an application wants to create a relocation, but doesn’t know what the target machine
might call it, it can find out by using this bit of code.

2.10.2.1 bfd_reloc_code_type

Description

The insides of a reloc code. The idea is that, eventually, there will be one enumerator for
every type of relocation we ever do. Pass one of these values to bfd_reloc_type_lookup,
and it’ll return a howto pointer.

This does mean that the application must determine the correct enumerator value; you
can’t get a howto pointer from a random set of attributes.

Here are the possible values for enum bfd_reloc_code_real:

BFD_RELOC_64
BFD_RELOC_32
BFD_RELOC_26
BFD_RELOC_24
BFD_RELOC_16

Chapter 2: BFD Front End

BFD_RELOC_14
BFD_RELOC_8

Basic absolute relocations of N bits.

BFD_RELOC_64_PCREL
BFD_RELOC_32_PCREL
BFD_RELOC_24_PCREL
BFD_RELOC_16_PCREL
BFD_RELOC_12_PCREL
BFD_RELOC_8_PCREL

PC-relative relocations. Sometimes these are relative to the address of the relocation
itself; sometimes they are relative to the start of the section containing the relocation.
It depends on the specific target.

The 24-bit relocation is used in some Intel 960 configurations.

BFD_RELOC_32_SECREL

Section relative relocations. Some targets need this for DWARF2.

BFD_RELOC_32_GOT_PCREL
BFD_RELOC_16_GOT_PCREL
BFD_RELOC_8_GOT_PCREL
BFD_RELOC_32_GOTOFF
BFD_RELOC_16_GOTOFF
BFD_RELOC_LO016_GOTOFF
BFD_RELOC_HI16_GOTOFF
BFD_RELOC_HI16_S_GOTOFF
BFD_RELOC_8_GOTOFF
BFD_RELOC_64_PLT_PCREL
BFD_RELOC_32_PLT_PCREL
BFD_RELOC_24_PLT_PCREL
BFD_RELOC_16_PLT_PCREL
BFD_RELOC_8_PLT_PCREL
BFD_RELOC_64_PLTOFF
BFD_RELOC_32_PLTOFF
BFD_RELOC_16_PLTOFF
BFD_RELOC_LO16_PLTOFF
BFD_RELOC_HI16_PLTOFF
BFD_RELOC_HI16_S_PLTOFF
BFD_RELOC_8_PLTOFF
For ELF.

BFD_RELOC_68K_GLOB_DAT
BFD_RELOC_68K_JMP_SLOT
BFD_RELOC_68K_RELATIVE
BFD_RELOC_68K_TLS_GD32
BFD_RELOC_68K_TLS_GD16
BFD_RELOC_68K_TLS_GD8
BFD_RELOC_68K_TLS_LDM32

Chapter 2: BFD Front End 61

BFD_RELOC_68K_TLS_LDM16
BFD_RELOC_68K_TLS_LDM8
BFD_RELOC_68K_TLS_LD032
BFD_RELOC_68K_TLS_LD016
BFD_RELOC_68K_TLS_LD08
BFD_RELOC_68K_TLS_IE32
BFD_RELOC_68K_TLS_IE16
BFD_RELOC_68K_TLS_IES8
BFD_RELOC_68K_TLS_LE32
BFD_RELOC_68K_TLS_LE16
BFD_RELOC_68K_TLS_LES8
Relocations used by 68K ELF.

BFD_RELOC_32_BASEREL
BFD_RELOC_16_BASEREL
BFD_RELOC_L016_BASEREL
BFD_RELOC_HI16_BASEREL
BFD_RELOC_HI16_S_BASEREL
BFD_RELOC_8_BASEREL
BFD_RELOC_RVA

Linkage-table relative.

BFD_RELOC_8_FFnn
Absolute 8-bit relocation, but used to form an address like OxFFnn.

BFD_RELQOC_32_PCREL_S2

BFD_RELQOC_16_PCREL_S2

BFD_RELOC_23_PCREL_S2
These PC-relative relocations are stored as word displacements — i.e., byte displace-
ments shifted right two bits. The 30-bit word displacement (<<32_PCREL_S2>> —
32 bits, shifted 2) is used on the SPARC. (SPARC tools generally refer to this as
<<WDISP30>>.) The signed 16-bit displacement is used on the MIPS, and the 23-bit
displacement is used on the Alpha.

BFD_RELOC_HI22

BFD_RELOC_L010
High 22 bits and low 10 bits of 32-bit value, placed into lower bits of the target word.
These are used on the SPARC.

BFD_RELOC_GPREL16

BFD_RELOC_GPREL32
For systems that allocate a Global Pointer register, these are displacements off that
register. These relocation types are handled specially, because the value the register
will have is decided relatively late.

BFD_RELOC_I960_CALLJ
Reloc types used for i960/b.out.

BFD_RELOC_NONE
BFD_RELOC_SPARC_WDISP22

Chapter 2: BFD Front End

BFD_RELOC_SPARC22
BFD_RELOC_SPARC13
BFD_RELOC_SPARC_GOT10
BFD_RELOC_SPARC_GOT13
BFD_RELOC_SPARC_GOT22
BFD_RELOC_SPARC_PC10
BFD_RELOC_SPARC_PC22
BFD_RELOC_SPARC_WPLT30
BFD_RELOC_SPARC_COPY
BFD_RELOC_SPARC_GLOB_DAT
BFD_RELOC_SPARC_JMP_SLOT
BFD_RELOC_SPARC_RELATIVE
BFD_RELOC_SPARC_UA16
BFD_RELOC_SPARC_UA32
BFD_RELOC_SPARC_UA64
BFD_RELOC_SPARC_GOTDATA_HIX22
BFD_RELOC_SPARC_GOTDATA_LOX10
BFD_RELOC_SPARC_GOTDATA_OP_HIX22
BFD_RELOC_SPARC_GOTDATA_OP_L0OX10
BFD_RELOC_SPARC_GOTDATA_QOP
BFD_RELOC_SPARC_JMP_IREL
BFD_RELOC_SPARC_IRELATIVE

62

SPARC ELF relocations. There is probably some overlap with other relocation types

already defined.

BFD_RELOC_SPARC_BASE13
BFD_RELOC_SPARC_BASE22

I think these are specific to SPARC a.out (e.g., Sun 4).

BFD_RELOC_SPARC_64
BFD_RELOC_SPARC_10
BFD_RELOC_SPARC_11
BFD_RELOC_SPARC_OLO10
BFD_RELOC_SPARC_HH22
BFD_RELOC_SPARC_HM10
BFD_RELOC_SPARC_LM22
BFD_RELOC_SPARC_PC_HH22
BFD_RELOC_SPARC_PC_HM10
BFD_RELOC_SPARC_PC_LM22
BFD_RELOC_SPARC_WDISP16
BFD_RELOC_SPARC_WDISP19
BFD_RELOC_SPARC_7
BFD_RELOC_SPARC_6
BFD_RELOC_SPARC_5
BFD_RELOC_SPARC_DISP64
BFD_RELOC_SPARC_PLT32
BFD_RELOC_SPARC_PLT64
BFD_RELOC_SPARC_HIX22

Chapter 2: BFD Front End

BFD_RELOC_SPARC_L0X10
BFD_RELOC_SPARC_H44
BFD_RELOC_SPARC_M44
BFD_RELOC_SPARC_L44
BFD_RELOC_SPARC_REGISTER
SPARC64 relocations

BFD_RELOC_SPARC_REV32
SPARC little endian relocation

BFD_RELOC_SPARC_TLS_GD_HI22
BFD_RELOC_SPARC_TLS_GD_L010
BFD_RELOC_SPARC_TLS_GD_ADD
BFD_RELOC_SPARC_TLS_GD_CALL
BFD_RELOC_SPARC_TLS_LDM_HI22
BFD_RELOC_SPARC_TLS_LDM_L010
BFD_RELOC_SPARC_TLS_LDM_ADD
BFD_RELOC_SPARC_TLS_LDM_CALL
BFD_RELOC_SPARC_TLS_LDO_HIX22
BFD_RELOC_SPARC_TLS_LDO_LOX10
BFD_RELOC_SPARC_TLS_LDO_ADD
BFD_RELOC_SPARC_TLS_TIE_HI22
BFD_RELOC_SPARC_TLS_TIE_LO10
BFD_RELOC_SPARC_TLS_IE_LD
BFD_RELOC_SPARC_TLS_TIE_LDX
BFD_RELOC_SPARC_TLS_TIE_ADD
BFD_RELOC_SPARC_TLS_LE_HIX22
BFD_RELOC_SPARC_TLS_LE_LOX10
BFD_RELOC_SPARC_TLS_DTPMOD32
BFD_RELOC_SPARC_TLS_DTPMOD64
BFD_RELOC_SPARC_TLS_DTPOFF32
BFD_RELOC_SPARC_TLS_DTPOFF64
BFD_RELOC_SPARC_TLS_TPOFF32
BFD_RELOC_SPARC_TLS_TPOFF64
SPARC TLS relocations

BFD_RELOC_SPU_IMM7
BFD_RELOC_SPU_IMMS8
BFD_RELOC_SPU_IMM10
BFD_RELOC_SPU_IMM10W
BFD_RELOC_SPU_IMM16
BFD_RELOC_SPU_IMM16W
BFD_RELOC_SPU_IMM18
BFD_RELOC_SPU_PCREL9a
BFD_RELOC_SPU_PCREL9b
BFD_RELOC_SPU_PCREL16
BFD_RELOC_SPU_LO16
BFD_RELOC_SPU_HTI16

63

Chapter 2: BFD Front End 64

BFD_RELOC_SPU_PPU32

BFD_RELOC_SPU_PPU64

BFD_RELOC_SPU_ADD_PIC
SPU Relocations.

BFD_RELOC_ALPHA_GPDISP_HI16
Alpha ECOFF and ELF relocations. Some of these treat the symbol or "addend" in
some special way. For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored
when writing; when reading, it will be the absolute section symbol. The addend is
the displacement in bytes of the "lda" instruction from the "ldah" instruction (which
is at the address of this reloc).

BFD_RELOC_ALPHA_GPDISP_LO16
For GPDISP_LO16 ("ignore") relocations, the symbol is handled as with
GPDISP_HI16 relocs. The addend is ignored when writing the relocations out, and
is filled in with the file’s GP value on reading, for convenience.

BFD_RELOC_ALPHA_GPDISP
The ELF GPDISP relocation is exactly the same as the GPDISP_HI16 relocation
except that there is no accompanying GPDISP_LO16 relocation.

BFD_RELOC_ALPHA_LITERAL

BFD_RELOC_ALPHA_ELF_LITERAL

BFD_RELOC_ALPHA_LITUSE
The Alpha LITERAL/LITUSE relocs are produced by a symbol reference; the as-
sembler turns it into a LDQ instruction to load the address of the symbol, and then
fills in a register in the real instruction.

The LITERAL reloc, at the LDQ instruction, refers to the .lita section symbol. The
addend is ignored when writing, but is filled in with the file’s GP value on reading,
for convenience, as with the GPDISP_LO16 reloc.

The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
It should refer to the symbol to be referenced, as with 16_GOTOFF, but it generates
output not based on the position within the .got section, but relative to the GP value
chosen for the file during the final link stage.

The LITUSE reloc, on the instruction using the loaded address, gives information to
the linker that it might be able to use to optimize away some literal section refer-
ences. The symbol is ignored (read as the absolute section symbol), and the "addend"
indicates the type of instruction using the register: 1 - "memory" fmt insn 2 - byte-
manipulation (byte offset reg) 3 - jsr (target of branch)

BFD_RELOC_ALPHA_HINT
The HINT relocation indicates a value that should be filled into the "hint" field of a
jmp/jsr/ret instruction, for possible branch- prediction logic which may be provided
0N SOME Processors.

BFD_RELOC_ALPHA_LINKAGE
The LINKAGE relocation outputs a linkage pair in the object file, which is filled by
the linker.

Chapter 2: BFD Front End 65

BFD_RELOC_ALPHA_CODEADDR
The CODEADDR relocation outputs a STO_CA in the object file, which is filled by
the linker.

BFD_RELOC_ALPHA_GPREL_HI16
BFD_RELOC_ALPHA_GPREL_LO16
The GPREL_HI/LO relocations together form a 32-bit offset from the GP register.

BFD_RELOC_ALPHA_BRSGP
Like BFD_RELOC_23_PCREL_S2, except that the source and target must share a
common GP, and the target address is adjusted for STO_ALPHA_STD_GPLOAD.

BFD_RELOC_ALPHA_NOP
The NOP relocation outputs a NOP if the longword displacement between two pro-
cedure entry points is < 2721.

BFD_RELOC_ALPHA_BSR
The BSR relocation outputs a BSR if the longword displacement between two proce-
dure entry points is < 2721.

BFD_RELOC_ALPHA_LDA
The LDA relocation outputs a LDA if the longword displacement between two pro-
cedure entry points is < 2716.

BFD_RELOC_ALPHA_BOH
The BOH relocation outputs a BSR if the longword displacement between two pro-
cedure entry points is < 2721, or else a hint.

BFD_RELOC_ALPHA_TLSGD
BFD_RELOC_ALPHA_TLSLDM
BFD_RELOC_ALPHA_DTPMOD64
BFD_RELOC_ALPHA_GOTDTPREL16
BFD_RELOC_ALPHA_DTPREL64
BFD_RELOC_ALPHA_DTPREL_HI16
BFD_RELOC_ALPHA_DTPREL_LO016
BFD_RELOC_ALPHA_DTPREL16
BFD_RELOC_ALPHA_GOTTPREL16
BFD_RELOC_ALPHA_TPREL64
BFD_RELOC_ALPHA_TPREL_HI16
BFD_RELOC_ALPHA_TPREL_LO16
BFD_RELOC_ALPHA_TPREL16
Alpha thread-local storage relocations.

BFD_RELOC_MIPS_JMP
BFD_RELOC_MICROMIPS_JMP
The MIPS jump instruction.

BFD_RELOC_MIPS16_JMP
The MIPS16 jump instruction.

Chapter 2: BFD Front End 66

BFD_RELOC_MIPS16_GPREL
MIPS16 GP relative reloc.

BFD_RELOC_HI16
High 16 bits of 32-bit value; simple reloc.

BFD_RELOC_HI16_S
High 16 bits of 32-bit value but the low 16 bits will be sign extended and added to
form the final result. If the low 16 bits form a negative number, we need to add one
to the high value to compensate for the borrow when the low bits are added.

BFD_RELOC_LO16
Low 16 bits.

BFD_RELOC_HI16_PCREL
High 16 bits of 32-bit pc-relative value

BFD_RELOC_HI16_S_PCREL
High 16 bits of 32-bit pc-relative value, adjusted

BFD_RELOC_L016_PCREL
Low 16 bits of pc-relative value

BFD_RELOC_MIPS16_GOT16

BFD_RELOC_MIPS16_CALL16
Equivalent of BFD_RELOC_MIPS_*, but with the MIPS16 layout of 16-bit immediate
fields

BFD_RELOC_MIPS16_HI16
MIPS16 high 16 bits of 32-bit value.

BFD_RELOC_MIPS16_HI16_S
MIPS16 high 16 bits of 32-bit value but the low 16 bits will be sign extended and
added to form the final result. If the low 16 bits form a negative number, we need to
add one to the high value to compensate for the borrow when the low bits are added.

BFD_RELOC_MIPS16_1.016
MIPS16 low 16 bits.

BFD_RELOC_MIPS_LITERAL
BFD_RELOC_MICROMIPS_LITERAL
Relocation against a MIPS literal section.

BFD_RELOC_MICROMIPS_7_PCREL_S1

BFD_RELOC_MICROMIPS_10_PCREL_S1

BFD_RELOC_MICROMIPS_16_PCREL_S1
microMIPS PC-relative relocations.

BFD_RELOC_MICROMIPS_GPREL16
BFD_RELOC_MICROMIPS_HI16
BFD_RELOC_MICROMIPS_HI16_S
BFD_RELOC_MICROMIPS_L016

microMIPS versions of generic BED relocs.

Chapter 2: BFD Front End

BFD_RELOC_MIPS_GOT16
BFD_RELOC_MICROMIPS_GOT16
BFD_RELOC_MIPS_CALL16
BFD_RELOC_MICROMIPS_CALL16
BFD_RELOC_MIPS_GOT_HI16
BFD_RELOC_MICROMIPS_GOT_HI16
BFD_RELOC_MIPS_GOT_LO16
BFD_RELOC_MICROMIPS_GOT_LO16
BFD_RELOC_MIPS_CALL_HI16
BFD_RELOC_MICROMIPS_CALL_HI16
BFD_RELOC_MIPS_CALL_L016
BFD_RELOC_MICROMIPS_CALL_LO16
BFD_RELOC_MIPS_SUB
BFD_RELOC_MICROMIPS_SUB
BFD_RELOC_MIPS_GOT_PAGE
BFD_RELOC_MICROMIPS_GOT_PAGE
BFD_RELOC_MIPS_GOT_OFST
BFD_RELOC_MICROMIPS_GOT_OFST
BFD_RELOC_MIPS_GOT_DISP
BFD_RELOC_MICROMIPS_GOT_DISP
BFD_RELOC_MIPS_SHIFT5
BFD_RELOC_MIPS_SHIFT6
BFD_RELOC_MIPS_INSERT_A
BFD_RELOC_MIPS_INSERT_B
BFD_RELOC_MIPS_DELETE
BFD_RELOC_MIPS_HIGHEST
BFD_RELOC_MICROMIPS_HIGHEST
BFD_RELOC_MIPS_HIGHER
BFD_RELOC_MICROMIPS_HIGHER
BFD_RELOC_MIPS_SCN_DISP
BFD_RELOC_MICROMIPS_SCN_DISP
BFD_RELOC_MIPS_REL16
BFD_RELOC_MIPS_RELGOT
BFD_RELOC_MIPS_JALR
BFD_RELOC_MICROMIPS_JALR
BFD_RELOC_MIPS_TLS_DTPMOD32
BFD_RELOC_MIPS_TLS_DTPREL32
BFD_RELOC_MIPS_TLS_DTPMOD64
BFD_RELOC_MIPS_TLS_DTPREL64
BFD_RELOC_MIPS_TLS_GD
BFD_RELOC_MICROMIPS_TLS_GD
BFD_RELOC_MIPS_TLS_LDM
BFD_RELOC_MICROMIPS_TLS_LDM
BFD_RELOC_MIPS_TLS_DTPREL_HI16
BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16
BFD_RELOC_MIPS_TLS_DTPREL_LO16
BFD_RELOC_MICROMIPS_TLS_DTPREL_L0O16

67

Chapter 2: BFD Front End

BFD_RELOC_MIPS_TLS_GOTTPREL
BFD_RELOC_MICROMIPS_TLS_GOTTPREL
BFD_RELOC_MIPS_TLS_TPREL32
BFD_RELOC_MIPS_TLS_TPREL64
BFD_RELOC_MIPS_TLS_TPREL_HI16
BFD_RELOC_MICROMIPS_TLS_TPREL_HI16
BFD_RELOC_MIPS_TLS_TPREL_LO16
BFD_RELOC_MICROMIPS_TLS_TPREL_LO16
MIPS ELF relocations.

BFD_RELOC_MIPS_COPY
BFD_RELOC_MIPS_JUMP_SLOT
MIPS ELF relocations (VxWorks and PLT extensions).

BFD_RELOC_MOXIE_10_PCREL
Moxie ELF relocations.

BFD_RELOC_FRV_LABEL16
BFD_RELOC_FRV_LABEL24
BFD_RELOC_FRV_LO16
BFD_RELOC_FRV_HI16
BFD_RELOC_FRV_GPREL12
BFD_RELOC_FRV_GPRELU12
BFD_RELOC_FRV_GPREL32
BFD_RELOC_FRV_GPRELHI
BFD_RELOC_FRV_GPRELLO
BFD_RELOC_FRV_GOT12
BFD_RELOC_FRV_GOTHI
BFD_RELOC_FRV_GOTLO
BFD_RELOC_FRV_FUNCDESC
BFD_RELOC_FRV_FUNCDESC_GOT12
BFD_RELOC_FRV_FUNCDESC_GOTHI
BFD_RELOC_FRV_FUNCDESC_GOTLO
BFD_RELOC_FRV_FUNCDESC_VALUE
BFD_RELOC_FRV_FUNCDESC_GOTOFF12
BFD_RELOC_FRV_FUNCDESC_GOTOFFHI
BFD_RELOC_FRV_FUNCDESC_GOTOFFLO
BFD_RELOC_FRV_GOTOFF12
BFD_RELOC_FRV_GOTOFFHI
BFD_RELOC_FRV_GOTOFFLO
BFD_RELOC_FRV_GETTLSOFF
BFD_RELOC_FRV_TLSDESC_VALUE
BFD_RELOC_FRV_GOTTLSDESC12
BFD_RELOC_FRV_GOTTLSDESCHI
BFD_RELOC_FRV_GOTTLSDESCLO
BFD_RELOC_FRV_TLSMOFF12
BFD_RELOC_FRV_TLSMOFFHI
BFD_RELOC_FRV_TLSMOFFLO

Chapter 2: BFD Front End 69

BFD_RELOC_FRV_GOTTLSOFF12
BFD_RELOC_FRV_GOTTLSOFFHI
BFD_RELOC_FRV_GOTTLSOFFLO
BFD_RELOC_FRV_TLSOFF
BFD_RELOC_FRV_TLSDESC_RELAX
BFD_RELOC_FRV_GETTLSOFF_RELAX
BFD_RELOC_FRV_TLSOFF_RELAX
BFD_RELOC_FRV_TLSMOFF
Fujitsu Frv Relocations.

BFD_RELOC_MN10300_GOTOFF24
This is a 24bit GOT-relative reloc for the mn10300.

BFD_RELOC_MN10300_GOT32
This is a 32bit GOT-relative reloc for the mn10300, offset by two bytes in the instruc-
tion.

BFD_RELOC_MN10300_G0OT24
This is a 24bit GOT-relative reloc for the mn10300, offset by two bytes in the instruc-
tion.

BFD_RELOC_MN10300_GOT16
This is a 16bit GOT-relative reloc for the mn10300, offset by two bytes in the instruc-
tion.

BFD_RELQOC_MN10300_COPY
Copy symbol at runtime.

BFD_RELOC_MN10300_GLOB_DAT
Create GOT entry.

BFD_RELOC_MN10300_JMP_SLOT
Create PLT entry.

BFD_RELOC_MN10300_RELATIVE
Adjust by program base.

BFD_RELOC_MN10300_SYM_DIFF
Together with another reloc targeted at the same location, allows for a value that is
the difference of two symbols in the same section.

BFD_RELOC_MN10300_ALIGN
The addend of this reloc is an alignment power that must be honoured at the offset’s
location, regardless of linker relaxation.

BFD_RELOC_386_G0OT32
BFD_RELOC_386_PLT32
BFD_RELOC_386_COPY
BFD_RELOC_386_GLOB_DAT
BFD_RELOC_386_JUMP_SLOT
BFD_RELOC_386_RELATIVE

Chapter 2: BFD Front End

BFD_RELOC_386_GOTOFF
BFD_RELOC_386_GOTPC
BFD_RELOC_386_TLS_TPOFF
BFD_RELOC_386_TLS_IE
BFD_RELOC_386_TLS_GOTIE
BFD_RELOC_386_TLS_LE
BFD_RELOC_386_TLS_GD
BFD_RELOC_386_TLS_LDM
BFD_RELOC_386_TLS_LDO_32
BFD_RELOC_386_TLS_IE_32
BFD_RELOC_386_TLS_LE_32
BFD_RELOC_386_TLS_DTPMOD32
BFD_RELOC_386_TLS_DTPOFF32
BFD_RELOC_386_TLS_TPOFF32
BFD_RELOC_386_TLS_GOTDESC
BFD_RELOC_386_TLS_DESC_CALL
BFD_RELOC_386_TLS_DESC
BFD_RELOC_386_IRELATIVE
1386 /elf relocations

BFD_RELOC_X86_64_G0T32
BFD_RELOC_X86_64_PLT32
BFD_RELOC_X86_64_COPY
BFD_RELOC_X86_64_GLOB_DAT
BFD_RELOC_X86_64_JUMP_SLOT
BFD_RELOC_X86_64_RELATIVE
BFD_RELOC_X86_64_GOTPCREL
BFD_RELOC_X86_64_32S
BFD_RELOC_X86_64_DTPMOD64
BFD_RELOC_X86_64_DTPOFF64
BFD_RELOC_X86_64_TPOFF64
BFD_RELOC_X86_64_TLSGD
BFD_RELOC_X86_64_TLSLD
BFD_RELOC_X86_64_DTPOFF32
BFD_RELOC_X86_64_GOTTPOFF
BFD_RELOC_X86_64_TPOFF32
BFD_RELOC_X86_64_GOTOFF64
BFD_RELOC_X86_64_GOTPC32
BFD_RELOC_X86_64_G0T64
BFD_RELOC_X86_64_GOTPCREL64
BFD_RELOC_X86_64_GOTPC64
BFD_RELOC_X86_64_GOTPLT64
BFD_RELOC_X86_64_PLTOFF64
BFD_RELOC_X86_64_GOTPC32_TLSDESC
BFD_RELOC_X86_64_TLSDESC_CALL
BFD_RELOC_X86_64_TLSDESC

70

Chapter 2: BFD Front End

BFD_RELOC_X86_64_IRELATIVE
x86-64/elf relocations

BFD_RELOC_NS32K_IMM_8
BFD_RELOC_NS32K_IMM_16
BFD_RELOC_NS32K_IMM_32
BFD_RELOC_NS32K_IMM_8_PCREL
BFD_RELOC_NS32K_IMM_16_PCREL
BFD_RELOC_NS32K_IMM_32_PCREL
BFD_RELOC_NS32K_DISP_8
BFD_RELOC_NS32K_DISP_16
BFD_RELOC_NS32K_DISP_32
BFD_RELOC_NS32K_DISP_8_PCREL
BFD_RELOC_NS32K_DISP_16_PCREL
BFD_RELOC_NS32K_DISP_32_PCREL
ns32k relocations

BFD_RELOC_PDP11_DISP_8_PCREL
BFD_RELOC_PDP11_DISP_6_PCREL
PDP11 relocations

BFD_RELOC_PJ_CODE_HI16
BFD_RELOC_PJ_CODE_LO16
BFD_RELOC_PJ_CODE_DIR16
BFD_RELOC_PJ_CODE_DIR32
BFD_RELOC_PJ_CODE_REL16
BFD_RELOC_PJ_CODE_REL32

Picojava relocs. Not all of these appear in object files.

BFD_RELOC_PPC_B26
BFD_RELOC_PPC_BA26
BFD_RELOC_PPC_TOC16
BFD_RELOC_PPC_B16
BFD_RELOC_PPC_B16_BRTAKEN
BFD_RELOC_PPC_B16_BRNTAKEN
BFD_RELOC_PPC_BA16
BFD_RELOC_PPC_BA16_BRTAKEN
BFD_RELOC_PPC_BA16_BRNTAKEN
BFD_RELOC_PPC_COPY
BFD_RELOC_PPC_GLOB_DAT
BFD_RELOC_PPC_JMP_SLOT
BFD_RELOC_PPC_RELATIVE
BFD_RELOC_PPC_LOCAL24PC
BFD_RELOC_PPC_EMB_NADDR32
BFD_RELOC_PPC_EMB_NADDR16
BFD_RELOC_PPC_EMB_NADDR16_LO
BFD_RELOC_PPC_EMB_NADDR16_HI
BFD_RELOC_PPC_EMB_NADDR16_HA

71

Chapter 2: BFD Front End

BFD_RELOC_PPC_EMB_SDAI16
BFD_RELOC_PPC_EMB_SDA2I16
BFD_RELOC_PPC_EMB_SDA2REL
BFD_RELOC_PPC_EMB_SDA21
BFD_RELOC_PPC_EMB_MRKREF
BFD_RELOC_PPC_EMB_RELSEC16
BFD_RELOC_PPC_EMB_RELST_LO
BFD_RELOC_PPC_EMB_RELST_HI
BFD_RELOC_PPC_EMB_RELST_HA
BFD_RELOC_PPC_EMB_BIT_FLD
BFD_RELOC_PPC_EMB_RELSDA
BFD_RELOC_PPC64_HIGHER
BFD_RELOC_PPC64_HIGHER_S
BFD_RELOC_PPC64_HIGHEST
BFD_RELOC_PPC64_HIGHEST_S
BFD_RELOC_PPC64_T0C16_LO
BFD_RELOC_PPC64_TOC16_HI
BFD_RELOC_PPC64_T0OC16_HA
BFD_RELOC_PPC64_TOC
BFD_RELOC_PPC64_PLTGOT16
BFD_RELOC_PPC64_PLTGOT16_LO
BFD_RELOC_PPC64_PLTGOT16_HI
BFD_RELOC_PPC64_PLTGOT16_HA
BFD_RELOC_PPC64_ADDR16_DS
BFD_RELOC_PPC64_ADDR16_LO_DS
BFD_RELOC_PPC64_GOT16_DS
BFD_RELOC_PPC64_GOT16_LO_DS
BFD_RELOC_PPC64_PLT16_LO_DS
BFD_RELOC_PPC64_SECTOFF_DS
BFD_RELOC_PPC64_SECTOFF_LO_DS
BFD_RELOC_PPC64_T0OC16_DS
BFD_RELOC_PPC64_T0OC16_L0O_DS
BFD_RELOC_PPC64_PLTGOT16_DS
BFD_RELOC_PPC64_PLTGOT16_LO_DS

Power(rs6000) and PowerPC relocations.

BFD_RELOC_PPC_TLS
BFD_RELOC_PPC_TLSGD
BFD_RELOC_PPC_TLSLD
BFD_RELOC_PPC_DTPMOD
BFD_RELOC_PPC_TPREL16
BFD_RELOC_PPC_TPREL16_LO
BFD_RELOC_PPC_TPREL16_HI
BFD_RELOC_PPC_TPREL16_HA
BFD_RELOC_PPC_TPREL
BFD_RELOC_PPC_DTPREL16
BFD_RELOC_PPC_DTPREL16_L0O

72

Chapter 2: BFD Front End 73

BFD_RELOC_PPC_DTPREL16_HI
BFD_RELOC_PPC_DTPREL16_HA
BFD_RELOC_PPC_DTPREL
BFD_RELOC_PPC_GOT_TLSGD16
BFD_RELOC_PPC_GOT_TLSGD16_L0O
BFD_RELOC_PPC_GOT_TLSGD16_HI
BFD_RELOC_PPC_GOT_TLSGD16_HA
BFD_RELOC_PPC_GOT_TLSLD16
BFD_RELOC_PPC_GOT_TLSLD16_L0O
BFD_RELOC_PPC_GOT_TLSLD16_HI
BFD_RELOC_PPC_GOT_TLSLD16_HA
BFD_RELOC_PPC_GOT_TPREL16
BFD_RELOC_PPC_GOT_TPREL16_L0O
BFD_RELOC_PPC_GOT_TPREL16_HI
BFD_RELOC_PPC_GOT_TPREL16_HA
BFD_RELOC_PPC_GOT_DTPREL16
BFD_RELOC_PPC_GOT_DTPREL16_LO
BFD_RELOC_PPC_GOT_DTPREL16_HI
BFD_RELOC_PPC_GOT_DTPREL16_HA
BFD_RELOC_PPC64_TPREL16_DS
BFD_RELOC_PPC64_TPREL16_L0_DS
BFD_RELOC_PPC64_TPREL16_HIGHER
BFD_RELOC_PPC64_TPREL16_HIGHERA
BFD_RELOC_PPC64_TPREL16_HIGHEST
BFD_RELOC_PPC64_TPREL16_HIGHESTA
BFD_RELOC_PPC64_DTPREL16_DS
BFD_RELOC_PPC64_DTPREL16_L0O_DS
BFD_RELOC_PPC64_DTPREL16_HIGHER
BFD_RELOC_PPC64_DTPREL16_HIGHERA
BFD_RELOC_PPC64_DTPREL16_HIGHEST
BFD_RELOC_PPC64_DTPREL16_HIGHESTA
PowerPC and PowerPC64 thread-local storage relocations.

BFD_RELOC_I370_D12
IBM 370/390 relocations

BFD_RELOC_CTOR
The type of reloc used to build a constructor table - at the moment probably a 32 bit
wide absolute relocation, but the target can choose. It generally does map to one of
the other relocation types.

BFD_RELOC_ARM_PCREL_BRANCH
ARM 26 bit pc-relative branch. The lowest two bits must be zero and are not stored
in the instruction.

BFD_RELOC_ARM_PCREL_BLX
ARM 26 bit pc-relative branch. The lowest bit must be zero and is not stored in the
instruction. The 2nd lowest bit comes from a 1 bit field in the instruction.

Chapter 2: BFD Front End 74

BFD_RELOC_THUMB_PCREL_BLX
Thumb 22 bit pc-relative branch. The lowest bit must be zero and is not stored in
the instruction. The 2nd lowest bit comes from a 1 bit field in the instruction.

BFD_RELOC_ARM_PCREL_CALL
ARM 26-bit pc-relative branch for an unconditional BL or BLX instruction.

BFD_RELOC_ARM_PCREL_JUMP
ARM 26-bit pc-relative branch for B or conditional BL instruction.

BFD_RELOC_THUMB_PCREL_BRANCH7

BFD_RELOC_THUMB_PCREL_BRANCH9

BFD_RELOC_THUMB_PCREL_BRANCH12

BFD_RELOC_THUMB_PCREL_BRANCH20

BFD_RELOC_THUMB_PCREL_BRANCH23

BFD_RELOC_THUMB_PCREL_BRANCH25
Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. The lowest bit must
be zero and is not stored in the instruction. Note that the corresponding ELF
R-ARM_THM_JUMPnn constant has an "nn" one smaller in all cases. Note fur-
ther that BRANCH23 corresponds to R_ARM_THM_CALL.

BFD_RELOC_ARM_OFFSET_IMM
12-bit immediate offset, used in ARM-format ldr and str instructions.

BFD_RELOC_ARM_THUMB_QOFFSET
5-bit immediate offset, used in Thumb-format ldr and str instructions.

BFD_RELOC_ARM_TARGET1
Pc-relative or absolute relocation depending on target. Used for entries in .init_array
sections.

BFD_RELOC_ARM_ROSEGREL32
Read-only segment base relative address.

BFD_RELOC_ARM_SBREL32
Data segment base relative address.

BFD_RELOC_ARM_TARGET2
This reloc is used for references to RTTI data from exception handling tables. The
actual definition depends on the target. It may be a pc-relative or some form of
GOT-indirect relocation.

BFD_RELOC_ARM_PREL31
31-bit PC relative address.

BFD_RELOC_ARM_MOVW
BFD_RELOC_ARM_MOVT
BFD_RELOC_ARM_MOVW_PCREL
BFD_RELOC_ARM_MOVT_PCREL
BFD_RELOC_ARM_THUMB_MOVW
BFD_RELOC_ARM_THUMB_MOVT

Chapter 2: BFD Front End

BFD_RELOC_ARM_THUMB_MOVW_PCREL
BFD_RELOC_ARM_THUMB_MOVT_PCREL
Low and High halfword relocations for MOVW and MOV'T instructions.

BFD_RELOC_ARM_JUMP_SLQOT
BFD_RELOC_ARM_GLOB_DAT
BFD_RELOC_ARM_GOT32
BFD_RELOC_ARM_PLT32
BFD_RELOC_ARM_RELATIVE
BFD_RELOC_ARM_GOTOFF
BFD_RELOC_ARM_GOTPC
BFD_RELOC_ARM_GOT_PREL
Relocations for setting up GOTs and PLTs for shared libraries.

BFD_RELOC_ARM_TLS_GD32
BFD_RELOC_ARM_TLS_LD032
BFD_RELOC_ARM_TLS_LDM32
BFD_RELOC_ARM_TLS_DTPOFF32
BFD_RELOC_ARM_TLS_DTPMOD32
BFD_RELOC_ARM_TLS_TPOFF32
BFD_RELOC_ARM_TLS_IE32
BFD_RELOC_ARM_TLS_LE32
BFD_RELOC_ARM_TLS_GOTDESC
BFD_RELOC_ARM_TLS_CALL
BFD_RELOC_ARM_THM_TLS_CALL
BFD_RELOC_ARM_TLS_DESCSEQ
BFD_RELOC_ARM_THM_TLS_DESCSEQ
BFD_RELOC_ARM_TLS_DESC

ARM thread-local storage relocations.

BFD_RELOC_ARM_ALU_PC_GO_NC
BFD_RELOC_ARM_ALU_PC_GO
BFD_RELOC_ARM_ALU_PC_G1_NC
BFD_RELOC_ARM_ALU_PC_G1
BFD_RELOC_ARM_ALU_PC_G2
BFD_RELOC_ARM_LDR_PC_GO
BFD_RELOC_ARM_LDR_PC_G1
BFD_RELOC_ARM_LDR_PC_G2
BFD_RELOC_ARM_LDRS_PC_GO
BFD_RELOC_ARM_LDRS_PC_G1
BFD_RELOC_ARM_LDRS_PC_G2
BFD_RELOC_ARM_LDC_PC_GO
BFD_RELOC_ARM_LDC_PC_G1
BFD_RELOC_ARM_LDC_PC_G2
BFD_RELOC_ARM_ALU_SB_GO_NC
BFD_RELOC_ARM_ALU_SB_GO
BFD_RELOC_ARM_ALU_SB_G1_NC
BFD_RELOC_ARM_ALU_SB_G1

Chapter 2: BFD Front End 76

BFD_RELOC_ARM_ALU_SB_G2
BFD_RELOC_ARM_LDR_SB_GO
BFD_RELOC_ARM_LDR_SB_G1
BFD_RELOC_ARM_LDR_SB_G2
BFD_RELOC_ARM_LDRS_SB_GO
BFD_RELOC_ARM_LDRS_SB_G1
BFD_RELOC_ARM_LDRS_SB_G2
BFD_RELOC_ARM_LDC_SB_GO
BFD_RELOC_ARM_LDC_SB_G1
BFD_RELOC_ARM_LDC_SB_G2
ARM group relocations.

BFD_RELOC_ARM_V4BX
Annotation of BX instructions.

BFD_RELOC_ARM_IRELATIVE
ARM support for STT_GNU_IFUNC.

BFD_RELOC_ARM_IMMEDIATE
BFD_RELOC_ARM_ADRL_IMMEDIATE
BFD_RELOC_ARM_T32_IMMEDIATE
BFD_RELOC_ARM_T32_ADD_IMM
BFD_RELOC_ARM_T32_IMM12
BFD_RELOC_ARM_T32_ADD_PC12
BFD_RELOC_ARM_SHIFT_IMM
BFD_RELOC_ARM_SMC
BFD_RELOC_ARM_HVC
BFD_RELOC_ARM_SWI
BFD_RELOC_ARM_MULTI
BFD_RELOC_ARM_CP_OFF_IMM
BFD_RELOC_ARM_CP_OFF_IMM_S2
BFD_RELOC_ARM_T32_CP_OFF_IMM
BFD_RELOC_ARM_T32_CP_QFF_IMM_S2
BFD_RELOC_ARM_ADR_IMM
BFD_RELOC_ARM_LDR_IMM
BFD_RELOC_ARM_LITERAL
BFD_RELOC_ARM_IN_POOL
BFD_RELOC_ARM_QOFFSET_IMM8
BFD_RELOC_ARM_T32_Q0FFSET_US8
BFD_RELOC_ARM_T32_Q0FFSET_IMM
BFD_RELOC_ARM_HWLITERAL
BFD_RELOC_ARM_THUMB_ADD
BFD_RELOC_ARM_THUMB_IMM
BFD_RELOC_ARM_THUMB_SHIFT
These relocs are only used within the ARM assembler. They are not (at present)
written to any object files.

BFD_RELOC_SH_PCDISP8BY2
BFD_RELOC_SH_PCDISP12BY2

Chapter 2: BFD Front End

BFD_RELOC_SH_IMM3
BFD_RELOC_SH_IMM3U
BFD_RELOC_SH_DISP12
BFD_RELOC_SH_DISP12BY2
BFD_RELOC_SH_DISP12BY4
BFD_RELOC_SH_DISP12BYS8
BFD_RELOC_SH_DISP20
BFD_RELOC_SH_DISP20BYS8
BFD_RELOC_SH_IMM4
BFD_RELOC_SH_IMM4BY2
BFD_RELOC_SH_IMM4BY4
BFD_RELOC_SH_IMM8
BFD_RELOC_SH_IMM8BY2
BFD_RELOC_SH_IMM8BY4
BFD_RELOC_SH_PCRELIMM8BY2
BFD_RELOC_SH_PCRELIMM8BY4
BFD_RELOC_SH_SWITCH16
BFD_RELOC_SH_SWITCH32
BFD_RELOC_SH_USES
BFD_RELOC_SH_COUNT
BFD_RELOC_SH_ALIGN
BFD_RELOC_SH_CODE
BFD_RELOC_SH_DATA
BFD_RELOC_SH_LABEL
BFD_RELOC_SH_LOOP_START
BFD_RELOC_SH_LOOP_END
BFD_RELOC_SH_COPY
BFD_RELOC_SH_GLOB_DAT
BFD_RELOC_SH_JMP_SLOT
BFD_RELOC_SH_RELATIVE
BFD_RELOC_SH_GOTPC
BFD_RELOC_SH_GOT_LOW16
BFD_RELOC_SH_GOT_MEDLOW16
BFD_RELOC_SH_GOT_MEDHI16
BFD_RELOC_SH_GOT_HI16
BFD_RELOC_SH_GOTPLT_LOW16
BFD_RELOC_SH_GOTPLT_MEDLOW16
BFD_RELOC_SH_GOTPLT_MEDHI16
BFD_RELOC_SH_GOTPLT_HI16
BFD_RELOC_SH_PLT_LOW16
BFD_RELOC_SH_PLT_MEDLOW16
BFD_RELOC_SH_PLT_MEDHI16
BFD_RELOC_SH_PLT_HI16
BFD_RELOC_SH_GOTOFF_LOW16
BFD_RELOC_SH_GOTOFF_MEDLOW16
BFD_RELOC_SH_GOTOFF_MEDHI16
BFD_RELOC_SH_GOTOFF_HI16

7

Chapter 2: BFD Front End

BFD_RELOC_SH_GOTPC_LOW16
BFD_RELOC_SH_GOTPC_MEDLOW16
BFD_RELOC_SH_GOTPC_MEDHI16
BFD_RELOC_SH_GOTPC_HI16
BFD_RELOC_SH_COPY64
BFD_RELOC_SH_GLOB_DAT64
BFD_RELOC_SH_JMP_SLOT64
BFD_RELOC_SH_RELATIVEG4
BFD_RELOC_SH_GOT10BY4
BFD_RELOC_SH_GOT10BY8
BFD_RELOC_SH_GOTPLT10BY4
BFD_RELOC_SH_GOTPLT10BY8
BFD_RELOC_SH_GOTPLT32
BFD_RELOC_SH_SHMEDIA_CODE
BFD_RELOC_SH_IMMUS
BFD_RELOC_SH_IMMS6
BFD_RELOC_SH_IMMS6EBY32
BFD_RELOC_SH_IMMU6
BFD_RELOC_SH_IMMS10
BFD_RELOC_SH_IMMS10BY2
BFD_RELOC_SH_IMMS10BY4
BFD_RELOC_SH_IMMS10BYS8
BFD_RELOC_SH_IMMS16
BFD_RELOC_SH_IMMU16
BFD_RELOC_SH_IMM_LOW16
BFD_RELOC_SH_IMM_LOW16_PCREL
BFD_RELOC_SH_IMM_MEDLOW16
BFD_RELOC_SH_IMM_MEDLOW16_PCREL
BFD_RELOC_SH_IMM_MEDHI16
BFD_RELOC_SH_IMM_MEDHI16_PCREL
BFD_RELOC_SH_IMM_HI16
BFD_RELOC_SH_IMM_HI16_PCREL
BFD_RELOC_SH_PT_16
BFD_RELOC_SH_TLS_GD_32
BFD_RELOC_SH_TLS_LD_32
BFD_RELOC_SH_TLS_LDO_32
BFD_RELOC_SH_TLS_IE_32
BFD_RELOC_SH_TLS_LE_32
BFD_RELOC_SH_TLS_DTPMOD32
BFD_RELOC_SH_TLS_DTPOFF32
BFD_RELOC_SH_TLS_TPOFF32
BFD_RELOC_SH_GQOT20
BFD_RELOC_SH_GOTOFF20
BFD_RELOC_SH_GOTFUNCDESC
BFD_RELOC_SH_GOTFUNCDESC20
BFD_RELOC_SH_GOTOFFFUNCDESC
BFD_RELOC_SH_GOTOFFFUNCDESC20

Chapter 2: BFD Front End

BFD_RELOC_SH_FUNCDESC

Renesas / SuperH SH relocs. Not all of these appear in object files.

BFD_RELOC_ARC_B22_PCREL

ARC Cores relocs. ARC 22 bit pc-relative branch. The lowest two bits must be zero
and are not stored in the instruction. The high 20 bits are installed in bits 26 through

7 of the instruction.

BFD_RELOC_ARC_B26

ARC 26 bit absolute branch. The lowest two bits must be zero and are not stored in
the instruction. The high 24 bits are installed in bits 23 through 0.

BFD_RELOC_BFIN_16_IMM

ADI Blackfin 16 bit immediate absolute reloc.

BFD_RELOC_BFIN_16_HIGH

ADI Blackfin 16 bit immediate absolute reloc higher 16 bits.

BFD_RELOC_BFIN_4_PCREL
ADI Blackfin ’a’ part of LSETUP.

BFD_RELOC_BFIN_5_PCREL
ADI Blackfin.

BFD_RELOC_BFIN_16_LOW

ADI Blackfin 16 bit immediate absolute reloc lower 16 bits.

BFD_RELOC_BFIN_10_PCREL
ADI Blackfin.

BFD_RELOC_BFIN_11_PCREL
ADI Blackfin 'b’ part of LSETUP.

BFD_RELOC_BFIN_12_PCREL_JUMP
ADI Blackfin.

BFD_RELOC_BFIN_12_PCREL_JUMP_S
ADI Blackfin Short jump, pcrel.

BFD_RELOC_BFIN_24_PCREL_CALL_X
ADI Blackfin Call.x not implemented.

BFD_RELOC_BFIN_24_PCREL_JUMP_L
ADI Blackfin Long Jump pcrel.

BFD_RELOC_BFIN_GOT17M4
BFD_RELOC_BFIN_GOTHI
BFD_RELOC_BFIN_GOTLO
BFD_RELOC_BFIN_FUNCDESC
BFD_RELOC_BFIN_FUNCDESC_GOT17M4
BFD_RELOC_BFIN_FUNCDESC_GOTHI
BFD_RELOC_BFIN_FUNCDESC_GOTLO

Chapter 2: BFD Front End

BFD_RELOC_BFIN_FUNCDESC_VALUE
BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4
BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI
BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO
BFD_RELOC_BFIN_GOTOFF17M4
BFD_RELOC_BFIN_GOTOFFHI
BFD_RELOC_BFIN_GOTOFFLO

ADI Blackfin FD-PIC relocations.

BFD_RELOC_BFIN_GOT
ADI Blackfin GOT relocation.

BFD_RELOC_BFIN_PLTPC
ADI Blackfin PLTPC relocation.

BFD_ARELOC_BFIN_PUSH
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_CONST
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_ADD
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_SUB
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_MULT
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_DIV
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_MQOD
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_LSHIFT
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_RSHIFT
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_AND
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_OR
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_XOR
ADI Blackfin arithmetic relocation.

Chapter 2: BFD Front End 81

BFD_ARELOC_BFIN_LAND
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_LOR
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_LEN
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_NEG
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_COMP
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_PAGE
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_HWPAGE
ADI Blackfin arithmetic relocation.

BFD_ARELOC_BFIN_ADDR
ADI Blackfin arithmetic relocation.

BFD_RELOC_D10V_10_PCREL_R
Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0.

BFD_RELQOC_D10V_10_PCREL_L
Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0.
This is the same as the previous reloc except it is in the left container, i.e., shifted
left 15 bits.

BFD_RELOC_D10V_18
This is an 18-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_D10V_18_PCREL
This is an 18-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_D30V_6
Mitsubishi D30V relocs. This is a 6-bit absolute reloc.

BFD_RELOC_D30V_9_PCREL
This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0.

BFD_RELOC_D30V_9_PCREL_R
This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the
previous reloc but on the right side of the container.

BFD_RELOC_D30V_15
This is a 12-bit absolute reloc with the right 3 bitsassumed to be 0.

BFD_RELOC_D30V_15_PCREL
This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0.

Chapter 2: BFD Front End 82

BFD_RELOC_D30V_15_PCREL_R
This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the
previous reloc but on the right side of the container.

BFD_RELOC_D30V_21
This is an 18-bit absolute reloc with the right 3 bits assumed to be 0.

BFD_RELOC_D30V_21_PCREL
This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0.

BFD_RELOC_D30V_21_PCREL_R
This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the
previous reloc but on the right side of the container.

BFD_RELOC_D30V_32
This is a 32-bit absolute reloc.

BFD_RELOC_D30V_32_PCREL
This is a 32-bit pc-relative reloc.

BFD_RELOC_DLX_HI16_S
DLX relocs

BFD_RELOC_DLX_L0O16
DLX relocs

BFD_RELOC_DLX_JMP26
DLX relocs

BFD_RELOC_M32C_HI8
BFD_RELOC_M32C_RL_JUMP
BFD_RELOC_M32C_RL_1ADDR
BFD_RELOC_M32C_RL_2ADDR

Renesas M16C/M32C Relocations.

BFD_RELOC_M32R_24
Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bit absolute address.

BFD_RELOC_M32R_10_PCREL
This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.

BFD_RELOC_M32R_18_PCREL
This is an 18-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_M32R_26_PCREL
This is a 26-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_M32R_HI16_ULO
This is a 16-bit reloc containing the high 16 bits of an address used when the lower
16 bits are treated as unsigned.

Chapter 2: BFD Front End 83

BFD_RELOC_M32R_HI16_SLO
This is a 16-bit reloc containing the high 16 bits of an address used when the lower
16 bits are treated as signed.

BFD_RELOC_M32R_L016
This is a 16-bit reloc containing the lower 16 bits of an address.

BFD_RELOC_M32R_SDA16
This is a 16-bit reloc containing the small data area offset for use in add3, load, and
store instructions.

BFD_RELOC_M32R_G0T24
BFD_RELOC_M32R_26_PLTREL
BFD_RELOC_M32R_COPY
BFD_RELOC_M32R_GLOB_DAT
BFD_RELOC_M32R_JMP_SLOT
BFD_RELOC_M32R_RELATIVE
BFD_RELOC_M32R_GOTOFF
BFD_RELOC_M32R_GOTOFF_HI_ULO
BFD_RELOC_M32R_GOTOFF_HI_SLO
BFD_RELOC_M32R_GOTOFF_LO
BFD_RELOC_M32R_GOTPC24
BFD_RELOC_M32R_GOT16_HI_ULO
BFD_RELOC_M32R_GOT16_HI_SLO
BFD_RELOC_M32R_GO0T16_L0
BFD_RELOC_M32R_GOTPC_HI_ULO
BFD_RELOC_M32R_GOTPC_HI_SLO
BFD_RELOC_M32R_GOTPC_LO

For PIC.

BFD_RELOC_V850_9_PCREL
This is a 9-bit reloc

BFD_RELQOC_V850_22_PCREL
This is a 22-bit reloc

BFD_RELOC_V850_SDA_16_16_0FFSET
This is a 16 bit offset from the short data area pointer.

BFD_RELOC_V850_SDA_15_16_0FFSET
This is a 16 bit offset (of which only 15 bits are used) from the short data area pointer.

BFD_RELOC_V850_ZDA_16_16_0FFSET
This is a 16 bit offset from the zero data area pointer.

BFD_RELOC_V850_ZDA_15_16_0FFSET
This is a 16 bit offset (of which only 15 bits are used) from the zero data area pointer.

BFD_RELOC_V850_TDA_6_8_0FFSET

This is an 8 bit offset (of which only 6 bits are used) from the tiny data area pointer.

Chapter 2: BFD Front End 84

BFD_RELOC_V850_TDA_7_8_0OFFSET

This is an 8bit offset (of which only 7 bits are used) from the tiny data area pointer.
BFD_RELOC_V850_TDA_7_7_OFFSET

This is a 7 bit offset from the tiny data area pointer.

BFD_RELOC_V850_TDA_16_16_Q0FFSET
This is a 16 bit offset from the tiny data area pointer.

BFD_RELOC_V850_TDA_4_5_0FFSET

This is a 5 bit offset (of which only 4 bits are used) from the tiny data area pointer.
BFD_RELOC_V850_TDA_4_4_O0OFFSET

This is a 4 bit offset from the tiny data area pointer.

BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
This is a 16 bit offset from the short data area pointer, with the bits placed non-
contiguously in the instruction.

BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
This is a 16 bit offset from the zero data area pointer, with the bits placed non-
contiguously in the instruction.

BFD_RELOC_V850_CALLT_6_7_OFFSET

This is a 6 bit offset from the call table base pointer.

BFD_RELOC_V850_CALLT_16_16_0FFSET
This is a 16 bit offset from the call table base pointer.

BFD_RELOC_V850_LONGCALL
Used for relaxing indirect function calls.

BFD_RELOC_V850_LONGJUMP
Used for relaxing indirect jumps.

BFD_RELOC_V850_ALIGN
Used to maintain alignment whilst relaxing.

BFD_RELOC_V850_L016_SPLIT_OFFSET
This is a variation of BEFD_RELOC_LO16 that can be used in v850e 1d.bu instructions.

BFD_RELOC_V850_16_PCREL
This is a 16-bit reloc.

BFD_RELQOC_V850_17_PCREL
This is a 17-bit reloc.

BFD_RELQOC_V850_23
This is a 23-bit reloc.

BFD_RELQOC_V850_32_PCREL
This is a 32-bit reloc.

Chapter 2: BFD Front End 85

BFD_RELOC_V850_32_ABS
This is a 32-bit reloc.

BFD_RELOC_V850_16_SPLIT_OFFSET
This is a 16-bit reloc.

BFD_RELOC_V850_16_S1
This is a 16-bit reloc.

BFD_RELOC_V850_L016_S1
Low 16 bits. 16 bit shifted by 1.

BFD_RELOC_V850_CALLT_15_16_0FFSET
This is a 16 bit offset from the call table base pointer.

BFD_RELQOC_V850_32_GOTPCREL
DSO relocations.

BFD_RELOC_V850_16_GOT
DSO relocations.

BFD_RELOC_V850_32_GOT
DSO relocations.

BFD_RELOC_V850_22_PLT_PCREL
DSO relocations.

BFD_RELOC_V850_32_PLT_PCREL
DSO relocations.

BFD_RELQOC_V850_COPY
DSO relocations.

BFD_RELOC_V850_GLOB_DAT
DSO relocations.

BFD_RELOC_V850_JMP_SLOT
DSO relocations.

BFD_RELOC_V850_RELATIVE
DSO relocations.

BFD_RELOC_V850_16_GOTOFF
DSO relocations.

BFD_RELOC_V850_32_GOTOFF
DSO relocations.

BFD_RELQOC_V850_CODE
start code.

BFD_RELOC_V850_DATA
start data in text.

Chapter 2: BFD Front End 86

BFD_RELOC_MN10300_32_PCREL
This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the instruction.

BFD_RELOC_MN10300_16_PCREL
This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the instruction.

BFD_RELOC_TIC30_LDP
This is a 8bit DP reloc for the tms320c30, where the most significant 8 bits of a 24
bit word are placed into the least significant 8 bits of the opcode.

BFD_RELOC_TIC54X_PARTLS7
This is a 7bit reloc for the tms320c54x, where the least significant 7 bits of a 16 bit
word are placed into the least significant 7 bits of the opcode.

BFD_RELOC_TIC54X_PARTMS9
This is a 9bit DP reloc for the tms320cb4x, where the most significant 9 bits of a 16
bit word are placed into the least significant 9 bits of the opcode.

BFD_RELOC_TIC54X_23
This is an extended address 23-bit reloc for the tms320c¢H4x.

BFD_RELQOC_TIC54X_16_0F_23
This is a 16-bit reloc for the tms320ch4x, where the least significant 16 bits of a 23-bit
extended address are placed into the opcode.

BFD_RELOC_TIC54X_MS7_0F_23
This is a reloc for the tms320c54x, where the most significant 7 bits of a 23-bit
extended address are placed into the opcode.

BFD_RELOC_C6000_PCR_S21
BFD_RELOC_C6000_PCR_S12
BFD_RELOC_C6000_PCR_S10
BFD_RELOC_C6000_PCR_S7
BFD_RELOC_C6000_ABS_S16
BFD_RELOC_C6000_ABS_L16
BFD_RELOC_C6000_ABS_H16
BFD_RELOC_C6000_SBR_U15_B
BFD_RELOC_C6000_SBR_U15_H
BFD_RELOC_C6000_SBR_U15_W
BFD_RELOC_C6000_SBR_S16
BFD_RELOC_C6000_SBR_L16_B
BFD_RELOC_C6000_SBR_L16_H
BFD_RELOC_C6000_SBR_L16_W
BFD_RELOC_C6000_SBR_H16_B
BFD_RELOC_C6000_SBR_H16_H
BFD_RELOC_C6000_SBR_H16_W
BFD_RELOC_C6000_SBR_GOT_U15_W
BFD_RELOC_C6000_SBR_GOT_L16_W
BFD_RELOC_C6000_SBR_GOT_H16_W
BFD_RELOC_C6000_DSBT_INDEX

Chapter 2: BFD Front End

BFD_RELOC_C6000_PREL31
BFD_RELOC_C6000_COPY
BFD_RELOC_C6000_JUMP_SLOT
BFD_RELOC_C6000_EHTYPE
BFD_RELOC_C6000_PCR_H16
BFD_RELOC_C6000_PCR_L16
BFD_RELOC_C6000_ALIGN
BFD_RELQOC_C6000_FPHEAD
BFD_RELOC_C6000_NOCMP
TMS320C6000 relocations

BFD_RELOC_FR30_48

This is a 48 bit reloc for the FR30 that stores 32 bits.

BFD_RELOC_FR30_20

This is a 32 bit reloc for the FR30 that stores 20 bits split up into two sections.

BFD_RELOC_FR30_6_IN_4

This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in 4 bits.

BFD_RELOC_FR30_8_IN_8

This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset into 8 bits.

BFD_RELOC_FR30_9_IN_8

This is a 16 bit reloc for the FR30 that stores a 9 bit short offset into 8 bits.

BFD_RELOC_FR30_10_IN_8

This is a 16 bit reloc for the FR30 that stores a 10 bit word offset into 8 bits.

BFD_RELOC_FR30_9_PCREL

87

This is a 16 b