
GNU dbm

A Database Manager

by Philip A. Nelson and Jason Downs

Manual by Pierre Gaumond, Philip A. Nelson and Jason Downs

Edition 1.5

for GNU dbm, Version 1.8.3.

Copyright c© 1993-99 Free Software Foundation, Inc.

This is Edition 1.5 of the GNU dbm Manual, for gdbm Version 1.8.3.
Last updated October 15, 2002
Published by the Free Software Foundation
675 Massachusetts Avenue,
Cambridge, MA 02139 USA

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Chapter 1: Copying Conditions. 1

1 Copying Conditions.

This library is free; this means that everyone is free to use it and free to redistribute it
on a free basis. GNU dbm (gdbm) is not in the public domain; it is copyrighted and there
are restrictions on its distribution, but these restrictions are designed to permit everything
that a good cooperating citizen would want to do. What is not allowed is to try to prevent
others from further sharing any version of gdbm that they might get from you.

Specifically, we want to make sure that you have the right to give away copies gdbm, that
you receive source code or else can get it if you want it, that you can change these functions
or use pieces of them in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies gdbm, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for anything in the gdbm distribution. If these functions are modified by
someone else and passed on, we want their recipients to know that what they have is not
what we distributed, so that any problems introduced by others will not reflect on our
reputation.

gdbm is currently distributed under the terms of the GNU General Public License, Version
2. (NOT under the GNU General Library Public License.) A copy the GNU General Public
License is included with the distribution of gdbm.

Chapter 2: Introduction to GNU dbm. 2

2 Introduction to GNU dbm.

GNU dbm (gdbm)is a library of database functions that use extendible hashing and works
similar to the standard UNIX dbm functions. These routines are provided to a programmer
needing to create and manipulate a hashed database. (gdbm is NOT a complete database
package for an end user.)

The basic use of gdbm is to store key/data pairs in a data file. Each key must be unique
and each key is paired with only one data item. The keys can not be directly accessed in
sorted order. The basic unit of data in gdbm is the structure:

typedef struct {
char *dptr;
int dsize;

} datum;

This structure allows for arbitrary sized keys and data items.
The key/data pairs are stored in a gdbm disk file, called a gdbm database. An application

must open a gdbm database to be able manipulate the keys and data contained in the
database. gdbm allows an application to have multiple databases open at the same time.
When an application opens a gdbm database, it is designated as a reader or a writer. A
gdbm database opened by at most one writer at a time. However, many readers may open
the database open simultaneously. Readers and writers can not open the gdbm database at
the same time.

Chapter 3: List of functions. 3

3 List of functions.

The following is a quick list of the functions contained in the gdbm library. The include file
gdbm.h, that can be included by the user, contains a definition of these functions.

#include <gdbm.h>

GDBM_FILE gdbm_open(name, block_size, flags, mode, fatal_func);
void gdbm_close(dbf);
int gdbm_store(dbf, key, content, flag);
datum gdbm_fetch(dbf, key);
int gdbm_delete(dbf, key);
datum gdbm_firstkey(dbf);
datum gdbm_nextkey(dbf, key);
int gdbm_reorganize(dbf);
void gdbm_sync(dbf);
int gdbm_exists(dbf, key);
char *gdbm_strerror(errno);
int gdbm_setopt(dbf, option, value, size);
int gdbm_fdesc(dbf);

The gdbm.h include file is often in the ‘/usr/local/include’ directory. (The actual
location of gdbm.h depends on your local installation of gdbm.)

Chapter 4: Opening the database. 4

4 Opening the database.

Initialize gdbm system. If the file has a size of zero bytes, a file initialization procedure is
performed, setting up the initial structure in the file.

The procedure for opening a gdbm file is:
GDBM_FILE dbf;

dbf = gdbm_open(name, block_size, flags, mode, fatal_func);

The parameters are:

char *name
The name of the file (the complete name, gdbm does not append any characters
to this name).

int block size
It is used during initialization to determine the size of various constructs. It
is the size of a single transfer from disk to memory. This parameter is ignored
if the file has been previously initialized. The minimum size is 512. If the
value is less than 512, the file system blocksize is used, otherwise the value of
block_size is used.

int flags If flags is set to GDBM READER, the user wants to just read the database
and any call to gdbm_store or gdbm_delete will fail. Many readers can access
the database at the same time. If flags is set to GDBM WRITER, the user
wants both read and write access to the database and requires exclusive access.
If flags is set to GDBM WRCREAT, the user wants both read and write
access to the database and if the database does not exist, create a new one.
If flags is set to GDBM NEWDB, the user want a new database created,
regardless of whether one existed, and wants read and write access to the new
database. The following may also be logically or’d into the database flags:
GDBM SYNC, which causes all database operations to be synchronized to the
disk, and GDBM NOLOCK, which prevents the library from performing any
locking on the database file. The option GDBM FAST is now obsolete, since
gdbm defaults to no-sync mode. Any error detected will cause a return value of
NULL and an appropriate value will be in gdbm_errno (see Variables). If no
errors occur, a pointer to the gdbm file descriptor will be returned.

int mode File mode (see chmod(2) and open(2) if the file is created).

void (*fatal func) ()
A function for gdbm to call if it detects a fatal error. The only parameter of this
function is a string. If the value of NULL is provided, gdbm will use a default
function.

The return value, dbf, is the pointer needed by all other functions to access that gdbm
file. If the return is the NULL pointer, gdbm_open was not successful. The errors can be
found in gdbm_errno for gdbm errors and in errno for file system errors (for error codes,
see gdbm.h).

In all of the following calls, the parameter dbf refers to the pointer returned from gdbm_
open.

Chapter 5: Closing the database. 5

5 Closing the database.

It is important that every file opened is also closed. This is needed to update the
reader/writer count on the file. This is done by:

gdbm_close(dbf);

The parameter is:

GDBM FILE dbf
The pointer returned by gdbm_open.

Closes the gdbm file and frees all memory associated with the file dbf.

Chapter 6: Inserting and replacing records in the database. 6

6 Inserting and replacing records in the database.

The function gdbm_store inserts or replaces records in the database.
ret = gdbm_store(dbf, key, content, flag);

The parameters are:

GDBM FILE dbf
The pointer returned by gdbm_open.

datum key
The key data.

datum content
The data to be associated with the key.

int flag Defines the action to take when the key is already in the database. The value
GDBM REPLACE (defined in gdbm.h) asks that the old data be replaced by
the new content. The value GDBM INSERT asks that an error be returned
and no action taken if the key already exists.

The values returned in ret are:

-1 The item was not stored in the database because the caller was not an official
writer or either key or content have a NULL dptr field. Both key and content
must have the dptr field be a non-NULL value. Since a NULL dptr field is used
by other functions to indicate an error, a NULL field cannot be valid data.

+1 The item was not stored because the argument flag was GDBM INSERT and
the key was already in the database.

0 No error. content is keyed by key. The file on disk is updated to reflect the
structure of the new database before returning from this function.

If you store data for a key that is already in the data base, gdbm replaces the old data
with the new data if called with GDBM REPLACE. You do not get two data items for the
same key and you do not get an error from gdbm_store.

The size in gdbm is not restricted like dbm or ndbm. Your data can be as large as you
want.

Chapter 7: Searching for records in the database. 7

7 Searching for records in the database.

Looks up a given key and returns the information associated with that key. The pointer
in the structure that is returned is a pointer to dynamically allocated memory block. To
search for some data:

content = gdbm_fetch(dbf, key);

The parameters are:

GDBM FILE dbf
The pointer returned by gdbm_open.

datum key
The key data.

The datum returned in content is a pointer to the data found. If the dptr is NULL, no
data was found. If dptr is not NULL, then it points to data allocated by malloc. gdbm does
not automatically free this data. The user must free this storage when done using it. This
eliminates the need to copy the result to save it for later use (you just save the pointer).

You may also search for a particular key without retrieving it, using:
ret = gdbm_exists(dbf, key);

The parameters are:

GDBM FILE dbf
The pointer returned by gdbm_open.

datum key
The key data.

Unlike gdbm_fetch, this routine does not allocate any memory, and simply returns true
or false, depending on whether the key exists, or not.

Chapter 8: Removing records from the database. 8

8 Removing records from the database.

To remove some data from the database:
ret = gdbm_delete(dbf, key);

The parameters are:

GDBM FILE dbf
The pointer returned by gdbm_open.

datum key
The key data.

The ret value is -1 if the item is not present or the requester is a reader. The ret value
is 0 if there was a successful delete.

gdbm_delete removes the keyed item and the key from the database dbf. The file on
disk is updated to reflect the structure of the new database before returning from this
function.

Chapter 9: Sequential access to records. 9

9 Sequential access to records.

The next two functions allow for accessing all items in the database. This access is not
key sequential, but it is guaranteed to visit every key in the database once. The order has
to do with the hash values. gdbm_firstkey starts the visit of all keys in the database.
gdbm_nextkey finds and reads the next entry in the hash structure for dbf.

key = gdbm_firstkey(dbf);

nextkey = gdbm_nextkey(dbf, key);

The parameters are:

GDBM FILE dbf
The pointer returned by gdbm_open.

datum key
datum nextkey

The key data.

The return values are both datum. If key.dptr or nextkey.dptr is NULL, there is no first
key or next key. Again notice that dptr points to data allocated by malloc and gdbm will
not free it for you.

These functions were intended to visit the database in read-only algorithms, for instance,
to validate the database or similar operations.

File visiting is based on a hash table. gdbm_delete re-arranges the hash table to
make sure that any collisions in the table do not leave some item un-findable. The
original key order is NOT guaranteed to remain unchanged in ALL instances. It is possible
that some key will not be visited if a loop like the following is executed:

key = gdbm_firstkey (dbf);
while (key.dptr) {

nextkey = gdbm_nextkey (dbf, key);
if (some condition) {

gdbm_delete (dbf, key);
free (key.dptr);

}
key = nextkey;

}

Chapter 10: Database reorganization. 10

10 Database reorganization.

The following function should be used very seldom.
ret = gdbm_reorganize(dbf);

The parameter is:

GDBM FILE dbf
The pointer returned by gdbm_open.

If you have had a lot of deletions and would like to shrink the space used by the gdbm
file, this function will reorganize the database. gdbm will not shorten the length of a gdbm
file (deleted file space will be reused) except by using this reorganization.

This reorganization requires creating a new file and inserting all the elements in the
old file dbf into the new file. The new file is then renamed to the same name as the old
file and dbf is updated to contain all the correct information about the new file. If an
error is detected, the return value is negative. The value zero is returned after a successful
reorganization.

Chapter 11: Database Synchronization 11

11 Database Synchronization

Unless your database was opened with the GDBM SYNC flag, gdbm does not wait for writes
to be flushed to the disk before continuing. This allows faster writing of databases at the
risk of having a corrupted database if the application terminates in an abnormal fashion.
The following function allows the programmer to make sure the disk version of the database
has been completely updated with all changes to the current time.

gdbm_sync(dbf);

The parameter is:

GDBM FILE dbf
The pointer returned by gdbm_open.

This would usually be called after a complete set of changes have been made to the
database and before some long waiting time. gdbm_close automatically calls the equivalent
of gdbm_sync so no call is needed if the database is to be closed immediately after the set
of changes have been made.

Chapter 12: Error strings. 12

12 Error strings.

To convert a gdbm error code into English text, use this routine:
ret = gdbm_strerror(errno)

The parameter is:

gdbm error errno
The gdbm error code, usually gdbm_errno.

The appropiate phrase for reading by humans is returned.

Chapter 13: Seting options. 13

13 Seting options.

Gdbm supports the ability to set certain options on an already open database.
ret = gdbm_setopt(dbf, option, value, size);

The parameters are:

GDBM FILE dbf
The pointer returned by gdbm_open.

int option The option to be set.

int *value A pointer to the value to which option will be set.

int size The length of the data pointed to by value.

The valid options are:
GDBM CACHESIZE - Set the size of the internal bucket cache. This option may only

be set once on each GDBM FILE descriptor, and is set automatically to 100 upon the first
access to the database.

GDBM FASTMODE - Set fast mode to either on or off. This allows fast mode to be
toggled on an already open and active database. value (see below) should be set to either
TRUE or FALSE. This option is now obsolete.

GDBM SYNCMODE - Turn on or off file system synchronization operations. This
setting defaults to off; value (see below) should be set to either TRUE or FALSE.

GDBM CENTFREE - Set central free block pool to either on or off. The default is off,
which is how previous versions of Gdbm handled free blocks. If set, this option causes all
subsequent free blocks to be placed in the global pool, allowing (in theory) more file space
to be reused more quickly. value (see below) should be set to either TRUE or FALSE.
NOTICE: This feature is still under study.

GDBM COALESCEBLKS - Set free block merging to either on or off. The default is off,
which is how previous versions of Gdbm handled free blocks. If set, this option causes adjacent
free blocks to be merged. This can become a CPU expensive process with time, though,
especially if used in conjunction with GDBM CENTFREE. value (see below) should be set
to either TRUE or FALSE. NOTICE: This feature is still under study.

The return value will be -1 upon failure, or 0 upon success. The global variable gdbm_
errno will be set upon failure.

For instance, to set a database to use a cache of 10, after opening it with gdbm_open,
but prior to accessing it in any way, the following code could be used:

int value = 10;
ret = gdbm_setopt(dbf, GDBM_CACHESIZE, &value, sizeof(int));

Chapter 14: File Locking. 14

14 File Locking.

With locking disabled (if gdbm_open was called with GDBM NOLOCK), the user may want
to perform their own file locking on the database file in order to prevent multiple writers
operating on the same file simultaneously.

In order to support this, the gdbm_fdesc routine is provided.
ret = gdbm_fdesc(dbf);

The single valid parameter is:

GDBM FILE dbf
The pointer returned by gdbm_open.

The return value will be the file descriptor of the database.

Chapter 15: Two useful variables. 15

15 Two useful variables.

The following two variables are variables that may need to be used:

gdbm error gdbm errno
The variable that contains more information about gdbm errors (gdbm.h has the
definitions of the error values).

char * gdbm version
The string containing the version information.

Chapter 16: Compatibility with standard dbm and ndbm. 16

16 Compatibility with standard dbm and ndbm.

GNU dbm files are not sparse. You can copy them with the UNIX cp command and they
will not expand in the copying process.

There is a compatibility mode for use with programs that already use UNIX dbm and
UNIX ndbm.

GNU dbm has compatibility functions for dbm. For dbm compatibility functions, you need
the include file dbm.h.

In this compatibility mode, no gdbm file pointer is required by the user, and Only one file
may be opened at a time. All users in compatibility mode are assumed to be writers. If the
gdbm file is a read only, it will fail as a writer, but will also try to open it as a reader. All
returned pointers in datum structures point to data that gdbm WILL free. They should be
treated as static pointers (as standard UNIX dbm does). The compatibility function names
are the same as the UNIX dbm function names. Their definitions follow:

int dbminit(name);
int store(key, content);
datum fetch(key);
int delete(key);
datum firstkey();
datum nextkey(key);
int dbmclose();

Standard UNIX dbm and GNU dbm do not have the same data format in the file. You
cannot access a standard UNIX dbm file with GNU dbm! If you want to use an old database
with GNU dbm, you must use the conv2gdbm program.

Also, GNU dbm has compatibility functions for ndbm. For ndbm compatibility functions,
you need the include file ndbm.h.

Again, just like ndbm, any returned datum can be assumed to be static storage. You do
not have to free that memory, the ndbm compatibility functions will do it for you.

The functions are:
DBM *dbm_open(name, flags, mode);
void dbm_close(file);
datum dbm_fetch(file, key);
int dbm_store(file, key, content, flags);
int dbm_delete(file, key);
datum dbm_firstkey(file);
datum dbm_nextkey(file);
int dbm_error(file);
int dbm_clearerr(file);
int dbm_dirfno(file);
int dbm_pagfno(file);
int dbm_rdonly(file);

If you want to compile an old C program that used UNIX dbm or ndbm and want to use
gdbm files, execute the following cc command:

cc ... -L/usr/local/lib -lgdbm_compat -lgdbm

Chapter 16: Compatibility with standard dbm and ndbm. 17

Please note that the compatibility library contains references to gdbm routines so the
order in which the libraries are linked is essential. This means that the library linking order
given in the above example must be respected.

Chapter 17: Converting dbm files to gdbm format. 18

17 Converting dbm files to gdbm format.

The program conv2gdbm has been provided to help you convert from dbm databases to gdbm.
The usage is:

conv2gdbm [-q] [-b block_size] dbm_file [gdbm_file]

The options are:

-q Causes conv2gdbm to work quietly.

block size Is the same as in gdbm_open.

dbm file Is the name of the dbm file without the .pag or .dir extensions.

gdbm file Is the complete file name. If not included, the gdbm file name is the same as
the dbm file name without any extensions. That is conv2gdbm dbmfile converts
the files dbmfile.pag and dbmfile.dir into a gdbm file called dbmfile.

Chapter 18: Problems and bugs. 19

18 Problems and bugs.

If you have problems with GNU dbm or think you’ve found a bug, please report it. Before
reporting a bug, make sure you’ve actually found a real bug. Carefully reread the documen-
tation and see if it really says you can do what you’re trying to do. If it’s not clear whether
you should be able to do something or not, report that too; it’s a bug in the documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to the smallest possible
input file that reproduces the problem. Then send us the input file and the exact results
gdbm gave you. Also say what you expected to occur; this will help us decide whether the
problem was really in the documentation.

Once you’ve got a precise problem, send e-mail to:
Internet: ‘bug-gnu-utils@prep.ai.mit.edu’.
UUCP: ‘mit-eddie!prep.ai.mit.edu!bug-gnu-utils’.

Please include the version number of GNU dbm you are using. You can get this informa-
tion by printing the variable gdbm_version (see Variables).

Non-bug suggestions are always welcome as well. If you have questions about things
that are unclear in the documentation or are just obscure features, please report them too.

You may contact the author by:
e-mail: phil@cs.wwu.edu
us-mail: Philip A. Nelson

Computer Science Department
Western Washington University
Bellingham, WA 98226

You may contact the current maintainer by:
e-mail: downsj@downsj.com

