The GNU Pascal Manual

Jan-Jaap van der Heijden,
Peter Gerwinski,
Frank Heckenbach,
Berend de Boer,
Dominik Freche,
FEike Lange,

and others

Last updated Mar 2003

for version 20030507 (GCC 2.8.1, 2.95.x or 3.2.1)

Copyright (©) 1988-2003 Free Software Foundation, Inc.

For GPC 20030507 (GCC 2.8.1, 2.95.x or 3.2.1)

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Copyright (C) 1988-2003 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 published by the Free Software Foundation; with
the Invariant Sections being “GNU General Public License”, “GNU Lesser General Public Li-
cense”, “GNU Free Documentation License”, “The GNU Project”, “The GNU Manifesto” and
“Funding Free Software”, with the Front-Cover Texts being “The GNU Pascal Manual”, and
with no Back-Cover Texts. A copy of the license is included in the section entitled “Documen-
tation Copying — The GNU Free Documentation License”.

Short Contents

GNUPascal o o v v v v e e e e e enssoeeeeeessossssssssosocsssss 1
Welcome to GNU Pascalottt eeeenns 3
1 Some of GPC’s most interesting features.............oo.. b
2 New Features of GNU Pascal. « .o vv v e v i i i iiiineeeenss 9
3 The GNU Pascal Frequently Asked Questions List. 13
4 How to download, compile and install GNU Pascal. 25
5 Command Line Options supported by GNU Pascal. 33
6 The Programmer’s Guideto GPC....... ..., 45
7 A QuickStart Guide from Borland Pascal to GNU Pascal. 235
8 The Alphabetical GPC Language Reference 255
9 Pascal keywords and operators supported by GNU Pascal. 443
10 Where to get support for GNU Pascal; how to report bugs. 449
11 The GNU Pascal To-Do List. oo v v v v v v ieieeeeeenn. 455
12 The GPC Source Reference. . v v e o v oo v v v v v v e vveeeonnns 463
Appendix A GNU GENERAL PUBLIC LICENSE 481
Appendix B GNU LESSER GENERAL PUBLIC LICENSE 487
Appendix C GNU FREE DOCUMENTATION LICENSE 495
Appendix D DEMO COPYING.ttt ieeeeneeesnns 501
Appendix E Contributors to GNU Pascal.. 503
Appendix F Resources For Use With GPC.................. 507
Appendix G The GNU Project. « v v v v v v v i v i i i iiiinnnan, 511

GPC INdeX o v e v vt e ettt e vt veoeeoeeoooosooeoososeeos 519

1

The GNU Pascal Manual

Table of Contents

GNU Pascal ...ttt 1
Welcome to GNU Pascal 3
1 Some of GPC’s most interesting features. 5
2 New Features of GNU Pascal. 9
3 The GNU Pascal Frequently Asked Questions
List. ..o e e e 13
3.1 GNUPascaloo 13
3.1.1 What and why?] 13
3.1.2 What is the current version?........................ 13
3.1.3 Is it compatible with Turbo Pascal (R)7............. 14
3.1.4 Which platforms are supported by GNU Pascal? 14
3.2 Installing GPC 14
3.2.1 Whattoreadmnext................................. 14
3.2.2 Which components do I need to compile Pascal code?
.. 15
3.2.3 How do I debug my Pascal programs? 15
3.2.4 What additional libraries should I have?............. 16
3.2.5 Contributed units.................................. 17
3.2.6 Can you recommend an IDE?....................... 17
3.3 GNU Pascal on the DJGPP (MS-DOS) platform.............. 17
3.3.1 Whatis DJGPP? 17
3.3.2 If you need more information 17
3.3.3 What doI download? 18
3.3.4 How do I install the compiler? 18
3.3.5 I cannot read the Info documentation!............... 19
33.6 GPCsays:noDPMI............................... 19
3.3.7 I have troubles with assembly code.................. 19
3.3.8 Tell me how to do DPMI, BIOS and other DOS related
things. ... 19
3.3.9 I got an exception when accessing an ‘array [1 ..
4000000] of Byte 21
B4 SETINGS .« o 21
3.4.1 What’s this confusion about strings? 21
3.4.2 Overlaying strings in variant records 22
3.4.3 Why does ‘s[0]’ not contain the length? 22
3.4.4 Watch out when using strings as parameters......... 22
3.4.5 Support for BP compatible short strings............. 23
3.4.6 What about C strings?............................. 23
35 Getting Help. ... 23
3.6 Miscellaneousii 24
3.6.1 I want to contribute; where do I start? 24
3.6.2 Where is the GNU Pascal web site? 24
3.6.3 About this FAQ 24

iii

iv The GNU Pascal Manual
4 How to download, compile and install GNU

Pascal............ ... 25
4.1 Where and what to download 25
4.2 Installation instructions for a GPC binary distribution 27
4.3 Compiling GPC 28
4.4 Compilation notes for specific platforms...................... 30

4.41 MS-DOS with DJGPP 30

442 MS-DOSor OS/2 with EMX 31

4.4.3 MS Windows 95/98/NT 31
4.5 Building and Installing a cross-compiler 31
4.6 Crossbuilding a compiler........... 31

5 Command Line Options supported by GNU

Pascal........... ..., 33
5.1 GPC options besides those of GCC........................... 33
5.2 The most commonly used options to GPC.................... 40

6 The Programmer’s Guide to GPC 45
6.1 Source StrucCturesiiiniie .. 45
6.1.1 The Source Structure of Programs 45
6.1.2 Label Declaration.................................. 46
6.1.3 Constant Declaration 46
6.1.4 Type Declaration 48
6.1.5 Variable Declaration 49
6.1.6 Subroutine Declaration............................. 50
6.1.6.1 The Procedure............................ 50
6.1.6.2 The Function 51
6.1.6.3 The Operator................iiioo... 51
6.1.6.4 Subroutine Parameter List Declaration. 51
6.1.7 Statements................. . 54
6.1.7.1 Assignment................... ... 54
6.1.7.2 begin end Compound Statement............ 54
6.1.7.3 if Statement 54
6.1.7.4 case Statement............................ 54
6.1.7.5 for Statement............................. 55
6.1.7.6 while Statement........................... 56
6.1.7.7 repeat Statement.......................... 57
6.1.7.8 asmInline................................ 57
6.1.7.9 with Statement 57
6.1.7.10 goto Statement 57
6.1.7.11 Procedure Call........................... 57
6.1.7.12 The Declaring Statement 57
6.1.7.13 Loop Control Statements 58
6.1.8 Import Part and Module/Unit Concept.............. 58
6.1.8.1 The Source Structure of ISO 10206 Extended

Pascal Modules 58

6.1.8.2 The Source Structure of UCSD/Borland Pascal
Units. ..oo 61
6.2 Data Types.o 62
6.2.1 Type Definition............. 62
6.2.2 Ordinal Types.... ... 62
6.2.3 Integer Typesoovniiii i 62
6.2.3.1 The CPU’s Natural Integer Types.......... 63

6.2.3.2 The Main Branch of Integer Types 63

6.3

6.4

6.5
6.6
6.7
6.8
6.9
6.10

6.11

6.12
6.13
6.14

6.2.3.3 Integer Types with Specified Size........... 63

6.2.3.4 Integer Types and Compatibility 64
6.2.3.5 Summary of Integer Types................. 64
6.2.4 Built-in Real (Floating Point) Types 65
6.2.5 Strings Typesoo 66
6.2.6 Character Types..... ..., 66
6.2.7 Enumerated Types.......... ... i 66
6.2.8 File Types ... 67
6.2.9 Boolean (Intrinsic).............. 67
6.2.10 Pointer (Intrinsic) 67
6.2.11 Type Definition Possibilities 68
6.2.11.1 Subrange Types............ccooiiiii. ... 68
6.2.11.2 Array Types.......oooiiiii i 68
6.2.11.3 Record Types.........coooiiiiii .. 69
6.2.11.4 Variant Records.......................... 70
6.2.11.5 EP’s Schema Types including ‘String’..... 70
6.2.11.6 Set Typesovviiii i 74
6.2.11.7 Pointer Types.............o .. 74
6.2.11.8 Procedural and Functional Types.......... 75
6.2.11.9 Object Types 76
6.2.11.10 Initial values to type denoters............ 7
6.2.11.11 Restricted Types........................ 7
6.2.12 Machine-dependencies in Types.................... 78
6.2.12.1 Endianness 78
6.2.12.2 Alignment 79
OPeTatorS. . ..ot 80
6.3.1 Built-in Operators 80
6.3.2 User-defined Operators............................. 80
Procedure And Function Parameters......................... 81
6.4.1 Parameters declared as ‘protected’ or ‘const’....... 81
6.4.2 The Standard way to pass arrays of variable size 81
6.4.3 BP’s alternative to Conformant Arrays.............. 81
Accessing parts of strings (and other arrays).................. 81
Pointer Arithmetics............. ..o 82
Type Casts . ..ot 83
Object-Oriented Programming 84
Compiler Directives And The Preprocessor 87
Routines Built-in or in the Run Time System................ 90
6.10.1 File Routines.......... ... i 90
6.10.2 String Operations.cciiiiiino... 92
6.10.3 Accessing Command Line Arguments............... 94
6.10.4 Memory Management Routines 94
6.10.5 Operations for Integer and Ordinal Types 95
6.10.6 Complex Number Operations...................... 95
6.10.7 Set Operationsc.couiueiuieineennenn... 96
6.10.8 Date And Time Routines.......................... 97
Interfacing with Other Languages........................... 98
6.11.1 Importing Libraries from Other Languages.......... 98
6.11.2 Exporting GPC Libraries to Other Languages. 99
Notes for Debugging. ... 100
Pascal declarations for GPC’s Run Time System............ 100
Units included with GPC 146
6.14.1 BP compatibility: CRT & WinCRT, portable, with
Many eXtensionsuuue e 146
6.14.2 BP compatibility: Dos 163

6.14.3 Overcome some differences between Dos and Unix.. 168

The GNU Pascal Manual

vi

6.14.4 Higher level file and directory handling 170
6.14.5 Arithmetic with unlimited size and precision. 172
6.14.6 Turbo Power compatibility, etc.................... 185
6.14.7 Primitive heap checking 189
6.14.8 Internationalization........................... ... 190
6.14.9 ‘MD5’ Message Digests............................ 195
6.14.10 BP compatibility: Overlay....................... 196
6.14.11 Start a child process, connected with pipes, also on Dos
... 198
6.14.12 BP compatibility (partly): ‘Port’, ‘PortW’ arrays.. 202
6.14.13 BP compatibility: Printer, portable.............. 203
6.14.14 Regular Expression matching and substituting 205
6.14.15 BP compatibility: Strings 210
6.14.16 Higher level string handling 212
6.14.17 BP compatibility: System 217
6.14.18 Some text file tricks............ L. 224
6.14.19 Trap runtime errors...............ovuururnenrn.. 225
6.14.20 BP compatibility: Turbo3 227
6.14.21 BP compatibility: WinDos 228
6.15 How to use I18N in own programs 231

7 A QuickStart Guide from Borland Pascal to GNU

Pascal............ ..o .., 235
7.1 BP Compatibility 235
7.2 BP Incompatibilities.............. 235
T2.1 String type . ..o 235
7.2.2 Qualified identifiers 236
723 Assembler............ 236
7.2.4 Move; FillChar 236
725 Realtype ... 237
7.2.6 Graphunit................ i 237
727 OOP units.......ocooii e 237
7.2.8 Keep; GetIntVec; SetIntVec........................ 237
7.2.9 TFDDS ..o 237
7.2.10 Mem; Port; Ptr; Seg; Ofs; PrefixSeg; etc. 238
7.2.11 Endianness assumptions.......................... 238
7.2.12 - -borland-pascal - disable GPC extensions......... 239
7.2.13 -w - disable all warnings.......................... 239
7.2.14 - -uses=System - Swap; HeapError; etc. 239
7.2.15 -D__BP_TYPE_SIZES__ - small integer types etc.... 239
7.2.16 - -pack-struct - disable structure alignment 239
7.2.17 -D__BP_RANDOM__ - BP compatible pseudo random
number generator i 239
7.2.18 -D_BP_UNPORTABLE_ROUTINES__ - Intr;
DosVersion; etc. ... 240
7.2.19 -D__BP_.PARAMSTR.0_- - BP compatible ParamStr (0)
behaviour 240
7.3 IDE versus command line................ 240
T4 COmMMENES . ..ottt e e e e e e e 242
7.5 BP Compatible Compiler Directives 242
7.6 Units, GPI files and Automake 242
7.7 Optimization......... ... 243
7.8 Debugging....... ..o 244
7.9 ODbJECtS. .ottt 244

7.10 Strings in BP and GPC...... 244

7.11 Typed Constants.............ooueiineiineeinnenn..
7.12 Bit, Byte and Memory Manipulation.......................
7.13 User-defined Operators in GPC............................
7.14 Data Typesin BP and GPC
7.15 BP Procedural Types........
TA6 Files ..o
7.17 Built-in ConstantS. ...
7.18 Built-in Operators in BP and GPC
7.19 Built-in Procedures and Functions.........................
7.20 Special Parameters..............
7.21 Miscellaneoust
7.22 BP and Extended Pascal................
7.23 Portability hints........

all L

ASINIIAIIIE « .« .\ e et e et e et e e e e e e e e e e e
ATt . oo
ASSIGI. oo

Binding
Binding Type.
BitSizeOf
BlockRead
BlockWrite

Byte .o
ByteBool
ByteCard.
Bytelnt. ...

245
246
247
248
249
250
250
250
250
251
251
252
253

8 The Alphabetical GPC Language Reference.. 255

vii

viii The GNU Pascal Manual

Char . .o 285
ChDIr . .o 285
T . 286
clanguage 287
ClaSS .« oo 287
ClOS . oo 287
CIPIX o 288
COMIP o e 288
Complex ..o 289
Conecabo 290
Conjugate 290
COMSE o 291
CONSEIUCTOT . . . e 292
Continue 292
(70704 PP 293
08 o et 294
CSETING -« oot 294
CString2Stringo oo v 295
CStringCopyStIingo oot 295
CurrentRoutineName 296
Date ..o 296
Dec . o 297
DefineSizeo 298
Delete. ... 298
destructor 299
Dispose ..o 299
AV 300
Ao o 300
Double 301
AOWNEO . ..o 302
€IS 302
Empty ... 303
I . . 303
EOF .. 304
EOLn ... 305
EpsReal 305
EQ 305
EQPad 306
Brase ... 306
Exclude 307
Bt . 307
XD 308
EXPOTE . o ot 309
EXPOTES - o et et 310
Extend 310
Extended 311
external 312
Fail . 312
False 313
2 5 313
510 (< 3 314
FilePoso 315
FileSize 310
FillChar 315
Analization 316

Finalize 316

Flush ..o 317
(0) P 317
FormatString ... 318
forward. 318
Frac. .. oo 319
FrameAddress 320
FreeMem 320
FUNCEIONo 321
GE 321
GEPad 321
Gt e 322
GetMeI. . .o 322
GetTimeStampo 323
BOLO . oot 323
Gl 324
GTPad 324
Halt. .o 325
High ..o 325
L 326
P 327
implementation 328
00100 328
L e 329
InC. . 329
Include. o 330
Index ..o 331
inherited e 332
initialization 332
Initialize. o 332
InOUtReso 333
Insert ... 334
It 334
Integero 335
Interface. 336
INCEITUPL .ot 336
IOResulto 33T
label . .. 337
LastPosition 338
LB 338
Length . ..o 339
LEPad . ..o 339
07 339
5 340
LoCaseo 340
LongBool. 341
LongCardo 341
LongestBool 342
LongestCard 343
LongestInt. 343
LongestReal 344
LongestWordo 344
LongInt 345
LongReal 346

LongWord o 346

ix

The GNU Pascal Manual

L OW . o 347
) 7 348
LTPad . ..o 348
Mark. ..o 349
Max ..o 349
MaxChar 349
MaxInto 350
MaxReal e . 300
MedBool 351
MedCard 351
MedInt 352
MedReal 353
MedWord 353
Min . . 354
MinReal..... 304
MEKDIr ..o 355
IO .« ot 355
module 356
MoOVe . .o 356
MoveLeft e 3BT
MoveRight 357
TMAIIIE . o o vt et e et et e e e e e e 357
NE . 359
18 TcY2 5 PP 151
NEPad 360
NeW . o 360
NewCStringot 361
01 361
O . 362
Null. o 363
ODJECE ot 364
Odd . .. 365
Of o 365
OIY e o 366
OPETALOT . . ottt 366
) 366
Ord . o 368
OF €IS . ..o 368
OIS . . o 369
Ootherwise 370
OUEPUL .« o 371
Pack ... 371
packed 371
Page ..o 373
PAnsiChar. 373
ParamCount 374
ParamStr. ... 374
PChar. ... 375
) 376
PODbJectType . o oo 376
Pointer 377
Polar. ..o 377
Pos .o 378
Position 378
POW ettt e 378

PIIVALE . ot 380
PrOCEAUTE . . .ottt e 381
PTOZTAIIL . « ottt ettt e et e e e et e et et e e 381
PIOPEILY . ot 381
protectedo 382
PtrCard 382
PtrDiffType ..o 383
PtrInt 384
PtrWord 384
PUDLIC . oo 385
published 385
Put . 386
qualified 386
Random 387
Randomize 387
R o 387
Read 388
Readlin 388
ReadStr . ..o 389
Real .. 389
TECOTA . .ot 390
Release. 391
Rename 392
TEPEAL . o oot 392
Reset ..o 393
resident 394
restricted 394
Result.o 395
Return 395
ReturnAddress. ... 396
Rewrite e 396
Round 398
RunError. ... 399
SCCK .o 399
SeekBEOF 400
SeeKEOLNo 400
SeekRead 400
SeekUpdate.o 401
SeekWITIte . . oo 401
SEEIMENE .« . oottt 402
Self 402
SO et 402
SetFileTime 403
SetLength 404
St YD oo 404
Shl . 406
ShortBool 407
ShortCard 408
ShortInt 408
ShortReal 409
ShortWord 409
ST 410
N 50 411
SINgle . .o 411
SIZeO . o 412

xi

xii The GNU Pascal Manual

SIZ€ YD « o 413
Smalllnt 413
6 414
SAR . o 415
StandardError 415
StandardInpubto e 416
StandardOutput 416
SEAEIT . .o 416
N 5 417
0= 418
String2CStringo 418
SUDSET .« o 418
SUCC .« oo 419
Xt ot 420
then ..o 421
TIMe . o 421
TImeStampo 422
70 Y 423
tobegin do. 424
toend do. 424
1550 P 425
TUE . . 425
TIUNC .« .o 426
Truncate 426
1770 T 427
DY De Of L e 429
TypeOf. .o 429
Unbind 430
L0305 430
Unpack. . ..o 431
UL L 431
UPCASE . oot 432
Update. ..o 432
LSS - v vt e e e e e e e 432
Val. 433
VAlUE . . 434
72 5 434
72 1512 436
virtual ... 436
VOId . .o 437
While . .o 437
WIth 438
WOrd. ..o 439
WordBool 439
WIIte o 440
WriteLn . ..o 440
Wt e ST . . o 441
D0 P 441

9 Pascal keywords and operators supported by
GNU Pascal.coiiiiiia... 443

10 Where to get support for GNU Pascal; how to

report bugs............. .. i, 449
10.1 The GPC Mailing List............oo i 449
10.2 The GPC Mailing List Archives 450
10.3 Newsgroups relevant to GPC.......... 450
10.4 Where to get individual support for GPC 450
10.5 If the compiler crashes 450
10.6 How to report GPCbugso ... 451
10.7 Running the GPC Test Suite.............................. 453

11 The GNU Pascal To-Do List................ 455
11.1 Known bugsin GPC 455

11.2 Features planned for GPC 456

11.2.1 Planned features: Strings......................... 456

11.2.2 Planned features: Records/arrays................. 456

11.2.3 Planned features: Files........................... 457

11.2.4 Planned features: Other types.................... 457

11.2.5 Planned features: OOP 457

11.2.6 Planned features: Misc........................... 458

11.2.7 Planned features: Utilities........................ 459

11.3 Problems that have been solved 459

12 The GPC Source Reference 463
12.1 The Pascal preprocessoriiiiiiiiii... 463

12.2 GPC’s Lexical Analyzer 464

12.3 Interrelations between the lexer and parser................. 465

12.4 Language Definition: GPC’s Parser........................ 465

12.5 So many keywords, so many problems 466

12.5.1 ‘attribute’ as a weak keyword 467

12.5.2 ‘external’ as a weak keyword 468

12.5.3 ‘forward’, ‘near’ and ‘far’ as weak keywords...... 468

12.5.4 ‘implementation’, ‘constructor’, ‘destructor’,
‘operator’, ‘uses’, ‘import’ and ‘initialization’ as weak

keywordso 469
12.6 Expressions as lower bounds of subranges 471
12.7 Tree Nodes 473
12.8 Parameter Passing i 475
12.9 GPI files — GNU Pascal Interfaces 476
12.10 GPC’s Automake Mechanism — How it Works 479

Appendix A GNU GENERAL PUBLIC LICENSE

...................................... 481

GPL Preamble 481
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION 481

How to Apply These Terms to Your New Programs............... 485

xiii

xiv The GNU Pascal Manual
Appendix B GNU LESSER GENERAL PUBLIC

LICENSE.ttt iiinnnnnn. 487
LGPL Preamble 487
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . ..o e 488
How to Apply These Terms to Your New Libraries................ 494

Appendix C GNU FREE DOCUMENTATION

LICENSE........co ittt 495
C.0.1 ADDENDUM: How to use this License for your
documents. i 500
Appendix D DEMO COPYING............... 501
Appendix E Contributors to GNU Pascal. 503
Appendix F Resources For Use With GPC..... 507
Appendix G The GNU Project................ 511
G.1 The GNU Manifestociieiieen. ... D1l
G.1.1 What’s GNU? Gnu’s Not Unix! 512
G.1.2 Why I Must Write GNU 512
G.1.3 Why GNU Will Be Compatible with Unix 513
G.1.4 How GNU Will Be Available...................... 513
G.1.5 Why Many Other Programmers Want to Help...... 513
G.1.6 How You Can Contribute......................... 513
G.1.7 Why All Computer Users Will Benefit 514
G.1.8 Some Easily Rebutted Objections to GNU’s Goals .. 514
G.2 Funding Free Software 518

GPC IndeX ..o o ii ettt e et e ettt eeeeennns 519

GNU Pascal 1

GNU Pascal

This manual documents how to run, install and maintain the GNU Pascal Compiler (GPC),
as well as its new features and incompatibilities, and how to report bugs. It corresponds to GPC
20030507 (GCC 2.8.1, 2.95.x or 3.2.1).

The GNU Pascal Manual

Welcome to GNU Pascal . .. 3

Welcome to GNU Pascal ...

... the free 32/64-bit Pascal compiler of the GNU Compiler Collection (GNU CC or GCC).
It combines a Pascal front-end with the proven GCC back-end for code generation and opti-
mization. Other compilers in the collection currently include compilers for the Ada, C, C++,
Objective C, Chill, FORTRAN, and Java languages. Unlike utilities such as p2c, this is a true
compiler, not just a converter.

This version of GPC corresponds to GCC version 2.8.1, 2.95.x or 3.2.1.
The purpose of the GNU Pascal project is to produce a Pascal compiler (called GNU Pascal
or GPC) which
e combines the clarity of Pascal with powerful tools suitable for real-life programming,

e supports both the Pascal standard and the Extended Pascal standard as defined by ISO,
ANSI and TIEEE (ISO 7185:1990, ISO/IEC 10206:1991, ANSI/IEEE 770X3.160-1989),

e supports other Pascal standards (UCSD Pascal, Borland Pascal, parts of Borland Delphi,
Mac Pascal and Pascal-SC) in so far as this serves the goal of clarity and usability,

e may be distributed under GNU license conditions, and
e can generate code for and run on any computer for which the GNU C compiler can generate
code and run on.
Pascal was originally designed for teaching. GNU Pascal provides a smooth way to proceed
to challenging programming tasks without learning a completely different language.

The current release implements Standard Pascal (ISO 7185, levels 0 and 1), most of Extended
Pascal (ISO 10206, aiming for full compliance), is highly compatible to Borland Pascal (version
7.0), has some features for compatibility to other compilers (such as VAX Pascal, Sun Pascal,
Mac Pascal, Borland Delphi and Pascal-SC).

It provides a lot of useful GNU extensions not found in other Pascal compilers, e.g. to ease
the interfacing with C and other languages in a portable way, and to work with files, directories,
dates and more, mostly independent of the underlying operating system.

Included units provide support for regular expressions, arithmetic with integer, rational and
real numbers of unlimited size, internationalization, inter-process communication, message di-
gests and more. Demo programs show the usage of these units and of many compiler features.

This manual contains
an overview of some of GPC’s most interesting features, see Chapter 1 [Highlights|, page 5,
a list of new features since the last release, see Chapter 2 [News|, page 9,
the GNU Pascal Frequently Asked Questions List, see Chapter 3 [FAQ)], page 13,
installation instructions, see Chapter 4 [Installation], page 25,

e a QuickStart Guide for programmers used to the Turbo Pascal/Borland Pascal compiler,
see Chapter 7 [Borland Pascal], page 235,
e a list of command-line options to invoke the compiler, see Chapter 5 [Invoking GPC]

page 33,

e the Programmer’s Guide to GPC, describing the Pascal programming language in general
and GPC specifc aspects, see Chapter 6 [Programming|, page 45,

e the alphabetical GPC language reference, see Chapter 8 [Referencel, page 255,

e a list of keywords and operators supported by GNU Pascal, see Chapter 9 [Keywords,
page 443,

e information on how to report bugs in GNU Pascal and how to get support, see Chapter 10
[Support], page 449,

e the list of known bugs and things to do, also listing bugs fixed and features implemented
recently, see Chapter 11 [To Do), page 455,

4 The GNU Pascal Manual

e some information for those who are interested in how GNU Pascal works internally, see
Chapter 12 [Internals], page 463,

e a list of contributors which tells you who developed and is maintaining GNU Pascal, see
Appendix E [Acknowledgments], page 503,

e the GNU General Public License which informs you about your rights and responsibilites
when using, modifying and distributing GNU Pascal, see Appendix A [Copying|, page 481,

e and other texts about Free Software and the GNU Project intended to answer questions
like “what is GNU?” you might have in mind now, see Appendix G [GNUJ, page 511.

If you are familiar with Standard Pascal (ISO 7185) programming, you can probably just
go ahead and try to compile your programs. Also, most of the ISO Extended Pascal Standard
(ISO 10206) is implemented into GNU Pascal. The Extended Pascal features still missing from
GPC are qualified module import, protected module export variables, set types with variable
bounds, structured value initializers and expressions as subrange lower bounds.

If you are a Borland Pascal programmer, you should probably start reading the QuickStart
guide from BP to GNU Pascal, see Chapter 7 [Borland Pascal|, page 235. If you are curious
about the new features GPC offers, you can get an idea in the overview of GPC highlights
(see Chapter 1 [Highlights|, page 5), and read in more detail about them in the Programmer’s
Guide to GPC (see Chapter 6 [Programming|, page 45) and in the alphabetical GPC Language
Reference (see Chapter 8 [Reference], page 255).

And, please, think about how you can contribute to the GNU Pascal project, too. Please sup-
port our work by contributing yours in form of example programs, bug reports, documentation,
or even actual improvements of the compiler.

All trademarks used in this manual are properties of their respective owners.

Chapter 1: Some of GPC’s most interesting features. 5

1 Some of GPC’s most interesting features.

The GNU Pascal Compiler (GPC) is, as the name says, the Pascal compiler of the GNU
family (see Appendix G [GNU]J, page 511). This means:
e GPC is a 32/64 bit compiler,

e does not have limits like the 64 kB or 640 kB limit known from certain operating systems
— even on those systems —,

e runs on all operating systems supported by GNU C, including

Linux on Intel, Alpha, S390, and all other supported types of hardware,
the BSD family: FreeBSD, NetBSD, OpenBSD,
DOS with 32 bits, using DJGPP or EMX]
MS-Windows 9x/NT, using CygWin or mingw,
0S/2 with

EMX,

Mac OS X,

MIPS-SGI-IRIX,

Alpha-DEC-OSF,

Sparc-Sun-Solaris,

HP/UX

and more,

e can act as a native or as a cross compiler between all supported systems,

e produces highly optimized code for all these systems,

e is Free Software (Open-Source Software) according to the GNU General Public License (see
Appendix G [GNU], page 511, for remarks and translations),

e is compatible to other GNU languages and tools such as GNU C and the GNU debugger.

The compiler supports the following language standards and quasi-standards:

ISO 7185 Pascal (see Appendix F [Resources|, page 507),
most of ISO 10206 Extended Pascal,

Borland Pascal 7.0,

parts of Borland Delphi, Mac Pascal and Pascal-SC (PXSC).

Some highlights:

e From Standard Pascal: Many popular Pascal compilers claim to extend Standard Pascal
but miss these important features.

Conformant array parameters — the standardized and comfortable way to pass arrays
of varying size to procedures and functions. [Example (conformantdemo.pas)]

Passing local procedures as procedural parameters — with full access to all variables of
the “parent” procedure. [Example (iteratordemo.pas)]

Automatic file buffers and standard ‘Get’ and ‘Put’ procedures. Read ahead from
files without temporary variables. [Example (filebufldemo.pas)| This allows you, for
instance, to validate numeric input from text files before reading without conversion
through strings. [Example (filebuf2demo.pas)]

True packed records and arrays. Pack 8 Booleans into 1 byte. [Example (pack-
demo.pas)]

Internal files. You don’t have to worry about creating temporary file names and erasing
the files later. [Example (intfiledemo.pas)]

http://www.linux.org
http://www.freebsd.org
http://www.netbsd.org
http://www.openbsd.org
http://www.delorie.com/djgpp/
http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/index.html
http://cygwin.com
http://www.mingw.org
http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/index.html
http://www.gnu.org/philosophy/free-sw.html
http://www.opensource.org
http://www.gnu.org/copyleft/gpl.html

The GNU Pascal Manual

Global ‘goto’. (Yes, ‘goto’ has its place when it is not restricted to the current routine.)
[Example (parserdemo.pas)]

Automatically set discriminants of variant records in ‘New’. [Example (variant-
demo.pas)]

Sets of arbitrary size. [Example (bigsetsdemo.pas)]

e From Extended Pascal:

Strings of arbitrary length. [Example (stringschemademo.pas)]

‘ReadStr’ and ‘WriteStr’. Read from and write to strings with the full comfort of
‘ReadLn’/‘Writeln’. [Example (rwstringdemo.pas)]
System-independent date/time routines. [Example (datetimedemo.pas)]

Y

Set member iteration: ‘for Chin [’A’ .. ’Z’, ’a’ .. ’z’] do ...’ [Example

(bigsetsdemo.pas)]

Set extensions (symmetric difference, ‘Card’)

Generalized ‘Succ’ and ‘Pred’ functions (foo := Succ (bar, 5);).
Complex numbers. [Example (mandelbrot.pas)] [Example (parserdemo.pas)]
Exponentiation operators (‘pow’ and ‘**’) for real and complex numbers.
Initialized variables. [Example (initvardemo.pas)]

Functions can return array or record values.

Result variables. [Example (resultvardemo.pas)]

Modules.

Non-decimal numbers in base 2 through 36: ‘base#number’.

‘MinReal’, ‘MaxReal’, ‘EpsReal’, ‘MaxChar’ constants.

Schemata — the Pascal way to get dynamic arrays without dirty tricks. [Example
(schemademo.pas)]

Local variables may have dynamic size. [Example (dynamicarraydemo.pas)]

Array Slice Acces — access parts of an array as a smaller array, even on the left side of
an assignment [Example (arrayslicedemo.pas)]

e Compatible to Borland Pascal 7.0 with objects (BP):

Supports units, objects, ..., and makes even things like ‘absolute’ variables portable.
[Example (absdemo.pas)]

Comes with portable versions of the BP standard units with full source.

True network-transparent CRT unit: You can run your CRT applications locally or
while being logged in remotely, without any need to worry about different terminal
types. Compatible to BP’s unit, but with many extensions, such as overlapping win-
dows. [Example (crtdemo.pas)]

Fully functional GUI (X11) version of CRT (also completely network transparent).
The ‘Random’ function can produce the same sequence of pseudo-random numbers as
BP does — if you need that instead of the much more elaborate default algorithm.
Supports BP style procedural variables as well as Standard Pascal’s procedural param-
eters. [Example (procvardemo.pas)]

A ‘Ports’ unit lets you access CPU I/O ports on systems where this makes sense.
[Example (portdemo.pas)]

Special compatibility features to help migrating from BP to GPC, like a ‘GPC for BP’
unit which provides some of GPC’s features for BP, and some routines to access sets
of large memory blocks in a uniform way under GPC and BP (even in real mode).
[Example (bigmemdemo.pas)]

Comes with a BP compatible ‘binobj’ utility. [Example (binobjdemo.pas)]

Chapter 1: Some of GPC’s most interesting features. 7

e From Borland Delphi:

‘abstract’ object types and methods
‘is’ and ‘as’ operators to test object type membership
Comments with ‘//’

— A ‘SetLength’ procedure for strings makes it unnecessary to use dirty tricks like as-

signments to the “zeroth character”.
‘Initialize’ and ‘Finalize’ for low-level handling of variables.

e From Pascal-SC (PXSC):

User-definable operators. Add your vectors with ‘+’.

e Carefully designed GNU extensions help you to make your real-world programs portable:

64-bit signed and unsigned integer types.

Special types guarantee compatibility to other GNU languages such as GNU C. Direc-
tives like ‘{$L foo.c}’ make it easy to maintain projects written in multiple languages,
e.g., including code written in other languages into Pascal programs [Example (Pascal
part) (c-gpc.pas)] [Example (C part) (c_gpc-c.c)],

or including Pascal code into programs written in other languages. [Example (Pas-
cal part) (gpc_c_pas.pas)] [Example (Pascal unit) (gpc_c_unit.pas)] [Example (C part)
(gpe-c-c.0)]

Extensions like ‘BitSize0f’ and ‘ConvertFromBigEndian’ help you to deal with dif-
ferent data sizes and endianesses. [Example (endiandemo.pas)]

Little somethings like ‘DirSeparator’, ‘PathSeparator’, ‘GetTempDirectory’ help you
to write programs that look and feel “at home” on all operating systems.

The ‘PExecute’ routine lets you execute child processes in a portable way that takes
full advantage of multitasking environments. [Example (pexecutedemo.pas)]

The GNU GetOpt routines give you comfortable access to Unix-style short and long
command-line options with and without arguments. [Example (getoptdemo.pas)]
Routines like ‘FSplit’ or ‘FSearch’ or ‘FExpand’ know about the specifics of the various
different operating systems. [Example (fexpanddemo.pas)]

The ‘FormatTime’ function lets you format date and time values, according to various
formatting rules. [Example (formattimedemo.pas)]

e Useful and portable GNU standard units:

A ‘Pipe’ unit gives you inter-process communication even under plain DOS. [Example
(pipedemo.pas)| [Demo process for the example (demoproc.pas)]

With the ‘RegEx’ unit you can do searches with regular expressions. [Example
(regexdemo.pas)]

The GNU MultiPrecision (‘GMP’) unit allows you to do arithmetics with integer, real,
and rational numbers of arbitrary precision. [Example: factorial (factorial.pas)] [Ex-
ample: fibonacci (fibonacci.pas)] [Example: power (power.pas)] [Example: real power
(realpower.pas)] [Example: pi (pi.pas)]

Posix functions like ‘ReadDir’, ‘StatFS’ or ‘FileLock’ provide an efficient, easy-to-use
and portable interface to the operating system. [Example (readdirdemo.pas)] [Example
(statfsdemo.pas)| [Example (filelockdemo.pas)]

A ‘DosUnix’ unit compensates for some of the incompatibilities between two families
of operating systems. [Example (dosunixdemo.pas)]

An ‘MD5’ unit to compute MD5 message digests, according to RFC 1321. [Example
(md5demo.pas)]

A ‘FileUtils’ unit which provides some higher-level file and directory handling rou-
tines. [Example (findfilesdemo.pas)]

The GNU Pascal Manual

A ‘StringUtils’ unit which provides some higher-level string handling routines. [Ex-
ample (stringhashdemo.pas)]

An ‘Intl’ unit for internationalization. [Example (gettextdemo.pas)] [Example (lo-
caledemo.pas)]

A ‘Trap’ unit to trap runtime errors and handle them within your program. [Example
(trapdemo.pas)]

A ‘TFDD’ unit that provides some tricks with text files, e.g. a “tee” file which causes
everything written to it to be written to two other files. [Example (tfdddemo.pas)]

A ‘HeapMon’ unit to help you find memory leaks in your programs.

The demo programs mentioned above are available both on the WWW and in GPC source
and binary distributions.

Disadvantages:

e The GNU debugger (GDB) does not yet understand Pascal syntax and types; you have to
use C syntax when debugging Pascal programs with GDB.

e With GPC you get longer compilation times than with, e.g., Borland Pascal.

Co-workers welcome!

Able, committed programmers are always welcome in the GNU Pascal team. If you want
to be independent of companies that you must pay for getting a compiler with more restrictive
licensing conditions that only runs on one operating system, be invited to join the development

team, Appendix E [Acknowledgments|, page 503

P

Chapter 2: New Features of GNU Pascal. 9

2 New Features of GNU Pascal.

GPC’s new or changed features since the last (non alpha/beta) GPC release are listed here.

Items without further description refer to new routines, variables or options.

Features implemented for compatibility to other compilers are marked with, e.g., ‘(B)’ for

BP compatibility.

A few old and obsolete features have been dropped or replaced by cleaner, more flexible or

otherwise more useful ones. This might lead to minor problems with old code, but we suppose
they’re rare and easy to overcome. They are marked with ‘(@)’.

trimming string relations as functions (‘EQPad’ etc.) (fjf873.pas)

new options ‘-W[no-]interface-file-name’

‘SeekEOF’ and ‘SeekEOLn’ use ‘Input’ implicitly when no file is given (fjf871.pas) (B)
tagging for ‘with’ statements (Sun Pascal) (tom6.pas)

new option ‘--sun-pascal’

field names and array indices in initalizers are recognized (waldek5*.pas) (options
‘~W[no-]field-name-problem’ removed, @)

object directives ‘published’, ‘public’ (both equivalent), ‘protected’ (scope limited to
object type and derived object types), ‘private’ (scope limited to current unit/module)
(fjf864*.pas) (options ‘-W[no-Jobject-directives’ removed, Q)

the operator precedence and associativity of ‘+’ and ‘=’ is now as defined in EP by
default (and as in BP with ‘--borland-pascal’) <Pine.LNX.4.44.0210251249500.6181-
100000@duch.mimuw.edu.pl> (fjf863*.pas) (@)

‘Integer (16)’ etc. changed to ‘Integer attribute (Size = 16)’ (works for integer and
Boolean types) (fjf861.pas) (@)

types can have attributes (note: no preceding ;’) (fjf860*.pas)
dynamic object methods (fjf859.pas) (B)

3

in ‘--borland-pascal’ mode, ‘Assign’ unconditionally (re-)initializes its file parameter
(fjf858.pas)

GPC doesn’t use ‘gpm’ files anymore (instead, each module has an implicit
‘modulename-all.gpi’ interface which is a regular ‘gpi’ file)

make the program/module/unit finalizers non-public (‘static’ in C sense), omit them if
easily possible

new options ‘-W[no-]parentheses’ (fjf848*.pas)
non-‘interface’ modules with empty implementation part (pmodl.pas, {jf843.pas)

‘maximum-field-alignment’ and ‘[no-]field-widths’ work as local compiler directives
now (fjf842.pas)

dropped ‘{$debug-statement}’ (should not be necessary anymore, now that debug info
mostly works)

new options ‘--[no-]longjmp-all-nonlocal-labels’
object methods can have attributes (fjf826*.pas)
new attributes ‘iocritical’ (fjf824*.pas), ‘ignorable’ ({jf839*.pas) for routines

dropped computed ‘goto’ (never worked for nonlocal ‘goto’ into the main program, imple-
menting it would be quite difficult, probably not worth it) (@)

new type ‘AnyFile’ for parameters and pointer targets ({fjf821*.pas)
‘TimeStamp’ is now a packed record (E)
Mac Pascal specific features are supported according to the dialect options (M)

10

The GNU Pascal Manual

¢

‘-—interface-only’ does not require ‘-8’ or ‘-c’ anymore (and does not create an object

file)

‘initialization’, ‘finalization’ (D)

‘TimeZone’ in ‘TimeStamp’ counts seconds east of UTC now (not west, as before) (date-
timedemo.pas) (@)

‘export Foo = all (...)’ (fjf811*.pas)

new options ‘-W[no-]local-external’ (implied by ‘-Wall’)

type-casts are BP compatible now, in particular, value type-casts between ordinal and real
or complex types don’t work anymore (B) (@)

all non-ISO-7185 keywords can be used as identifiers (with two small exceptions) (fjf440.pas)

‘pack-struct’ does not imply bit-level packing anymore (only explicit ‘packed’ records and
arrays do) (@)

new options ‘--[no-]ignore-packed’ (‘--ignore-packed’ is the default in BP mode)

(fjf796*.pas) (B) (@)
new option ‘--maximum-field-alignment=N’
new options ‘{$[no-Ipack-struct}’ as a compiler directive

‘attribute’ for routines doesn’t imply ‘forward’ anymore (so you don’t have to declare
routines twice in a program or implementation part when setting the linker name or some
other attribute) (@)

‘static’, ‘volatile’ and ‘register’ for variables and ‘inline’ for routines are no prefix-
directives anymore, but ‘attribute’s (@)

combining several dialect options (such as ‘--extended-pascal --borland-pascal’)
doesn’t work anymore (what should this mean, anyway? Combine the features, but also

‘external’ without ‘name’ defaults to all-lowercase now (@)

‘c’, ‘c_language’ and ‘asmname’ are deprecated (@)

‘external name ’foo’’ (fjf780.pas), ‘external ’libname’ name ’foo’’ (where ‘libname’
is ignored) (B)

Mac Pascal directives ‘definec’, ‘macro’, ‘undefc’, ‘ifc’, ‘ifoptc’, ‘elsec’, ‘elifc’, ‘endc’,
‘errorc’ (treated as equivalent to the corresponding existing ones) (M)

units without ‘implementation’ part (M)

new options ‘--vax-pascal’, ‘--mac-pascal’

attributes ‘const’ for variables and ‘name’ for variables, routines and modules; assembler
names and module/unit file names can now be expressions (which must yield string con-
stants) (fjf781*.pas, £jf809*.pas)

the utilities ‘gpidump’ and ‘binobj’ are installed with GPC (B)

new options ‘-W[no-Jidentifier-case’, ‘-W[no-Jidentifier-case-local’ (fjf751%*. pas)
new compiler directive ‘$R foo’, equivalent to ‘$L foo.resource’ (B)

dropped ‘--[no-]borland-char-constants’ (now simply coupled to dialect options) (@)

test suite: support progress messages (‘TEST_RUN_FLAGS=-p’ from the Makefile; ‘-p’ in
testgpc); see http://fjf.gnu.de/misc/progress-messages.tar.gz

‘=" and ‘<>’ comparisons of structures (arrays, records, ...) except strings and sets are
forbidden now (@) (E)

irrelevant operands and arguments (e.g.: ‘foo in [1’; ‘bar * [1’; ‘Im (baz)’ if ‘baz’ is of
real type) are not necessarily evaluated anymore (which is allowed by the standard); instead,
a warning is given if they have side-effects (@)

http://fjf.gnu.de/misc/progress-messages.tar.gz

Chapter 2: New Features of GNU Pascal. 11

accept only one program, unit, module interface or implementation or a module
interface and the implementation of the same module in one file; new options
‘~-[no-]ignore-garbage-after-dot’ (fjf735*.pas) (@)
new options ‘-W[no-Jimplicit-io’ (fjf734*.pas)
new options ‘--enable-keyword’, ‘--disable-keyword’ (fjf733*.pas)
‘CBoolean’ (fjf727.pas)
dropped the usage of ‘GetMem’ as a function with one parameter (only the BP compatible
usage as a procedure with two parameters remains) (@)
accessing the variable ‘FileMode’ now requires using the ‘GPC’ (or, for BP compatibility,
the ‘System’) unit (@)
‘DupHandle’
dropped the predefined dialect symbols ‘__CLASSIC_PASCAL__’, ‘__STANDARD_PASCAL__’,
‘__EXTENDED_PASCAL__’, ‘__OBJECT_PASCAL__’, ‘__UCSD_PASCAL__’,
‘__BORLAND_PASCAL__’, ‘__DELPHI__’, ‘__PASCAL_SC__’ and ‘__GNU_PASCAL__’ (one can
use ‘{$ifopt borland-pascall}’ etc. instead) (@)
‘Succ’, ‘Pred’, ‘Inc’, ‘Dec’ for real numbers (fjf714*.pas)
use environment variables ‘GPC_UNIT_PATH’, ‘GPC_OBJECT_PATH’
new options ‘-W[no-]float-equal’
new option ‘--ucsd-pascal’
dropped the syntax ‘type foo = procedure (Integer, Real)’ (i.e., without parameter
names) (@)
CRT: new argument ‘On’ to ‘CRTSavePreviousScreen’
‘SetUserID’, ‘SetGroupID’
‘HeapChecking’
new built-in procedure ‘Assert’; new switches ‘--[no]-assert’ (also ‘{$C+}’, ‘{$C-}’ for
Delphi compatibility) (fjf665*.pas) (D)
‘ProcessGroup’
StringUtils: ‘QuoteEnum’
‘CurrentFunctionName’ (fjf752.pas)
TFDD: new unit
gpe-run: new options ‘~e FILE’ and ‘-E FILE’ (redirect/append standard error)
Have fun,

The GNU Pascal Development Team

12

The GNU Pascal Manual

Chapter 3: The GNU Pascal Frequently Asked Questions List. 13

3 The GNU Pascal Frequently Asked Questions List.

Edition 0.9, August 2000

This is the Frequently Asked Questions List (FAQ) for GNU Pascal. If the FAQ and the doc-
umentation do not help you, you have detected a bug in it which should be reported, Section 10.1
(Mailing List], page 449. Please really do it, so we can improve the documentation.

3.1 GNU Pascal

3.1.1 What and why?

The purpose of the GNU Pascal project is to produce a Pascal compiler (called GNU Pascal
or GPC) which

e combines the clarity of Pascal with powerful tools suitable for real-life programming,

e supports both the Pascal standard and the Extended Pascal standard as defined by ISO,
ANSI and IEEE (ISO 7185:1990, ISO/IEC 10206:1991, ANSI/IEEE 770X3.160-1989),

e supports other Pascal standards (UCSD Pascal, Borland Pascal, parts of Borland Delphi,
Mac Pascal and Pascal-SC) in so far as this serves the goal of clarity and usability,

e may be distributed under GNU license conditions, and

e can generate code for and run on any computer for which the GNU C compiler can generate
code and run on.

Pascal was originally designed for teaching. GNU Pascal provides a smooth way to proceed
to challenging programming tasks without learning a completely different language.

The current release implements Standard Pascal (ISO 7185, levels 0 and 1), most of Extended
Pascal (ISO 10206, aiming for full compliance), is highly compatible to Borland Pascal (version

7.0), has some features for compatibility to other compilers (such as VAX Pascal, Sun Pascal,
Mac Pascal, Borland Delphi and Pascal-SC).

It provides a lot of useful GNU extensions not found in other Pascal compilers, e.g. to ease
the interfacing with C and other languages in a portable way, and to work with files, directories,
dates and more, mostly independent of the underlying operating system.

Included units provide support for regular expressions, arithmetic with integer, rational and
real numbers of unlimited size, internationalization, inter-process communication, message di-
gests and more. Demo programs show the usage of these units and of many compiler features.

3.1.2 What is the current version?

Prior to July 2000 releases were several months apart. Since then there has been
a new release every few days, available as a source archive from the GPC web site,
http://www.gnu-pascal.de.

For details about new features, see the section ‘News’ on the web site. On bugs fixed recently,
see the ‘Done’ section of the To-Do list (on the same web site).

GPC uses GCC as a back-end. Patches for GCC 2.8.1 and GCC 2.95.x are provided but it
is recommended that you use GCC 2.95.x.

http://www.gnu-pascal.de

14 The GNU Pascal Manual

3.1.3 Is it compatible with Turbo Pascal (R)?

GPC is not a drop-in replacement for Borland’s Turbo Pascal (R). Almost all BP language
features are supported. Notable exceptions are the string format (as discussed below), or the
‘Mem’ and ‘Port’ pseudo arrays, though replacement functions for the latter on TA32 platforms
exist in the ‘Ports’ unit.

Almost all of BP’s run time library is supported in GPC, either by built-in compiler features
or in units with the same names as their BP counterparts.

For details about the compatibility, the few remaining incompatibilities and some useful al-
ternatives to BP features, see the ‘Borland Pascal’ chapter in the GPC Manual. (see Chapter 7
[Borland Pascal], page 235)

3.1.4 Which platforms are supported by GNU Pascal?

GPC uses the GCC backend, so it should run on any system that is supported by GNU
CC. This includes a large variety of Unix systems, MS-DOS, OS/2 and Win32. A full list of
platforms supported by GCC can be found in the file ‘INSTALL’ of the GCC distribution. Not
all of these have actually been tested, but it is known to run on these platforms:
ix86-linux (Linux 2.x, ELF)
i486-linuxaout
1486-linuxoldld
i386-freebsd1.2.0

AIX 4.2.1

AIX 4.3

DJGPP V2 (Dos)

EMX 0.9B (0S/2, Dos)

Cygwin32 beta20 and higher (MS-Windows95/98, MS-Windows NT)
mingw32 (MS-Windows95/98, MS-Windows NT)

mips-sgi-irix5.3
mips-sgi-irix6.5
sun-sparc-sunos4.1.4
sparc-sun-solaris2.x
sun-sparc-solaris 2.5.1
sun-sparc-solaris 2.6
sun-sparc-solaris 7
sun-sparc-solaris 8
alpha-unknown-linux
alpha-dec-o0sf4.0b
$390-ibm-linux-gnu
OK people — send us your success stories, with canonical machine name!

3.2 Installing GPC

You find the most up-to-date installation instructions in the GPC Manual or the file ‘INSTALL’
in source distributions, or on the GPC web site. (see Chapter 4 [Installation], page 25)
The following sections describe things you might need or want to install besides GPC itself.

3.2.1 What to read next

After installing GPC, please check the files in the directory ‘/usr/local/doc/gpc’:

‘README’ General Information about GPC
‘FAQ’ This FAQ :—)

Chapter 3: The GNU Pascal Frequently Asked Questions List. 15

‘NEWS’ Changes since the last release

‘BUGS’ How to report bugs, about the Test Suite
‘AUTHORS’ List of GPC authors

‘COPYING’ The GNU General Public License
‘COPYING.LIB’ The GNU Lesser General Public License

3.2.2 Which components do I need to compile Pascal code?

A complete Pascal compiler system should at least have:
The actual compiler, GPC.
An editor, assembler, linker, librarian and friends.

A C library. If you have a working C compiler, you already have this.

W D=

A debugger, if you want to debug your programs.

For most people, the GNU binutils and GNU debugger (‘gdb’) are a good choice, although
some may prefer to use vendor specific tools.

3.2.3 How do I debug my Pascal programs?

To debug your programs, (a) GNU Pascal must be able to generate executables with debug
info for your platform, and (b) you must have a debugger which understands this.

e If ‘gpc -g -0 hello hello.p’ says:
gpc: —g not supported for this platform

then GPC is unable to generate debugging info. Usually, installing ‘gas’ (part of GNU
binutils) instead of your system’s assembler can overcome this. When you configure
the GCC used for GPC, specify ‘--with-gnu-as’, and possibly ‘--with-gnu-1d’ and/or
‘--with-stabs’. More information can be found in the ‘INSTALL’ file in the GNU CC
source directory.

e Your system’s debugger may not understand the debug info generated by GNU tools. In
this case, installing ‘gdb’ may help.

The bottom line: if you can debug GCC compiled programs, you should be able to do this
with GPC too.

The GNU debugger (‘gdb’) currently does not have a “Pascal” mode, so it is unable to
display certain Pascal structures etc. When debugging, please note that the Initial Letter In
Each Identifier Is In Upper Case And The Rest Are In Lower Case. If you want to display
variable ‘foo’ in the debugger, type ‘show Foo’ or ‘display Foo’ instead.

Although ‘gdb’ is an excellent debugger, it’s user interface is not everybody’s preference. If
you like to debug under X11, please refer to the comp.windows.x FAQ: “Where can I get an
X-based debugger?” at:
http://www.cis.ohio-state.edu/hypertext/faq/usenet/x-faq/part6/fag-doc-2.html

Some useful frontends include: XXGDB, tGDB and XWPE. See:
http://wuw.ee.ryerson.ca:8080/ elf/xapps/Q-IV.html

Very nice, but resource consuming is the Motif based DDD:
http://sol.ibr.cs.tu-bs.de/softech/ddd/

Furthermore, RHIDE (see Section 3.2.6 [IDE], page 17) contains built-in debugging suport,
similar to the IDE of BP.

http://www.cis.ohio-state.edu/hypertext/faq/usenet/x-faq/part6/faq-doc-2.html
http://www.ee.ryerson.ca:8080/~elf/xapps/Q-IV.html
http://sol.ibr.cs.tu-bs.de/softech/ddd/

16 The GNU Pascal Manual

3.2.4 What additional libraries should I have?

You will need certain additional libraries when you compile some of the units. These can be
found in the directory http://www.gnu-pascal.de/libs/.

Currently, there are the following libraries:

gmp Arithmetic for integers, rationals and real numbers with arbitrary size and precision.
Used by the GMP unit.

rx Regular expression matching and substitution. Used by the RegEx unit.

ncurses

PDCurses Screen handling. Used by the CRT unit. Depending on your system, you have the
following choices:

Unix: You can compile terminal applications with ncurses and applications that
run in an X11 window with PDCurses (though terminal applications can, of course,
also run in an xterm under X11). ncurses is used by default. If you want to use
PDCurses (a.k.a. XCurses), give the option ‘-DX11’ when compiling CRT.

Dos with DJGPP and MS-Windows with mingw: Only PDCurses is available and
will be used by default.

MS-Windows with Cygwin: PDCurses and ncurses are available. PDCurses is used
by default. If you want to use ncurses, give the option ‘-DUSE_NCURSES’ when
compiling CRT.

Other systems: Please see the ‘README’s and installation instructions of PDCurses
and ncurses to find out which one(s) can be built on your system. See the condition-
als at the end of crt.inc and crtc.h (and change them if necessary) on which library
is used by default.

intl Internationalization. Used by the Intl unit. On some systems, it is part of the
system library (libc).

ElectricFence
This library is not used by any GPC unit. It is a debugging tool to assist you in
finding memory allocation bugs. To use it, just link it to your program, either on
the command line (‘-lefence’) or in the source code (‘{$L efencel}’) which you
might want to put into an ‘{$ifdef DEBUG}’ or similar since using libefence is only
recommended for debugging.

The source code of the libraries is available in the main ‘1ibs’ directory. Most libraries come
with one or several patches which should be applied before compiling them.

Binaries for some platforms are available in the ‘binary/platform’ subdirectories. If you
compile the libraries for other platforms, be invited to make the binaries available to us for
distribution on the web site.

There are also the following files:

‘terminfo-linux.tar.gz’
This is a patch to enable ncurses programs to make use of the ability of Linux 2.2
and newer kernels to produce a block cursor when needed. The present patch can be
installed without recompiling anything, just by copying some files into place. More
details can be found in the ‘README’ file included in this archive. The patch will not
do any harm on older kernels. Please note that not only on Linux machines it is
useful to install the patch. Installing them on any other machine will allow users who
telnet in from a Linux console to profit from the block cursor capability. Besides,
some Unix systems have installed older Linux terminfo entries or none at all, so it’s
a good thing, anyway, to give them a current version. The patch is included in the
terminfo database of ncurses 5.0, so if you install ncurses 5.0 (source or binary), you

http://www.gnu-pascal.de/libs/

Chapter 3: The GNU Pascal Frequently Asked Questions List. 17

don’t need to get the patch separately. But you can install it on a system with an
older ncurses version if you don’t feel like upgrading ncurses altogether.

‘tsort-2.9i.zip’
A little utility (extracted from util-linux-2.9i, but not Linux specific), needed for
the configuration of the rx library. You need it only if you compile rx yourself (and
if it’s not already present on your system), not when using a rx binary.

3.2.5 Contributed units

Several people have contributed units for GPC. They are usually announced on
the mailing list, Section 10.1 [Mailing List], page 449. Most of them can be found in
http://www.gnu-pascal.de/contrib/.

3.2.6 Can you recommend an IDE?

Users of Borland Pascal may wonder if there’s a replacement for the IDE (Integrated Devel-
opment Environment). Here’s a few suggestions:

e (X)Emacs. Some people think it’s the answer to the question of Life, the Universe and
Everything, others decide it’s uGNUsable. Available from your friendly GNU mirror and
most distributions.

e PENG. It’s not free software, but it was written with GPC. It’s very similar to Borland’s
IDE, but with many extensions. Binaries for DJGPP, Linux and Solaris can be downloaded
from http://fjf.gnu.de/peng/.

e RHIDE. DJGPP users might want to try RHIDE. The latest (beta) release is compatible
with GNU Pascal and allows stepping, tracing and watching like Borland’s IDE. It can be
downloaded from http://www.rhide. com.

e DevPascal. DevPascal is a Free Software IDE for mingw32. It can
be downloaded from http://www.gnu-pascal.de/contrib/chief/ or
http://www.bloodshed.net/devpascal.html

e XWPE is another imitation of the Borland IDE, so users of Borland Pascal may find it a
good alternative.

3.3 GNU Pascal on the DJGPP (MS-DOS) platform

This chapter discusses some potential problems with GNU Pascal on MS-DOS, using DJGPP.

3.3.1 What is DJGPP?

The following paragraph is from the site http://www.delorie.com/djgpp/:

DJGPP is a complete 32-bit C/C++ development system for Intel 80386 (and higher) PCs
running DOS. It includes ports of many GNU development utilities. The development tools
require a 80386 or newer computer to run, as do the programs they produce. In most cases, the
programs it produces can be sold commercially without license or royalties.

3.3.2 If you need more information

GPC/DJGPP is a DJGPP V2 application, and most of the DJGPP documen-
tation applies for GPC too. A great source of information is the DJGPP FAQ:
http://www.delorie.com/djgpp/v2faq/230b.zip

Another place to look for DJGPP documentation is the DJGPP Knowledge Base, at this
URL: http://www.delorie.com/djgpp/doc/kb/

http://www.gnu-pascal.de/contrib/
http://fjf.gnu.de/peng/
http://www.rhide.com
http://www.gnu-pascal.de/contrib/chief/
http://www.bloodshed.net/devpascal.html
http://www.delorie.com/djgpp/
http://www.delorie.com/djgpp/v2faq/230b.zip
http://www.delorie.com/djgpp/doc/kb/

18 The GNU Pascal Manual

3.3.3 What do I download?

As discussed in Section 3.2.2 [Components|, page 15, other than GPC itself, you
need an assembler, linker and friends, a C library and possibly a debugger. The site
http://wuw.delorie.com/djgpp/ recommended the following files and they will help you find
a mirror:
‘v2/djdev203.zip’ (C library)

‘v2gnu/bnu2951b.zip’ (assembler, . . .)
‘v2gnu/gcc2952b.zip’ (gce)
‘v2gnu/gdb418b.zip’ (debugger)
‘v2gnu/mak379b.zip’ (make)
‘v2gnu/txi40b.zip’ (texi)

This list is about 10 MB not counting GPC. You can use a binary version of GPC from the
web site.

3.3.4 How do I install the compiler?

If you don’t have DJGPP installed on your harddisk, create a directory for GNU Pascal
(‘c:\gpc’), and unzip the archives. Make sure you preserve the directory structure (use ‘pkunzip
-d’). Now, add the directory where ‘gpc.exe’ lives (‘c:\gpc\bin’) to your path and set the
DJGPP environment variable to point to your ‘djgpp.env’ file:

set DJGPP=c:\gpc\djgpp.env
Then, add this to your ‘djgpp.env’ file:

lgpcppl]
C_INCLUDE_PATH=Y%/>;C_INCLUDE_PATHY%%DJDIRY%/lang/pascal ; XDJDIR%/include

[gpc]
COMPILER_PATH=Y/>;COMPILER_PATHY%%DJDIR%/bin
LIBRARY_PATH=Y,/>;LIBRARY_PATHY/%DJDIRY%/1ib;%DJIDIRY/contrib/grx20/1ib

The binary distribution should come with a ‘djgpp.env’ which is already modified, so you
may not have to do this.

The GPC online documentation is in GNU info format; you need the Info reader
(‘txi390Db.zip’) to read it, or use the built-in Info reader of the RHIDE or PENG IDE. To
add the GPC documentation to the info directory file, edit the ‘c:\gpc\info\dir’ file, and
locate this section:

* GCC: (gcc.inf).
The GNU C, C++, and Objective-C Compiler

* GDB: (gdb.inf).
The GNU Debugger (gdb and gdb-dpmi) .

* GCC: (gcc.inf).
The GNU C, C++, and Objective-C Compiler

* GPC: (gpc.inf).

http://www.delorie.com/djgpp/

Chapter 3: The GNU Pascal Frequently Asked Questions List. 19

The GNU Pascal Compiler

* GDB: (gdb.inf).
The GNU Debugger (gdb and gdb-dpmi) .

Specific information for low-memory conditions and more can be found in the DJGPP FAQ
and documentation.

3.3.5 I cannot read the Info documentation!

To read the Info documentation, you need the ‘info’ program from ‘txi390b.zip’ or an IDE
like RHIDE or PENG.

3.3.6 GPC says: no DPMI

You don’t have a DPMI server installed, and DJGPP v2 requires it to run. You can either
use one of the commercial DPMI servers (e.g., run ‘gpc’ in a DOS box under MS-Windows)
or download and install CWSDPMI (‘csdpmi3b.zip’) which is a free DPMI server written for
DJGPP.

3.3.7 I have troubles with assembly code

The GNU Assembler (‘as.exe’), or ‘gas’, called by GCC accepts “AT&T” syntax which is
different from “Intel” syntax. Differences are discussed in section 17.1 of the DJGPP FAQ.

A guide is available which was written by Brennan Mr. Wacko Underwood
brennan@mack.rt66.com and describes how to use inline assembly programming with
DJGPP, at this URL: http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_
djgpp.html

There’s also a GPC assembler tutorial at
http://www.gnu-pascal.de/contrib/misc/gpcasm.zip

Section 17.3 of the DJGPP FAQ discusses some methods to convert “Intel” syntax to “AT&T”
syntax.

However, please note that assembler code is unportable, i.e. it will work on TA32 (“x86")
and compatible processors if written for them, but will not even compile for other processors.
So by writing assembler code in your programs, you will limit their usefulness substantially.

If you think you “need” assembler code for speed — and you’ve checked that your assembler
code actually runs faster than Pascal code compiled with suitable optimizations — you might
want to put both Pascal and assembler versions of the critical sections in your program, and let,
e.g., an ‘{$ifdef 1386} decide which one to use. This way, your program will at least compile
on all processors.

3.3.8 Tell me how to do DPMI, BIOS and other DOS related things.

DPMI, BIOS and other functions are no different than other system functions. Refer to the
GPC Manual on how to access your system’s C-library. This small example shows how to use
DPMI, copying some structures and function prototypes of ‘<dpmi .h>’:

program DPMIDemo;

{ Only for DJGPP }

mailto:brennan@mack.rt66.com
http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.gnu-pascal.de/contrib/misc/gpcasm.zip

20 The GNU Pascal Manual

{$x+}

{ ‘Byte’ is ‘unsigned char’ in C,
‘ShortCard’ is ‘unsigned short’ in C,
‘MedCard’ is ‘unsigned long’ in C,
‘Word’ is ‘unsigned’ in C,
etc. (all these types are built-in). }

type
TDpmiVersionRet = record
Major : Byte;
Minor : Byte;
Flags : ShortCard;
CPU : Byte;

Master_PIC: Byte;
Slave_PIC : Byte;
end;

type

TDpmiFreeMemInfo = record
LargestAvailableFreeBlockInBytes,
MaximumUnlockedPageAllocationInPages,
MaximumLockedPageAllocationInPages,
LinearAddressSpaceSizelInPages,
TotalNumberOfUnlockedPages,
TotalNumberOfFreePages,
TotalNumberOfPhysicalPages,
FreelLinearAddressSpaceInPages,
SizeOfPagingFilePartitionInPages,
Reservedl,
Reserved?2,
Reserved3: MedCard;

end;

function DpmiGetVersion (var Version: TDpmiVersionRet): Integer;
external name ’__dpmi_get_version’;

function DpmiGetFreeMemoryInformation
(var MemInfo: TDpmiFreeMemInfo): Integer;
external name ’__dpmi_get_free_memory_information’;

var
Version: TDpmiVersionRet;
MemInfo: TDpmiFreeMemInfo;

begin
if DpmiGetVersion (Version) = O then
begin
WritelLn (’CPU type: >, Version.CPU, ’867);
Writeln (’DPMI major: ’, Version.Major);

WriteLn (’DPMI minor: >, Version.Minor);

Chapter 3: The GNU Pascal Frequently Asked Questions List. 21

end
else
Writeln (’Error in DpmiGetVersion’);
if DpmiGetFreeMemoryInformation (MemInfo) = O then
Writeln (’Free DPMI memory: °’,
MemInfo.TotalNumberOfFreePages, ’ pages.’)
else
Writeln (’Error in DpmiGetMemoryInformation’);
end.

3.3.9 I got an exception when accessing an ‘array [1 .. 4000000] of
Byte’.

Per default, the maximum stack size of a DJGPP application is 256K. If you need more, you
have to adjust it with the stubedit program, i.e.:
stubedit your_app.exe minstack=5000K
Another way is to add the following code to your program to define a minimum stack size
(here: 2 MB). This value will be honored even if a user sets a lower value by using stubedit,
so this method might be a little safer. (The linker name ‘_stklen’ is essential; the Pascal
identifier doesn’t matter. The constant doesn’t have to be used anywhere in the program. It
is recommended to put this declaration in the main program file, not in any unit/module, so
programs using a unit/module can set whatever limit they need.)

{$ifdef __GO32__%}
const
MinStackSize: Cardinal = $200000; attribute (name = ’_stklen’);
{$endif}
Still, it might be a good idea to use pointers for large structures, and allocate the memory
at runtime.

DJGPP has to allocate the stack in physical memory at program startup, so one might have
to be careful with too large stack limits. Most other systems allocate stack pages on demand,
so the only reason to set a limit at all might be to prevent a runaway recursion from eating up
all memory ...

On Unix-like systems, you can set a resource limit, but you usually don’t do it in normal
programs, but rather in the shell settings (bash: ‘ulimit’; csh: ‘1imit’; syscall: ‘setrlimit’(2)).

3.4 Strings

3.4.1 What’s this confusion about strings?

Turbo Pascal strings have a length byte in front. Since a byte has the range 0 .. 255,
this limits a string to 255 characters. However, the Pascal string schema, as defined in section
6.4.3.3.3 of the ISO 10206 Extended Pascal standard, is a schema record:

type
String (Capacity: Integer) = record
Length: 0 .. Capacity;
String: packed array [1 .. Capacity + 1] of Char
end;

The “+ 1’ is a GPC extension to make it feasible to automatically add the ‘#0’ terminator
when passing or assigning them to CStrings. Thus at the expense of a little added complexity
(must declare capacity, don’t use ‘GetMem’ without explicit initialization of the ‘Capacity’ field,
and the additional space requirement) you can now have very long strings.

22 The GNU Pascal Manual

3.4.2 Overlaying strings in variant records

Q: Should the different variants in a variant record overlay in the same memory? Previous
Pascals T have used have guaranteed this, and I've got low-level code that relies on this. The
variants are not the same length, and they are intended not to be.

A: No, this is intentional so that the discriminants are not overwritten, and they can be
properly initialized in the first place. Consider:

record
case Boolean of
False: (sl: String (42));
True: (s2: String (99));
end;
If the strings would overlay, in particular their discriminants would occupy the same place
in memory. How should it be initialized? Either way, it would be wrong for at least one of the
variants . . .

So, after a discussion in the [SO Pascal newsgroup where this topic came up concerning file
variables (which also require some automatic initialization and finalization), we decided to do
this in GPC for all types with automatic initialization and finalization (currently files, objects
and schemata, including strings, in the future this might also be Delphi compatible classes and
user-defined initialized and finalized types), since the standard does not guarantee variants to
overlay, anyway . ..

There are two ways in GPC to get guaranteed overlaying (both non-standard, of course, since
the standard does not assume anything about internal representations; both BP compatible),
‘absolute’ declarations and variable type casts. E.g., in order to overlay a byte array ‘b’ to a
variable ‘v’:

var
b: array [1 .. SizeOf (v)] of Byte absolute v;
Or you can use type-casting:
type
t = array [1 .. SizeOf (v)] of Byte;
then ‘t (v)’ can be used as a byte array overlayed to ‘v’.

3.4.3 Why does ‘s[0]’ not contain the length?

Q: In standard Pascal you expect ‘s[1]’ to align with the first character position of ‘s’ and
thus one character to the left is the length of ‘s’. Thus ‘s[0]’ is the length of ‘s’. True?

A: This holds for UCSD/BP strings (which GPC does not yet implement, but that’s planned).
The only strings Standard Pascal knows are arrays of char without any length field.

GPC also supports Extended Pascal string schemata (see Section 3.4.1 [String schemal,
page 21), but they also don’t have a length byte at “position 0”, but rather a ‘Length’ field
(which is larger than one byte).

3.4.4 Watch out when using strings as parameters

Q: Any “gotchas” with string parameters?

A: Be careful when passing string literals as parameters to routines accepting the string as
a value parameter and that internally modify the value of the parameter. Inside the routine,
the value parameter gets a fixed capacity — the length of the string literal that was passed to it.
Any attempt to assign a longer value will not work.

This only applies if the value parameter is declared as ‘String’. If it is declared as a string
with a given capacity (e.g., ‘String (255)’), it gets this capacity within the routine.

news:comp.lang.pascal.ansi-iso

Chapter 3: The GNU Pascal Frequently Asked Questions List. 23

3.4.5 Support for BP compatible short strings

Q: Two different kinds of strings with the same name — ‘String’ — does make a bit of
confusion. Perhaps the oldstyle strings could be renamed ‘short string’ ?

A: When we implement the short strings, we’ll have to do such a distinction. Our current
planning goes like this:

‘String (n)’: string schema (EP compatible)
‘String [n]’: short string (UCSD/BP compatible, where n must be <= 255)

‘String’: dependent on flags, by default undiscriminated schema, but in BP mode (or with
a special switch) short string of capacity 255 (UCSD/BP compatible).

Q: So when will these short strings be available?
A: It’s been planned for over a year. The delay has been caused by more pressing problems.

3.4.6 What about C strings?

A C string (‘char *’) is an array of char, terminated with a ‘#0’ char.

C library functions require C, not Pascal style string arguments. However, Pascal style strings
are automatically converted to C style strings when passed to a routine that expects C style
strings. This works only if the routine reads from the string, not if it modifies it.

E.g., this is how you could access the ‘system()’ call in your C library (which is not necessary
anymore, since ‘Execute’ is already built-in):

program SysCall;

function System (CmdLine: CString): Integer; external name ’system’;

var
Result: Integer;

begin

Result := System (’1ls -1’);

WriteLn (’system() call returned: ’, Result)
end.

You could use the type ‘PChar’ instead of ‘CString’. Both ‘CString’ and ‘PChar’ are prede-
fined as ‘"Char’ — though we recommend ‘CString’ because it makes it clearer that we're talking
about some kind of string rather than a single character.

A lot of library routines in Pascal for many applications exist in the GPC unit and some
other units. Where available, they should be preferred (e.g. ‘Execute’ rather than ‘system()’,
and then you won’t have to worry about ‘CString’s.)

Do not pass a C style string as a ‘const’ or ‘var’ argument if the C prototype says ‘const
char *’ or you will probably get a segfault.

3.5 Getting Help

Please read the GPC Manual (info files or other formats) as well as the ‘README’ and ‘BUGS’
files that come with GPC (usually installed in directory ‘/usr/local/doc/gpc’), plus other
docs that might help (the DJGPP FAQ if you use DJGPP, etc.) before you send email to the
maintainers or mailing list.

In particular, the ‘BUGS’ file contains information on how to submit bug reports in the most
efficient way.

The ‘Support’ chapter of the GPC Manual tells you where to find more information about
GPC and how to contact the GPC developers. (see Chapter 10 [Support|, page 449)

24 The GNU Pascal Manual

3.6 Miscellaneous

3.6.1 I want to contribute; where do I start?

If you want to contribute, please write to the mailing list, Section 10.1 [Mailing List], page 449.

3.6.2 Where is the GNU Pascal web site?

The GPC homepage on the web, for information and downloads, is
http://www.gnu-pascal.de.

The GPC To-Do list, listing the latest features and fixed bugs can also be found there.

3.6.3 About this FAQ

Current Maintainer: Russ Whitaker, russ@ashlandhome.net

This is the second incarnation of the GNU Pascal FAQ list, based on the previous FAQ by
J.J. van der Heijden. Comments about, suggestions for, or corrections to this FAQ list are
welcome.

Please make sure to include in your mail the version number of the document to which your
comments apply (you can find the version at the beginning of this FAQ list).

Many people have contributed to this FAQ, only some of them are acknowledged above.
Much of the info in, and inspiration for this FAQ list was taken from the GPC mailing list
traffic, so you may have (unbeknownst to you) contributed to this list.

http://www.gnu-pascal.de
mailto:russ@ashlandhome.net

Chapter 4: How to download, compile and install GNU Pascal. 25

4 How to download, compile and install GNU
Pascal.

This chapter covers:
e Downloading GPC sources or binaries
e Installation instructions for a GPC binary distribution
e Compilation of the source distribution on a Unix system
e Compilation notes for specific platforms
e Building and installing a cross-compiler
e Crossbuilding a compiler

4.1 Where and what to download

You can download the source code of the current GNU Pascal release from
http://www.gnu-pascal.de/current/

and binaries for some platforms from
http://www.gnu-pascal.de/binary/

The binary archive files are named ‘gpc-version.platform.extension’ — for example
‘gpc-2.1.alpha-unknown-linux-gnu.tar.gz’ for GPC version 2.1 on an Alpha workstation
running the Linux kernel with GNU C Library, or ‘gpc-20000616.1586-pc-djgppv201.zip’
for GPC version 20000616 on an i586 PC running DOS with DJGPP version 2.01.

After you have downloaded the correct archive file for your platform, please read the instal-
lation notes on how to install such a binary distribution.

If you are running Dos or MS Windows, you will need additional tools — see “What else to
download and where” below.

Current snapshots

GNU Pascal is subject to steady development. Alpha and beta snapshots (source only, use
at your own risk) can be found at:

http://www.gnu-pascal.de/alpha/
http://www.gnu-pascal.de/beta/

What else to download and where

When you are using GNU Pascal on a DOS system, you will need either the DJGPP or the
EMX development environment (see below). On an OS/2 system, you will need EMX. On an
MS Windows 95/98/NT system you will need either the CygWin or the mingw32 environment.

GNU Pascal uses the compiler back-end from the GNU Compiler Collection, GNU CC or
GCC. If you want to compile GPC, you will need the source of GCC as well as the source of
GPC itself. From the same place as GPC, please download GCC ‘2.8.1, 2.95.x or 3.2.1".
(It is also available from any GNU mirror; see http://www.gnu.org/software/gcc/.)

Libraries

For some of GPC’s units, you will need some standard libraries. In particular:

Unit Platform Library
CRT Unix/terminal ncurses >= 5.0 (1), (2)
CRT Unix/X11 PDCurses (2)

CRT Dos, MS-Windows PDCurses (3)

http://www.gnu-pascal.de/current/
http://www.gnu-pascal.de/binary/
http://www.gnu-pascal.de/alpha/
http://www.gnu-pascal.de/beta/
http://www.gnu.org/software/gcc/

26 The GNU Pascal Manual

GMP any gmp

RegEx any rx

(debugging) Unix, MS-Windows ElectricFence (4)
Notes:

(1) ncurses version 5.0 or newer is strongly recommended because older versions contain a
bug that severely affects CRT programs.

(2) You can install both ncurses and PDCurses on a Unix system, and choose at compile
time whether to generate a terminal or X11 version of your program.

(3) ncurses also runs under MS-Windows with CygWin (not mingw32, however), but doesn’t
appear to behave much differently from PDCurses on that platform.

(4) ElectricFence is not used by any unit, but can be used for debugging memory allocation
bugs by simply linking it (see the accompanying documentation).

You can find those libraries on many places on the Net. Also, many GNU/Linux distributions,
DJGPP mirrors and other OS distributions already contain some of the libraries. In any case,
you can find the sources of the libraries (sometimes together with patches that you should apply
before building if you choose to build from the sources) and binaries for some platforms in

http://www.gnu-pascal.de/libs/
For more information and descriptions of these libraries, see Section 3.2.4 [Libraries|, page 16.

DJGPP

DJGPP is available from any SimTel mirror in the ‘gnu/djgpp’ subdirectory; for addresses
look into the DJGPP FAQ. To use GNU Pascal you need at least

— the C library, ‘v2/djdev201.zip’, and
— ‘binutils’ (assembler, etc.), ‘v2gnu/bnu270b.zip’.

We also recommend you to get:
— the ‘make’ utility, ‘v2gnu/mak375b.zip’
— the GNU debugger, ‘v2gnu/gdb416b.zip’
— the DJGPP FAQ), ‘v2faq/faq211b.zip’
— the GRX graphics library, http://wuw.gnu.de/software/GRX/

— PENG, http://fjf.gnu.de/peng/, an integrated development environment, similar to
BP’s one, written in GNU Pascal, or

— RHIDE, ‘v2app/rhide.zip’, another integrated development environment, or

— DevPascal, http://www.bloodshed.net/devpascal.html, an integrated development en-
vironment for mingw32.

EMX

EMX is an environment for creating 32-bit applications for DOS and OS/2. It is available
from:

http://www.leo.org/pub/comp/os/0s2/leo/gnu/emx+gcc/index . html
To develop EMX programs with GNU Pascal you need at least
— the EMX runtime package, ‘emxrt.zip’,
— the EMX development system, ‘emxdev*.zip’, and
— the GNU development tools, ‘gnudev*.zip’.
If your DOS box has DPMI (it does if you are using MS Windows or OS/2) you will also
need RSX, available from the same sites as EMX in the subdirectory ‘rsxnt’.

The GNU development tools contain the GNU C compiler which is in fact not needed to use
GNU Pascal. However, the C library s needed.

http://www.gnu-pascal.de/libs/
http://www.delorie.com/djgpp/
http://www.delorie.com/djgpp/v2faq/
http://www.gnu.de/software/GRX/
http://fjf.gnu.de/peng/
http://www.bloodshed.net/devpascal.html
http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/index.html

Chapter 4: How to download, compile and install GNU Pascal. 27

CygWin

CygWin is an environment which implements a POSIX layer under MS Windows, giving
it large parts of the functionality of Unix. CygWin contains development tools such as an
assembler, a linker, etc. GPC needs for operation. More information about CygWin can be
found at

http://cygwin.com

mingw32

The Minimalists’ GNU Win32 environment, mingw32, allows a large number of Unix pro-
grams — including GPC and GCC — to run under MS Windows 95/98/NT using native MS
libraries. mingw32 ressources can be found at

http://wuw.mingw.org

4.2 Installation instructions for a GPC binary distribution

To install a binary distribution, cd to the root directory and unpack the archive while pre-
serving the stored directory structure. Under a Unix compatible system with GNU tar installed,
the following (performed as ‘root’) will do the job:

cd /
tar xzf archive.tar.gz

If you are using a ‘tar’ utility other than GNU tar, it might be necessary to do the above
in an explicit pipe:

cd /
gzip -c -d archive.tar.gz | tar xf -

If you want to install a GPC binary distribution in another directory than it was prepared for
(for example, if you do not have root access to the computer and want to install GPC somewhere
under your home directory), you can do the following:

— Unpack the archive file in a directory of your choice (see above).

— ‘cd’ to the “prefix” directory of the distribution (for instance ‘usr/local’).

— Run the script install-gpc-binary, available from
http://www.gnu-pascal.de/binary/.

— Follow the instructions in the script.

To install a ZIP archive under DOS with ‘PKunzip’, ‘cd’ to the appropriate directory (usually
‘\” for EMX, ‘\DJGPP’ for DJGPP), then call ‘PKunzip’ with the ‘-d’ option:

C:\> cd djgpp
C:\DJGPP> pkunzip -d archive.zip

where ‘archive.zip’ is the name of the distribution file.

For DJGPP you must edit your ‘djgpp.env’ in the ‘DIJGPP’ directory to complete the instal-
lation: Please copy the entries from ‘[gcc]’ to create a new ‘[gpc]’ section. The result may
look as follows:

[gecl
COMPILER_PATH=%/>;COMPILER_PATHY%%DJDIRY/bin
LIBRARY_PATH=%/>;LIBRARY_PATHY%%DJDIRY%/1ib

[gpc]
COMPILER_PATH=Y,/>;COMPILER_PATHY%%DJDIRY/bin

LIBRARY_PATH=Y,/>;LIBRARY_PATH,%DJDIR%/1ib

http://cygwin.com
http://www.mingw.org
http://www.gnu-pascal.de/binary/

28 The GNU Pascal Manual

If you are using the DJGPP version of GPC but do not have a ‘DIJGPP’ directory, please
download and install DJGPP (see Section 4.1 [Download], page 25).

Binary distributions include ‘libgcc.a’ and ‘specs’, files that are normally part of GCC. If
you have GCC installed, they will be replaced unless you manually install the archive.

4.3 Compiling GPC

The preferred way to distribute GNU software is distribution of the source code. However, it
can be a non-trivial exercise to build GNU Pascal on some non-Unix systems, so we also provide
ready-to-run binaries for a number of platforms. (See Section 4.2 [Binary Distributions|, page 27
for how to install a binary distribution.)

GPC is based on the GNU Compiler Collection, GNU CC or GCC. You will need the GCC
sources to build it. It must be the same version as the one GPC is implemented with — 2.8.1,
2.95.x or 3.2.1 as of this writing. Although you need GCC to build the GNU Pascal compiler,
you don’t need GCC to compile Pascal programs once GNU Pascal is installed. (However, using
certain libraries will require compiling C wrappers, so it is a good idea to install the C compiler
as well.)

Because GNU Pascal shares its back-end with GCC, it should run on any system supported
by GCC. A full list of platforms supported by GCC can be found in section “Chapter 4”7 in
“Using and Porting GNU CC”.

The GCC source can be obtained from any mirror of the GNU FTP site,
ftp://ftp.gnu.org/gnu/gcc/. The “core” distribution is sufficient for GPC.

Here is the generic procedure for installing GNU Pascal on a Unix system. See Section 4.4
Compilation Notes|, page 30 for extra information needed to install GPC on DOS-like platforms.

1. Checking the prerequisites

Make sure that GNU make is installed and that you use it in the following
steps. When unsure, you can try ‘make --version’ and/or ‘gmake --version’. It
should tell you that it is GNU make. If you don’t have it, you can obtain it from
http://www.gnu.org/software/make/.

(In the following, we will simply speak of ‘make’ when invoking GNU make; you might need
to call ‘gmake’ instead.)

For extracting the example programs from the documentation to the ‘doc/docdemos’ direc-
tory a non-crippled ‘sed’ is needed. GNU sed is known to work.

If you have downloaded a “minimal” source distribution, most derived files have to be
rebuilt. This happens automatically, but you need additional tools: ‘bash’, GNU ‘sed’,
GNU ‘awk’, GNU ‘m4’, ‘bison’, ‘flex’, ‘autoconf’, ‘help2man’, ‘makeinfo’ (at least version
4.1). Make sure that these are installed. The minimal distributions are compressed with
‘bzip2’ instead of ‘gzip’, so use it accordingly.

If you want to build the GPC WWW pages you will also need: ‘makeinfo’ version 4.2 or
newer, ‘texi2dvi’, TEX, ‘pdftex’, ‘bzip2’ and ‘dvips’.

If you run into trouble during the installation process, please check whether you are using
outdated versions of the required utilities and upgrade if necessary.

The GNU versions of the packages above are available from the GNU FTP server or any of
its mirrors. Package package is usually located in the directory ‘gnu/package’.

2. Unpacking the source

From a directory of your choice (e.g. ‘/home/fred’), unpack the GCC and GNU Pascal
source distributions. This will create separate subdirectories for GCC and GPC. Let us
assume ‘gcc-2.95.3" and ‘gpc-20030209’ in this example.

ftp://ftp.gnu.org/gnu/gcc/
http://www.gnu.org/software/make/
ftp://ftp.gnu.org

Chapter 4: How to download, compile and install GNU Pascal. 29

% cd /home/fred
% gzip -c -d gcc-core-2.95.3.tar.gz | tar xf -
% gzip -c -d gpc-20030209.tar.gz | tar xf -

‘cd’ to the GPC directory and move the contents (a subdirectory ‘p’) to the subdirectory
‘gee’ of the GCC directory:

% mv /home/fred/gpc-20030209/p /home/fred/gcc-2.95.3/gcc/

Instead of moving the directory, it is now also possible to make a symbolic link (if the OS
supports symlinks). This is useful if you want to build GPC with several different GCC
versions:

% 1n -s /home/fred/gpc-20030209/p /home/fred/gcc-2.95.3/gcc/p

It is recommended, though not required, to use a separate directory for building the
compiler, rather than compiling in the source directory. In this example, let us create
‘/home/fred/gpc-build’ for this purpose:

% mkdir /home/fred/gpc-build

If you use a separate directory, you do not need to write into the GCC source directory
once you have patched the GCC source (see below), and can build GPC for more than one
platform from the same source tree.

In case you are re-using a directory where you have already built GCC and/or GPC for a
different target machine, do ‘make distclean’ to delete all files that might be invalid. One
of the files this deletes is ‘Makefile’; if ‘make distclean’ complains that ‘Makefile’ does
not exist, it probably means that the directory is already suitably clean.

3. Configuring and building GCC

GNU Pascal is automatically configured with GCC. Configuration of GCC is treated in
depth in section “Chapter 4”7 in “Using and Porting GNU CC”. The normal procedure is
as follows:
‘cd’ to the GPC build directory. From there, run the ‘configure’ script in the GCC source
directory:

% cd /home/fred/gpc-build
% /home/fred/gcc-2.95.3/configure --enable-languages=pascal

This creates all the necessary config files, links and Makefile in the GCC object directory.

Note 1: The configuration will prompt you for patching the GCC source for GPC support,
so you need write access to that directory. All changes to GCC are surrounded by ‘#ifdef
GPC ... #endif’, so they should not interfere when you build a C compiler from this source
tree.

Note 2: The ‘--enable-languages=pascal’ option means that we only want to build the
Pascal compiler and not, for instance, the C++ compiler.

Note 3: The standard base directory for installing GCC and GPC is ‘/usr/local’. If
you want to install files to an alternate directory dir, specify ‘--prefix=dir’ when you run
‘configure’.

4. Putting other GNU tools in place

Some environments require other GNU tools (such as the GNU assembler or linker) instead
of the standard system tools for GCC to work. (See the GCC installation instructions for
details.) If this is the case for your system, install the required tools in the GPC build
directory under the names ‘as’, ‘ld’, or whatever is appropriate. This will enable the
compiler to find the proper tools for compilation of the program ‘enquire’ (a part of GCC)
and to install the GNU tools to a place where they are found by GCC but do not interfere
with the standard system tools.

Alternatively, you can do subsequent compilation using a value of the PATH environment
variable such that the necessary GNU tools come before the standard system tools.

30 The GNU Pascal Manual

5. Compiling GPC

Once you are satisfied with the configuration as determined by ‘configure’, you can build
the compiler:

% make

Notice that this procedure will build the C compiler (and maybe some other compilers) too,
because that is used to compile the GPC runtime library.

Optionally, you may supply CFLAGS, LDFLAGS or RTSFLAGS. CFLAGS is used for com-
piler and RTS, RTSFLAGS are for RTS only, i.e.: ‘make CFLAGS="-02" RTSFLAGS=-Wall’

6. Completing the installation
When everything has been compiled, you can check the installation process with:
% make -n install

To complete the installation, run the command ‘make install’. You need write ac-
cess to the target directories (‘/usr/local/bin’, ‘/usr/local/lib’, ‘/usr/local/info’,
‘/usr/local/doc’, and ‘/usr/local/man’ in this example), so this is usually done as ‘root’:

% su -c "make install"

If you want to install only the Pascal compiler (for example if you already have the cor-
rect version of GCC installed), ‘cd’ to the ‘gcc’ subdirectory of the build directory (e.g.
‘/home/fred/gpc-build/gcc’) and run ‘make pascal.install’. This installation process
does not overwrite existing copies of ‘libgcc.a’ or ‘specs’, should they exist.

However, if you do not have the exactly matching GCC version installed, you might need
some additional files (otherwise GPC will complain about missing files at runtime). You
can install them by doing ‘make pascal.install-with-gcc’ in the ‘gcc’ subdirectory of
the build directory.

There is a (partial) translation of the GPC manual into Croatian available now. It is not
installed by default. If you want to install it, do a ‘pascal.install-hr’ in the ‘gcc’ direc-
tory. This will install the manpage ‘gpc-hr.1’ and the info documentation ‘gpc-hr.infox*’.
Other formats like PS, PDF and HTML can be built manually (it’s also easy to add appro-
priate make targets for them when needed).

Also from the ‘gcc’ subdirectory you can do some more “exotic” builds. For instance, you
can build the GPC WWW pages by typing ‘make pascal.html’ or a binary distribution by
typing ‘make pascal.bindist’. See the ‘Makefile’ in that directory for more examples.

4.4 Compilation notes for specific platforms

4.4.1 MS-DOS with DJGPP

The only compiler that is capable of compiling the GNU Compiler Collection (GNU CC
or GCC) under MS-DOS is GCC itself. In order to compile GPC or GCC for MS-DOS with
DJGPP you will therefore need either a working copy of DJGPP installed, or you will have to
cross-build from a non-MS-DOS system.

Building GPC under MS-DOS with DJGPP follows the same scheme as building GPC under
a Unix-like system: Place the ‘p’ subdirectory in the ‘gcc’ directory and follow the instructions
for compiling GCC. This requires ‘bash’ and many other tools installed, and you must be very
careful at many places to circumvent the limitations of the DOS platform.

Our preferred way to build GPC for DJGPP is to cross-build it from a Unix-like platform —
which is much easier. For instructions, see Section 4.5 [Cross-Compilers|, page 31 and Section 4.6
[Crossbuilding], page 31.

Chapter 4: How to download, compile and install GNU Pascal. 31

4.4.2 MS-DOS or 0OS/2 with EMX

EMX is a free 32-bit DOS extender which adds some properties of Unix to MS-compatible
DOS and IBM’s OS/2 operating systems.

As of this writing, we are not aware of current versions of GCC for EMX, and EMX support
in GPC has not been maintained. Please contact us if you know about recent development in
EMX and are interested in continuing EMX support in GPC.

4.4.3 MS Windows 95/98 /NT

There are two ports of the GNU development tools to MS Windows 95/98/NT: CygWin and
mingw32.

The CygWin environment implements a POSIX layer under MS Windows, giving it large
parts of the functionality of Unix. Thus, compiling GCC and GPC under the CygWin envi-
ronment can be done following the instructions for compiling it under a Unix-like system (see
Section 4.3 [Compiling GPC]|, page 28).

The Minimalists’ GNU Win32 environment, mingw32, uses the native ‘crtd11.d11’ library of
MS Windows. It is much smaller than CygWin, but it is not self-hosting and must be crossbuilt
from another system (see Section 4.6 [Crossbuilding], page 31).

4.5 Building and Installing a cross-compiler

GNU Pascal can function as a cross-compiler for many machines. In-
formation about GNU tools in a cross-configuration can be found at
‘ftp://ftp.cygnus.com/pub/embedded/crossgecc/’.

Since GNU Pascal generates assembler code, you need a cross-assembler that GNU Pascal can
run, in order to produce object files. If you want to link on other than the target machine, you
need a cross-linker as well. It is straightforward to install the GNU binutils to act as cross-tools
— see the installation instructions of the GNU binutils for details.

You also need header files and libraries suitable for the target machine that you can in-
stall on the host machine. Please install them under ‘prefix/platform/include/’, for instance
‘/usr/local/i386-pc-msdosdjgpp/include/’ for a cross-compiler from a typical Unix-like en-
vironment to MS-DOS with DJGPP.

Configuration and compilation of the compiler can then be done using the scripts ‘cfgpc’
and ‘mkgpc’ which are included in the source distribution in the subdirectory ‘p/script’. Please
call them with the ‘~h’ option for instructions.

4.6 Crossbuilding a compiler

Using a cross-compiler to build GNU Pascal results in a compiler binary that runs on the
cross-target platform. This is called “crossbuilding”. A possible reason why anybody would
want to do this, is when the platform on which you want to run the GNU Pascal compiler is not
self-hosting. An example is mingw32.

To crossbuild GNU Pascal, you have to install a cross-compiler for your target first, see
Section 4.5 [Cross-Compilers], page 31.
As when building a cross-compiler, configuration and compilation of the compiler can be

done using the scripts ‘cfgpc’ and ‘mkgpc’ which are included in the source distribution in the
subdirectory ‘p/script’. Please call them with the ‘-h’ option for instructions.

32

The GNU Pascal Manual

Chapter 5: Command Line Options supported by GNU Pascal. 33

5 Command Line Options supported by GNU
Pascal.

GPC is a command-line compiler, i.e., to compile a program you have to invoke ‘gpc’ passing
it the name of the file you want to compile, plus options.

GPC supports all command-line options that GCC knows, except for many preprocessor
options. For a complete reference and descriptions of all options, see section “GCC Command
Options” in the GCC Manual. Below, you will find a list of the additional options that GPC
supports, and a list of GPC’s most important options (including some of those supported by
GCC as well).

You can mix options and file names on the command line. For the most part, the order
doesn’t matter. Order does matter, e.g., when you use several options of the same kind; for
example, if you specify ‘~L’ more than once, the directories are searched in the order specified.
Note: Since many options have multiletter names; multiple single-letter options may not be
grouped as is possible with many other programs: ‘-dr’ is very different from ‘-d -r’.

Many options have long names starting with ‘==’ or, completely equivalent ‘-f’. E.g.,

‘--mixed-comments’ is the same as ‘-fmixed-comments’. Some options tell GPC when to give
warnings, i.e. diagnostic messages that report constructs which are not inherently erroneous but
which are risky or suggest there may have been an error. Those options start with ‘-W’.

Most GPC specific options can also be changed during one compilation by using compiler
directives in the source, e.g. ‘{$X+}’ or ‘{$extended-syntax}’ for ‘--extended-syntax’ (see
Section 6.9 [Compiler Directives], page 87).

GPC understands the same environment variables GCC does (see section “Environment
Variables Affecting GCC” in the GCC manual). In addition, GPC recognizes
‘GPC_EXEC_PREFIX’ with the same meaning that ‘GCC_EXEC_PREFIX’ has to GCC. GPC also
recognizes ‘GCC_EXEC_PREFIX’, but ‘GPC_EXEC_PREFIX’ takes precedence.

Some of the long options (e.g., ‘-~—unit-path’) take an argument. This argument is separated
with a ‘=" sign, e.g.:

--unit-path=/home/foo/units

5.1 GPC options besides those of GCC.

The following table lists the command line options GPC understands in addition to those
understood by GCC.

--classic-pascal-level-0
Reject conformant arrays and anything besides ISO 7185 Pascal.

--standard-pascal-level-0
Synonym for ‘--classic-pascal-level-0’.

--classic-pascal
Reject anything besides ISO 7185 Pascal.

--standard-pascal
Synonym for ‘--classic-pascal’.

--extended-pascal
Reject anything besides ISO 10206 Extended Pascal.

--object-pascal
Reject anything besides (the implemented parts of) ANSI draft Object Pascal.

--ucsd-pascal
Try to emulate UCSD Pascal.

34 The GNU Pascal Manual

--borland-pascal
Try to emulate Borland Pascal, version 7.0.

--delphi Try to emulate Borland Pascal, version 7.0, with some Delphi extensions.

--pascal-sc
Be strict about the implemented Pascal-SC extensions.

--vax-pascal
Support (a few features of) VAX Pascal.

--sun-pascal
Support (a few features of) Sun Pascal.

--mac-pascal
Support (some features of) traditional Macintosh Pascal compilers.

--gnu-pascal
Undo the effect of previous dialect options, allow all features again.

--debug-tree
(For GPC developers.) Show the internal representation of a given tree node (name
or address).

--debug-gpi
(For GPC developers.) Show what is written to and read from GPI files (huge
output!).

--debug-automake
(For GPC developers.) Give additional information about the actions of automake.

--debug-source
Output the source while it is processed.

--no-debug-info
Inhibit ‘-g’ options (temporary work-around, this option may disappear in the fu-
ture).

--progress-messages
Output source file names and line numbers while compiling.

--no-progress-messages
Do not output source file names and line numbers while compiling (default).

--progress-bar
Output number of processed lines while compiling.

--progress-bar
Do not output number of processed lines while compiling (default).

—--autolink
Automatically link object files provided by units/modules or ‘{$L ...} (default).

--no-autolink
Do not automatically link object files provided by units/modules/‘{$L ...}".

-—automake
Automatically compile changed units/modules/{$L ...} files and link the object
files provided.

—--no—-automake
Same as ‘——no—autolink’.

Chapter 5: Command Line Options supported by GNU Pascal. 35

—--autobuild
Automatically compile all units/modules/‘{$L ...}’ files and link the object files
provided.

—--no-autobuild
Same as ‘——no-autolink’.

--automake-gpc
Set the Pascal compiler invoked by automake

--automake-gcc
Set the C compiler invoked by automake

-—automake-g++
Set the C++ compiler invoked by automake.

-—amtmpfile
(Internal switch used for automake).

--maximum-field-alignment
Set the maximum field alignment in bits if ‘pack-struct’ is in effect.

--ignore-packed
Ignore ‘packed’ in the source code (default in ‘--borland-pascal’).

--no-ignore-packed
Do not ignore ‘packed’ in the source code (default).

--ignore-garbage-after-dot
Ignore anything after the terminating ‘.’ (default in ‘--borland-pascal’).

--no-ignore-garbage-after-dot
Complain about anything after the terminating ‘.’ (default).

--extended-syntax
Enable certain ‘dangerous’ features such as ignoring function results, pointer arith-
metic or using ‘CString’s as strings (same as ‘{$X+}’).

--no-extended-syntax
Disable the dangerous features enabled by ‘--extended-syntax’ (default; same as

{8x-17).

--short-circuit
Guarantee short-circuit Boolean evaluation (default; same as ‘{$B-}’).

--no-short-circuit
Do not guarantee short-circuit Boolean evaluation (same as ‘{$B+}’).

--mixed-comments
Allow comments like ‘{ ... *)’ as required in ISO Pascal (default in ISO 7185/10206
Pascal mode).

--no-mixed-comments
Ignore ‘{’ and ‘}’ within ‘(% ... %)’ comments and vice versa (default).

—--nested-comments
Allow nested comments like ‘{ { } }’ and ‘(x (x x) *)’.

--no-nested-comments
Do not allow nested comments (default).

--delphi-comments
Allow Delphi style ‘//’ comments (default).

36 The GNU Pascal Manual

--no-delphi-comments
Do not allow Delphi style ¢///’ comments.

--macros Expand macros (default)

--no-macros
Do not expand macros (default with ‘--ucsd-pascal’,
‘~-delphi’).

‘-—borland-pascal’ or

--ignore—-function-results
Do not complain when a function is called like a procedure.

--no-ignore-function-results
Complain when a function is called like a procedure (default).

-—truncate-strings
Truncate strings being assigned to other strings of too short capacity..

--no-truncate-strings
Treat string assignments to other strings of too short capacity as errors..

--exact-compare-strings
Do not blank-pad strings for comparisons.

--no-exact-compare-strings
Blank-pad strings for comparisons.

--double-quoted-strings
Allow strings enclosed in "\"..

--no-double-quoted-strings
Do not allow strings enclosed in "\"..

--longjmp-all-nonlocal-labels
Use ‘longjmp’ for all nonlocal labels.

--no-longjmp-all-nonlocal-labels
Use ‘longjmp’ only for nonlocal labels in the main program (default).

--io-checking
Do automatic run-time checks after I/O operations (same as ‘{$I+}’).

--no-io—-checking
Do not check I/O operations automatically (same as ‘{$I-}’).

--read-base-specifier
In read statements, allow input base specifier ‘n#’ (default).

--no-read-base-specifier
In read statements, do not allow input base specifier ‘n#’ (default in ISO 7185
Pascal).

--read-hex
In read statements, allow hexadecimal input with ‘¢’ (default).

--no-read-hex
In read statements, do not allow hexadecimal input with ‘¢’ (default in ISO 7185
Pascal).

--read-white-space

In read statements, require whitespace after numbers.
--no-read-white-space

In read statements, do not require whitespace after numbers (default).

Chapter 5: Command Line Options supported by GNU Pascal. 37

--write-clip-strings
In write statements, truncate strings exceeding their field width (‘Write
(SomeLongString : 3)).

--no-write-clip-strings
Do not truncate strings exceeding their field width.

--write-real-blank
Output a blank in front of positive reals in exponential form (default).

--no-write-real-blank
Do not output a blank in front of positive reals in exponential form.

--write-capital-exponent
Write real exponents with a capital ‘E’.

--no-write-capital-exponent
Write real exponents with a lowercase ‘e’.

--transparent-file-names
Derive external file names from variable names.

--no-transparent-file-names
Do not derive external file names from variable names (default).

-—-field-widths
Comma-separated list of default field widths for Integer, Real, Boolean, Longlnt,
LongReal.

—--no-field-widths
Reset the default field widths.

—--pedantic
Reject everything not allowed in some dialect, e.g. redefinition of its keywords.

--no-pedantic
Don’t give pedantic warnings.

--stack-checking
Enable stack checking (same as ‘{$S+}’).

--no-stack-checking
Disable stack checking (same as ‘{$S-}’).

--typed-address
Make the result of the address operator typed (same as ‘{$T+}’, default).

--no-typed-address
Make the result of the address operator an untyped pointer (same as ‘{$T-}’).

--enable-keyword
Enable a keyword, independently of dialect defaults.

--disable-keyword
Disable a keyword, independently of dialect defaults.

--assert Enable assertion checking (default).

--no-assert
Disable assertion checking.

--setlimit
Define the range for ‘set of Integer’ etc..

38 The GNU Pascal Manual

--gpc-main
External name for the program’s entry point (default: ‘main’).
-—-interface-only

Compile only the interface part of a unit/module and exit (creates
‘.o’ file.

¢

.gpi’ file, no

--implementation-only
Do not produce a GPI file; only compile the implementation part.

-—executable-file-name
Name for the output file, if specified; otherwise derive from main source file name.

--unit-path

Directories where to look for unit/module sources.
--no-unit-path

Forget about directories where to look for unit/module sources.
--object-path

Directories where to look for additional object (and source) files.
--no-object-path

Forget about directories where to look for additional object (and source) files.

--executable-path
Path where to create the executable file.

--no-executable-path
Create the executable file in the directory where the main source is (default).

--unit-destination-path
Path where to create object and GPI files of Pascal units.

--no-unit-destination-path
Create object and GPI files of Pascal units in the current directory (default).

--object-destination-path
Path where to create additional object files (e.g. of C files, not Pascal units).

--no-object-destination-path
Create additional object files (e.g. of C files, not Pascal units) in the current direc-
tory (default).

--no-default-paths
Do not add a default path to the unit and object path.

--gpi-destination-path
(Internal switch used for automake).

--uses Add an implicit ‘uses’ clause.

-—init-modules
Initialize the named modules in addition to those imported regularly; kind of a
kludge.

——-cidefine
Define a case-insensitive macro.

--csdefine
Define a case-sensitive macro.
--big-endian
Tell GPC that the system is big-endian (for those targets where it can vary).

Chapter 5: Command Line Options supported by GNU Pascal. 39

--little-endian
Tell GPC that the system is little-endian (for those targets where it can vary).

--print-needed-options
Print the needed options.

-Wwarnings
Enable warnings (same as ‘{$W+}’).

-Wno-warnings
Disable all warnings (same as ‘{$w-}’).

-Widentifier-case
Warn about an identifier written with varying case.

-Wno-identifier-case
Do not warn about an identifier written with varying case (default).

-Widentifier-case-local
Warn about an identifier written with varying case within one
program/module/unit.

-Wno-identifier-case-local
Same as ‘-Wno-identifier-case’.

-Winterface-file-name
Warn when a unit/module interface differs from the file name.

-Wno-interface-file-name
Do not warn when a unit/module interface differs from the file name (default).

-Wimplicit-abstract
Warn when an object type not declared ‘abstract’ contains an abstract method
(default).

-Wno-implicit-abstract
Do not warn when an object type not ‘declared’ abstract contains an abstract
method.

-Winherited-abstract
Warn when an abstract object type inherits from a non-abstract one (default).

-Wno-inherited-abstract

Do not warn when an abstract object type inherits from a non-abstract one.
-Wimplicit-io

Warn when ‘Input’ or ‘Output’ are used implicitly.
-Wno-implicit-io

Do not warn when ‘Input’ or ‘Output’ are used implicitly (default).

-Wfloat-equal
Warn about ‘=" and ‘<>’ comparisons of real numbers.

-Wno-float-equal
Do not warn about ‘=’ and ‘<>’ comparisons of real numbers.

-Wtyped-const
Warn about misuse of typed constants as initialized variables (default).

-Wno-typed-const
Do not warn about misuse of typed constants as initialized variables.

-Wnear-far
Warn about use of useless ‘near’ or ‘far’ directives (default).

40 The GNU Pascal Manual

-Wno-near-far
Do not warn about use of useless ‘near’ or ‘far’ directives.

-Wunderscore
Warn about double/leading/trailing underscores in identifiers.

-Wno-underscore
Do not warn about double/leading/trailing underscores in identifiers.

-Wsemicolon
Warn about a semicolon after @samp{then}, @samp{else} or @samp{do} (default).

-Wno-semicolon
Do not warn about a semicolon after @samp{then}, @samp{else} or @samp{do}.

-Wlocal-external
Warn about local ‘external’ declarations.

-Wno-local-external
Do not warn about local ‘external’ declarations.

-Wmixed-comments
Warn about mixed comments like ‘{ ... *)’.

-Wno-mixed-comments
Do not warn about mixed comments.

-Wnested-comments
Warn about nested comments like ‘{ { } }".

-Wno—-nested-comments
Do not warn about nested comments.

5.2 The most commonly used options to GPC

As the most simple example, calling
gpc foo.pas

tells GPC to compile the source file ‘foo.pas’ and to produce an executable of the default
name which is ‘foo.exe’ on EMX, ‘a.exe’ on Cygwin, both ‘a.out’ and ‘a.exe’ on DJGPP,
and ‘a.out’ on most other platforms.

Users familiar with BP, please note that you have to give the file name extension ‘.pas’:

GPC is a common interface for a Pascal compiler, a C, ObjC and C++ compiler, an assembler, a
linker, and perhaps an Ada and a FORTRAN compiler. From the extension of your source file
GPC figures out which compiler to run. GPC recognizes Pascal sources by the extension ‘.pas’,
“.p’, ‘.pp’ or ‘.dpr’. GPC also accepts source files in other languages (e.g., ‘.c’ for C) and
calls the appropriate compilers for them. Files with the extension ‘.0’ or without any special
recognized extension are considered to be object files or libraries to be linked.

Another example:
gpc —-02 -Wall --executable-file-name --automake --unit-path=units foo.pas

This will compile the source file ‘foo.pas’ to an executable named ‘foo’
(‘-—executable-file-name’) with fairly good optimization (‘-02’), warning about possible
problems (‘-Wall’). If the program uses units or imports modules, they will be searched
for in a directory called ‘units’ (‘--unit-path’) and automatically compiled and linked
(‘-—automake’).

The following table lists the most commonly used options to GPC.

Chapter 5: Command Line Options supported by GNU Pascal. 41

-—automake
Check whether modules/units used must be recompiled and do the recompilation
when necessary.

——unit-path=dir[:dir...]
Search the given directories for units and object files.

--object-path=dir[:dir. . .]
Search the given directories for object files.

—--unit-destination-path=dir
Place compiled units (GPI and object files) into the directory dir. The default is
the current directory.

--object-destination-path=dir
Place compiled object files (e.g., from C files, but not from Pascal units) into the
directory dir. The default is the directory given with ‘~-unit-destination-path’.

--executable-path=dir
Place the executable compiled into the directory dir. The default is the main source
file’s directory.

-o file Place output in file file. This applies regardless to whatever sort of output is being
produced, whether it be an executable file, an object file, an assembler file, etc.

Since only one output file can be specified, it does not make sense to use ‘-0’ when
compiling more than one input file, unless you are producing an executable file as
output.

-—executable-file-name [=name]
Derive the executable file name from the source file name, or use name

as the executable file name. The difference to the ‘-o’ option is that
‘-—executable-file-name’ considers the ‘--executable-path’, while
‘-0’ does mnot and accepts a file name with directory. Furthermore,

‘--executable-file-name’ only applies to executables, not to other output
formats selected.

-Ldir Search the directory dir for libraries. Can be given multiple times.
-Idir Search the directory dir for include files. Can be given multiple times.

-1library Search the library named library when linking. This option must be placed on the
command line after all source or object files or other libraries that reference the
library.

-0[n] Select the optimization level. Without optimization (or ‘-00’ which is the default),
the compiler’s goal is to reduce the compilation time and to make debugging produce
the expected results. Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any variable or
change the program counter to any other statement in the same routine and get
exactly the results you would expect from the source code.

With optimization, the compiler tries to reduce code size and execution time. The
higher the value of n, the more optimizations will be done, but the longer the
compilation will take.

If you use multiple ‘-0’ options, with or without n, the last such option is the one
that is effective.

-g Produce debugging information suitable for ‘gdb’. Unlike some other compilers,
GNU Pascal allows you to use ‘-g’ with ‘-0’. The shortcuts taken by optimized
code may occasionally produce surprising results: some variables you declared may

42

-Wall

-Werror

-5

-static

The GNU Pascal Manual

not exist at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant results or
their values were already at hand; some statements may execute in different places
because they were moved out of loops. Nevertheless it proves possible to debug
optimized output. This makes it reasonable to use the optimizer for programs still
in the testing phase.

Remove all symbol table and relocation information from the executable. Note: this
has no influence on the performance of the compiled executable.

Give warnings for a number of constructs which are not inherently erroneous but
which are risky or suggest there may have been an error. There are additional
warning options not implied by ‘-Wall’, see the GCC warning options (see section
“Options to Request or Suppress Warnings” in the GCC manual), while ‘-Wall’ only
warns about such constructs that should be easy to avoid in programs. Therefore,
we suggest using ‘-Wall’ on most sources.

Note that some warnings (e.g., those about using uninitialized variables) are never
given unless you compile with optimization (see above), because otherwise the com-
piler doesn’t analyze the usage patterns of variables.

Turn all warnings into errors.

Stop after the stage of compilation proper; do not assemble. The output is in the
form of an assembler code file for each source file. By default, the assembler file

name for a source file is made by replacing the extension with ‘.s’.

Compile and assemble the source files, but do not link. The output is in the form
of an object file for each source file. By default, the object file name for a source

file is made by replacing the extension with ‘.o’.

On systems that support dynamic linking, this prevents linking with the shared
libraries, i.e. forces static linking. On other systems, this option has no effect.

-Dmacro [=def]

-b machine

'

Define the macro and conditional symbol macro as def (or as ‘1’ if def is omitted).

The argument machine specifies the target machine for compilation. This is useful
when you have installed GNU Pascal as a cross-compiler.

Print (on standard error) the commands executed to run the stages of compilation.
Also print the version number of the compiler driver program and of the preprocessor
and the compiler proper.

--classic-pascal-level-0
--classic-pascal
--extended-pascal
--object-pascal
--ucsd-pascal
--borland-pascal
--pascal-sc

GNU Pascal supports the features of several different Pascal standards and dialects.
By default, they are all enabled. These switches tell GPC to restrict itself to the
features of the specified standard. It does not enable any additional features. Warn-
ings about certain dangerous constructs which would be valid in the specified dialect
(e.g., assignment to a typed constant with ‘--borland-pascal’) are suppressed.
By default, GNU Pascal allows the redefinition of some keywords. Each of these
switches causes GNU Pascal to forbid the redefinition of keywords of the specified
standard.

Chapter 5: Command Line Options supported by GNU Pascal. 43

Valid ISO 7185 Pascal programs should compile properly with or without
‘-—classic-pascal’. However, without this option, certain GNU extensions and
Pascal features from other dialects are supported as well. With this option, they
are rejected.

These options are not intended to be useful; they exist only to satisfy pedants who
would otherwise claim that GNU Pascal fails to support the ISO Standard or is
not really compatible to Borland Pascal, or whatever. We recommend, rather, that
users take advantage of the extensions of GNU Pascal and disregard the limitations
of other compilers.

-pedantic-errors
Produce errors rather than warnings for portability violations. Unlike in C, this does
not imply the ‘-pedantic’ option, so you can, for instance, use ‘-pedantic-errors’
without ‘-pedantic’, but with ‘--extended-pascal’.

--gpc-main=name
Name the entry point of the main program ‘name’ instead of ‘main’ on the linker
level. This is useful, e.g., when working with some C libraries which define their own
‘main’ function and require the program’s main entry point to be named differently.
(This option should preferably be used as a compiler directive in the unit or module
which links to that strange C library, rather than be given on the command-line.)

44

The GNU Pascal Manual

Chapter 6: The Programmer’s Guide to GPC 45

6 The Programmer’s Guide to GPC

This chapter is still under development.

This chapter tells you how the source of a valid GNU Pascal program should look like. You
can use it as tutorial about the GNU Pascal language, but since the main goal is to document
all special GPC features, implementation-dependent stuff, etc., expect a steep learning curve.

This chapter does not cover how to compile your programs and to produce an executable —
this is discussed above in Chapter 5 [Invoking GPCJ, page 33.

6.1 Source Structures

A source file accepted by GNU Pascal may contain up to one program, zero or more ISO-
style modules, and/or zero or more UCSD-style units. Units and modules can be mixed in one
project.

One trivial example for a valid GPC source file follows. Note that the code below may either
be in one source file, or else the unit and the program may be in separate source files.

unit DemoUnit;
interface
procedure Hello;
implementation
procedure Hello;
begin
WriteLn (’Hello, world!’)

end;

end.

program UnitDemo;

uses
DemoUnit;

begin

Hello
end.

6.1.1 The Source Structure of Programs

A generic GNU Pascal program looks like the following:
program name (Input, Output);

import_part
declaration_part

begin
statement_part

46 The GNU Pascal Manual

end.

The program headline may be omitted in GPC, but a warning will be given except in
‘~—borland-pascal’ mode.

While the program parameters (usually ‘Input’, ‘Output’) are obligatory in ISO Pascal if you
want to use ‘ReadLn’ and ‘WriteLn’, they are optional in GNU Pascal. GPC will warn about
such missing parameters in ‘~-extended-pascal’ mode. However if you give parameters to the
program headline, they work like ISO requires.

The import_part consists either of an ISO-style ‘import’ specification or a UCSD /Borland-
style ‘uses’ clause. While ‘import’ is intended to be used with interfaces exported by ISO 10206
Extended Pascal modules, and ‘uses’ is intended to be used with units, this is not enforced.
(See also [uses|, page 432, [import], page 328.)

The declaration_part consists of label, constant, type, variable or subroutine declarations in
free order. However, every identifier must be declared before it is used. The only exception are
type identifiers pointing to another type identifier which may be declared below.

The statement_part consists of a sequence of statements.

As an extension, GPC supports a “declaring statement” which can be used in the statement
part to declare variables (see [var|, page 434).

6.1.2 Label Declaration

A label declaration has the following look:

label
label_name, ..., label;

A label declaration part starts with the reserved word label, which contains a list of labels.

See also

[label], page 337, [goto], page 323

6.1.3 Constant Declaration

A constant declaration has the following look:

const
constant_identifier = constant_expression;

constant_identifier = constant_expression;

A constant declaration part starts with the reserved word const. It declares a con-
stant_identifier which is defined by constant_expression. This expression has to be evaluatable
during compilation time, i.e. it can include numbers, parentheses, predefined operators, sets and
type casts (the last, however, is a Borland extension). In ISO 7185 Pascal, constant_expression
must be a constant or a set. All Pascal Dialects but ISO-Pascal allow the use of these intrinsic
functions in constant_expression:

[Abs], page 255, [Round], page 398, [Trunc|, page 426, [Chr]|, page 286, [Ord], page 368,

[Length], page 339, [Pred], page 379, [Succ], page 419, [SizeOf], page 412, [Odd], paé’o 365.

In Borland Pascal, in the constant declaration part variables can be declared as well, which
are given an initial value. These variables are called “typed constants”. It is good style to
avoid this use, especially since Extended Pascal and GNU Pascal allow to initialize a variable
in variable declaration part or give a type a preset value on declaration.

Chapter 6: The Programmer’s Guide to GPC 47

const
FiveFoo = b;
StringFoo = ’string constant’;
AlphabetSize = Ord (°Z’) - Ord (CA’) + 1;
type
PInteger = "Integer; { Define a pointer to an Integer }
const
{ Constant which holds a pointer to an Integer at address 1234 }
AddressFoo = PInteger (1234);

e BP does not know initialized variables, only typed constants. Even worse, it allows them
to be misused as variables, without even warning. GPC supports this (unwillingly ;—), and
warns unless in ‘--borland-pascal’ mode.

An example of a typed constant:
const
i: Integer = 0;
If you want to use it as a constant only, that’s perfectly fine. However, if you modify ‘i’,
we suggest to translate the declaration to an initialized variable. The EP syntax is:

var
i: Integer value O;

GPC supports this as well as the following mixture of dialects:
var
i: Integer = 0;
Furthermore, you can also assign initialization values to types:

program InitTypeDemo;

type
MyInteger = Integer value 42;

var
i: MyInteger;

begin
WritelLn (i)
end.

Here, all variables of type MylInteger are automatically initialized to 42 when created.
e Arrays initializers look like this in BP:

program BPArrayInitDemo;

const
MyStringsCount = 5;

type
Ident = String [20];

const
MyStrings: array [1 .. MyStringsCount] of Ident =
(’export’, ’implementation’, ’import’,

48 The GNU Pascal Manual

’interface’, ’module’);

begin
end.
And the following way in EP:

program EPArrayInitDemo;

const
MyStringsCount = 5;

type
Ident = String (20);

var
MyStrings: array [1 .. MyStringsCount] of Ident value
[1: ’export’; 2: ’implementation’; 3: ’import’;
4: ’interface’; 5: ’module’];

begin
end.

There seem to be pros and cons to each style. GPC supports both as well as just about
any thinkable mixture of them.

Some folks don’t like having to specify an index since it requires renumbering if you want
to add a new item to the middle. However, if you index by an enumerated type, you might
be able to avoid major renumbering by hand.

See also

Section 6.1.6.4 [Subroutine Parameter List Declaration], page 51

6.1.4 Type Declaration

A type declaration looks like this:

type
type_identifier = type_definition;

type_identifier = type_definition;

or, with preset content:

type
type_identifier

type_definition value constant_expression;

type_identifier = type_definition value constant_expression;

A type declaration part begins with the reserved word type. It declares a type_identifier
which is defined by type_definition. A type definition either can be an array, a record, a schema,
a set, an object, a subrange, an enumerated type, a pointer to another type_identifier or simply
another type_identifier which is to alias. If a schema type is to be declared, type_identifier is

followed by a discriminant enclosed in parentheses:
type_identifier (discriminant) = schema_type_definition;

If value is specified, followed by a constant satisfying the type definition, every variable
of this type is initialized with constant_expression, unless it is initialized by value itself. The

Chapter 6: The Programmer’s Guide to GPC 49

reserved word value can be replaced by ‘=", however value is not allowed in ISO-Pascal and
Borland Pascal, and the replacement by ‘=’ is not allowed in Extended Pascal.

Type declaration example

type
{ This side is the } { That side is the }
{ type declaration } { type definition }
Arrayfoo = array [0 .. 9] of Integer; { array definition }
Recordfoo = record { record definition }
Bar: Integer;
end;

{ schema def with discriminants ‘‘x, y: Integer’’ }
y g

SchemaFoo (x, y: Integer) = array [x .. y] of Integer;

CharSetFoo = set of Char; { Def of a set }
ObjectFoo object { Def of an object }
procedure DoAction;
constructor Init;
destructor Done;

end;

SubrangeFoo = -123..456; { subrange def }
EnumeratedFoo = (Pope,John,the,Second) ; { enum type def }

{ Def of a pointer to another type identifier }
PInteger = Tarrayfoo;

{ Def of an alias name for another type identifier }
IdentityFoo = Integer;

{ Def of an integer which was initialized by 123 }
InitializedFoo = Integer value 123;

See also

Section 6.2.1 [Type Definition|, page 62, Section 6.2 [Data Types|, page 62, Section 6.1.5
[Variable Declaration|, page 49

6.1.5 Variable Declaration

A variable declaration looks like this:

var
var_identifier: type_identifier ;

var_identifier : type_identifier;
or

var
var_identifier : type_definition;

var_identifier: type_definition;

and with initializing value:

50 The GNU Pascal Manual

var
var_identifier: type_identifier value constant_expression;

var_identifier: type_identifier value constant_expression;

or

var
var_identifier: type_definition value constant_expression;

var_identifier: type_definition value constant_expression;

A variable declaration part begins with the reserved word var. It declares a var_identifier
whose type either can be specified by a type identifier, or by a type definion which either can
be an array, a record, a set, a subrange, an enumerated type or a pointer to an type identifier.
If value is specified followed by a constant expression satisfying the specified type, the variable
declared is initialized with constant_expression. The reserved word value can be replaced by
‘=", however value is not allowed in ISO-Pascal and Borland Pascal, and the replacement by ‘=’
is not allowed in Extended Pascal.

See also

Section 6.2.1 [Type Definition], page 62, Section 6.1.4 [Type Declaration|, page 48, Section 6.2
[Data Types|, page 62, Section 6.1.7.12 [The Declaring Statement], page 57, Section 6.1.6.4
[Subroutine Parameter List Declaration], page 51

6.1.6 Subroutine Declaration

6.1.6.1 The Procedure

procedure procedure_identifier;
declaration_part
begin
statement_part
end;

or with a parameter list:

procedure procedure_identifier (parameter_list) ;
declaration_part
begin
statement_part
end;

A procedure is quite like a sub-program: The declaration_part consists of label, constant,
type, variable or subroutine declarations in free order. The statement_part consists of a sequence
of statements. If parameter_list is specified, parameters can be passed to the procedure and can
be used in statement_part. A recursive procedure call is allowed.

See also

Section 6.1.6.2 [The Function|, page 51, Section 6.1.6.4 [Subroutine Parameter List Declara-
tion], page 51

Chapter 6: The Programmer’s Guide to GPC 51

6.1.6.2 The Function

function function_identifier: function_result_type;
declaration_part
begin
statement_part
end;
or with a parameter list:

function function_identifier (parameter_list): result_type;
declaration_part
begin
statement_part
end;

A function is a subroutine which has a return value of type function_result_type. It is struc-
tured like the program: the declaration_part consists of label, constant, type, variable or sub-
routine declarations in free order. The statement_part consists of a sequence of statements.
If parameter_list is specified, parameters can be passed to the function and can be used in
statement_part. The result is set via an assignment:

function_identifier := expression

Recursive function calls are allowed. Concerning the result type, ISO 7185 Pascal and Borland
Pascal only allow the intrinsic types, subranges, enumerated types and pointer types to be
returned. In Extended Pascal, function_result_type can be every assignable type. Of course,
there are no type restrictions in GNU Pascal as well. If extended syntax is switched on, functions
can be called like procedures via procedure call statement.

See also

Section 6.1.6.1 [The Procedure], page 50, Section 6.1.6.4 [Subroutine Parameter List Decla-
ration], page 51, Section 6.2 [Data Types]|, page 62

6.1.6.3 The Operator

GNU Pascal allows to define operators which can be used the infix style in expressions. For
a more detailed description, see Section 6.3 [Operators|, page 80

6.1.6.4 Subroutine Parameter List Declaration

parameter; ...; parameter

Each parameter can start with a prefix (see below) describing how the parameters are passed,
followed by a comma seperated list of one or more parameter_identifiers and an optional param-
eter_type.

procedure Dolt (var x, y, z: OneType; a, b: AnotherType; var q);
To understand parameter passing, first some definitions.

actual parameter
the parameter passed in to the routine.

formal parameter
the parameter as used inside the procedure.

by value the value of the actual parameter is copied on to the stack.

by reference
the address of the actual parameter is copied on to the stack.

52

L-value

R-value

addressable

aliasing

The GNU Pascal Manual

(left hand of a ‘:=" statement) something that can be assigned to (not a constant,
or const or protected variable or other immutable item).

(right hand of a ‘:=" statement) anything you can get the value of (could be a
constant, an expression, a variable (whether const or protected or not) or just about
anything.

something you can get the address of (not a field of a packed structure or a variable
with ‘attribute (register)’ (GPC extension)).

accessing memory via two different names (e.g. a global variable passed by reference
to a procedure can be accessed either as the global variable or the formal paramater).
Generally this is very bad practice.

Technical note: Parameters are not always passed on the stack, they may also be passed in
registers, especially on RISC machines.

The prefix defines how a variable is passed on the stack and how you can access the for-
mal_parameter inside the procedure. The prefix can be one of:

nothing

protected

var

const

procedure DolIt (x: SomeType);

Technical: The actual parameter is passed by value or reference, but if passed by
reference, it is then copied to a local copy on the stack. Aliasing has no effect on x.

What it means: you can modify ‘x’ inside the routine, but your changes will not
affect the actual parameter (and vice versa). The actual parameter can be a constant
or other immutable object, or a protected or const variable.

procedure Dolt (protected x: SomeType);

Technical: The actual parameter is passed by value or reference, but if passed by
reference, it is then copied to a local copy on the stack. Aliasing has no effect on x.
protected is a Extended Pascal extension.

What it means: if you modify the actual parameter, this will not affect ‘x” inside the
routine. The actual parameter can be a constant or other immutable object, or a
protected or const variable. You are forbidden from modifying x inside the routine.

procedure Dolt (var x: SomeType);

Technical: The actual parameter is passed by reference. Aliasing will definitely
change ‘x’.

What it means: modifications to ‘x’ inside the routine will change the actual param-
eter passed in. The actual parameter must be an addressable L-value (ie, it must
be something you can take the address of and assign to).

A parameter of this kind is called variable parameter and internally corresponds
to an L-value pointer (to the specified type identifier if any). This declaration is
necessary if the parameter is to be modified within the routine and to hold its value
still after return.

procedure DoIt (const x: SomeType);

Technical: The actual parameter is passed by value or reference. The compiler
will make a copy of the actual parameter to have something it can address if the
actual parameter is not addressable. You are forbidden from modifying ‘x’ inside

Chapter 6: The Programmer’s Guide to GPC 53

the routine, and therefore you cannot modify the actual parameter. Aliasing may
or may not change ‘x’. const is a Borland Pascal extension.

What it means: You can pass any R-value. You cannot modify ‘x’ inside the routine.
If you change the actual parameter while inside the routine, ‘x’ will have an undefined
value.

protected var

procedure DolIt (protected var x: SomeType);

Technical: The actual parameter is passed by reference. The compiler will never
make a copy of the actual parameter. You are forbidden from modifying ‘x’ inside
the routine, and therefore you cannot modify the actual parameter. Aliasing will
definitely change ‘x’.

What it means: You can pass anything addressable. You cannot modify ‘x’ inside
the routine. If you change the actual parameter while inside the routine, ‘x’ will
change as well.

In GPC, the protected var mode guarantees that the parameter is always passed
by reference, making it the correct choice for calling C routines with ‘const’ pointer
parameters.

If you omit the formal parameter type specification, then any type may be passed to that
parameter. Generally this is a bad idea, but occasionally it can be useful, especially for low level

code.

As an Extended Pascal extension, you can also declare procedural parameters directly:

procedure parameter_identifier

or:

function parameter_identifier: parameter_identifier_result_type

Example for parameter lists:

program ParameterDemo;

procedure Foo (var Bar; var Baz: Integer; const Fred: Integer);

procedure Glorkl (function Foo: Integer; procedure Bar (Baz: Integer));

begin
Bar (Foo)
end;

begin

Baz := Integer (Bar) + Fred

end;

var
a, b, c: Integer;

begin

Foo (a, b, ¢)
end.

See also

Section 6.2 [Data Types|, page 62, [var], page 434, [const], page 291, [protected], page 382

54 The GNU Pascal Manual

6.1.7 Statements

6.1.7.1 Assignment

The way an assignment looks like:
L-value := expression;

This statement assigns any valid expression to L-value. Make sure that the result of ex-
pression is compatible with L-value, otherwise an compilation error is reported. The ‘:=’ is
called assignment operator. As long as L-value and expression are type compatible, they are
assignment compatible for any definable type as well.

6.1.7.2 begin end Compound Statement

It looks like that:

begin
statement;
statement;

statement
end

This statement joins several statements together into one compound statement which is
treated as a single statement by the compiler. The finishing semicolon before ‘end’ can be left
out.

6.1.7.3 if Statement

This statement has the following look:

if boolean_expression then
statement

or with an alternative statement:

if boolean_expression then
statementl

else
statement?2

The ‘if’ ... ‘then’ statement consists of a boolean expression and a statement, which is
conditionally executed if the evaluation of boolean_expression yields true.

If “if’ ... ‘then’ ... ‘else’ is concerned, statementl is executed depending on
boolean_expression being true, otherwise statement?2 is executed alternatively. Note: the
statement before else must not finish with a semicolon.

6.1.7.4 case Statement

case expression of
selector: statement;

selector: statement;
end

or, with alternative statement sequence:

Chapter 6: The Programmer’s Guide to GPC

case ordinal_expression of
selector: statement;

selector: statement;
otherwise { ““else’’ instead of
statement;

statement;
end

or, as part of the invariant record type definition:
type
foo = record
field_declarations
case bar: variant_type of
selector: (field_declarations) ;
selector: (field_declarations) ;

end;
or, without a variant selector field,
type

foo = record
field_declarations

case variant_type of
selector: (field_declarations) ;
selector: (field_declarations) ;

end;

95

‘‘otherwise’’ allowed }

The case statement compares the value of ordinal_expression to each selector, which can be a
constant, a subrange, or a list of them separated by commas, being compatible with the result of
ordinal_expression. Note: duplicate selectors or range crossing is not allowed unless {$borland-
pascal} is specified. In case of equality the corresponding statement is executed. If otherwise is
specified and no appropriate selector matched the expression, the series of statements following
otherwise is executed. As a synonym for otherwise, else can be used. The semicolon before

otherwise is optional.

@@ 7777 The expression must match one of the selectors in order to continue, unless an

alternative statement series is specified.

For case in a variant record type definition, see Section 6.2.11.3 [Record Types]|, page 69.

See also

Section 6.1.7.3 [if Statement|, page 54

6.1.7.5 for Statement

For ordinal index variables:

for ordinal_variable := initial_value to final_value do
statement
or
for ordinal_variable := initial_value downto final_value do
statement

For sets:

56 The GNU Pascal Manual

for set_element_type_variable in some_set do
statement

For pointer index variables:

for pointer_variable := initial_ address to final_address do
statement
or
for pointer_variable := initial_address downto final_address do
statement

The for statement is a control statement where an index variable assumes every value of a
certain range and for every value the index variable assumes statement is executed. The range
can be specified by two bounds (which must be of the same type as the index variable, i.e.
ordinal or pointers) or by a set.

For ordinal index variables:

— If “to’ is specified, the index counter is increased by one as long as initial_value is less or
equal to final value,

— if ‘downto’ is specified, it is decreased by one as long as initial_value is greater or equal to
final_value.
For pointer index variables:

— If “to’ is specified, the index counter is increased by the size of the type the index variable
points to (if it is a typed pointer, otherwise by one if it is typeless) as long as initial_address
is less or equal to final_address,

— if ‘downto’ is specified, it is decreased by a corresponding value as long as initial_address is
greater or equal to final_address.

Since gpc provides a flat memory modell, all addresses are linear, so they can be compared.
Still, such loops should be used (if at all) only for iterating through successive elements of an
array.

For sets:

— statement is executed with the index variable (which must be ordinal and of the same
type as the set elements) assuming every element in some_set, however note that a set is a
not-ordered structure.

Note: A modification of the index variable may result in unpredictable action.

See also

Section 6.2.11.6 [Set Types|, page 74, Section 6.6 [Pointer Arithmetics], page 82, Sec-
tion 6.1.7.7 [repeat Statement], page 57, Section 6.1.7.5 [for Statement], page 55

6.1.7.6 while Statement

The while loop has the following form

while boolean_expression do
statement

The while statement declares a loop which is executed while boolean_expression is true.
Since the terminating condition is checked before execution of the loop body, statement may
never be executed.

See also

Section 6.1.7.7 [repeat Statement|, page 57, Section 6.1.7.5 [for Statement], page 55

Chapter 6: The Programmer’s Guide to GPC 57

6.1.7.7 repeat Statement

repeat
statement;

statement;
until boolean_expression

The repeat ... until statement declares a loop which is repeated until boolean_expression is
true. Since the terminating condition is checked after execution of the loop body, the statement
sequence is executed at least once.

See also

Section 6.1.7.6 [while Statement|, page 56, Section 6.1.7.5 [for Statement|, page 55

6.1.7.8 asm Inline
@@ 7777

asm (StatementList: String);

The asm inline statement is a GNU Pascal extension. It requires its parameter to be AT&T-
noted assembler statements, and therefore it is not compatible with that one of Borland Pascal.
statementlist is a string containing asm statements separated by semicolons.

6.1.7.9 with Statement

6.1.7.10 goto Statement

@@ 7777 This statement looks like this:
goto label
(Under construction.)

6.1.7.11 Procedure Call

subroutine_name;

This statement calls the subroutine subroutine_name which can either be a procedure or, if
GNU extended syntax is turned on, a function. In this case, the result is ignored.

6.1.7.12 The Declaring Statement

This statement allows to declare a variable within a statement part. It looks like this:

var
var_identifier : type_identifier;

or

var
var_identifier: type_definition;

and with initializing value:

var
var_identifier: type_identifier value expression;

or

58 The GNU Pascal Manual

var
var_identifier: type_definition value expression;

Unlike in declaration parts, the initializing expression does not have to be a constant expres-
sion. Note that every declaring statement has to start with var. The name space of the variable
extends from its declaration to the end of the current matching statement sequence (which can
be a statement part (of the program, a function, a procedure or an operator) or, within that
part, a begin end compound statement, a repeat loop, or the else branch of a case statement).
This statement is a GNU Pascal extension.

See also

Section 6.2.1 [Type Definition], page 62, Section 6.2 [Data Types|, page 62

6.1.7.13 Loop Control Statements

These are
Continue;
and
Break;

These simple statements must not occur outside a loop, i.e. a ‘for’, ‘while’ or ‘repeat’
statement. ‘Continue’ transfers control to the beginning of the loop right by its call, ‘Break’
exits the current loop turn and continues loop execution.

6.1.8 Import Part and Module/Unit Concept

6.1.8.1 The Source Structure of ISO 10206 Extended Pascal Modules

@@ Description missing here

A module can have one or more ‘export’ clauses and the name of an ‘export’ clause doesn’t
have to be equal to the name of the module.

Sample module code with separate interface and implementation parts:

module DemoModule interface; { interface part }

export DemoModule = (FooType, SetFoo, GetFoo);

type
FooType = Integer;

procedure SetFoo (f: FooType);
function GetFoo: FooType;

end.
module DemoModule implementation; { implementation part }
import

StandardInput;

StandardQOutput;

var

Chapter 6: The Programmer’s Guide to GPC 59

Foo: FooType;

{ Note: the effect is the same as a ‘forward’ directive would have:
parameter lists and result types are not allowed in the
declaration of exported routines, according to EP. In GPC, they
are allowed, but not required. }

procedure SetFoo;

begin
Foo := f

end;

function GetFoo;
begin

GetFoo := Foo
end;

to begin do
begin
Foo := 59;
WriteLn (’Just an example of a module initializer. See comment below’)
end;

to end do
begin
Foo := 0;
Writeln (’Goodbye’)
end;

end.

Alternatively the module interface and implementation may be combined as follows:

module DemoMod2; { Alternative method }

export Catch22 = (FooType, SetFoo, GetFoo);

type
FooType = Integer;

procedure SetFoo (f: FooType);
function GetFoo: FooType;

end; { note: this ‘end’ is required here, even if the
module-block below would be empty. }

var
Foo: FooType;

procedure SetFoo;
begin

Foo := f
end;

60 The GNU Pascal Manual

function GetFoo;
begin

GetFoo := Foo
end;

end.
Either one of the two methods may be used like this:
program ModuleDemo (Output);

import DemoModule;

begin
SetFoo (999);
WriteLn (GetFoo);
end.

program ModDemo2 (Output) ;
import Catch22 in ’demomod2.pas’;

begin
SetFoo (999);
WriteLn (GetFoo);
end.
Somewhat simpler GPC modules are also supported. Note: This is not supported in the
Extended Pascal standard.
This is a simpler module support that does not require exports, imports, module headers etc.
These non-standard simple GPC modules look like the following example. They do not have
an export part, do not have a separate module-block, do not use import/export features.
Instead, you have to emulate the exporting/importing yourself using ‘attribute’ and
‘external name’.

module DemoMod3;

type
FooType = Integer;

var
Foo: FooType;

procedure SetFoo (f: FooType); attribute (name = ’SetFoo’);
begin

Foo := f
end;

function GetFoo: FooType; attribute (name = ’GetFoo’);
begin

GetFoo := Foo;
end;

end.

program ModDemo3 (Output);

Chapter 6: The Programmer’s Guide to GPC 61

{$L demomod3.pas} { explicitly link module }

{ Manually do the "import" from DemoMod3 }

type
FooType = Integer;

procedure SetFoo (f: FooType); external name ’SetFoo’;
function GetFoo: FooType; external name ’GetFoo’;

begin
SetFoo (999);
WriteLn (GetFoo)
end.

Module initialization and finalization:

The to begin do module initialization and to end do module finalization constructs now
work on every target.

By the way: The “GPC specific” module definition is almost identical to the PXSC standard.
With an additional keyword ‘global’” which puts a declaration into an export interface with the
name of the module, it will be the same. @@This is planned.

6.1.8.2 The Source Structure of UCSD /Borland Pascal Units
A generic GNU Pascal unit looks like the following:

unit name;
interface
import_part
interface_part
implementation
implementation_part
initialization_part

end.

The name of the unit should coincide with the name of the file with the extension stripped.
(If not, you can tell GPC the file name with ‘uses foo in ’bar.pas’’, see [uses|, page 432.)

The import_part is either empty or contains a ‘uses’ clause to import other units. It may
also consist of an ISO-style ‘import’ specification. Note that the implementation part is not
preceeded by a second import part in GPC (see [import|, page 328).

The interface_part consists of constant, type, and variable declarations, procedure and func-
tion headings which may be freely mixed.

The implementation_part is like the declaration part of a program, but the headers of proce-
dures and functions may be abbreviated: Parameter lists and function results may be omitted
for procedures and functions already declared in the interface part.

The initialization_part may be missing, or it may be a ‘begin’ followed by one or more
statements, such that the unit has a statement part between this ‘begin’ and the final ‘end’.

62 The GNU Pascal Manual

Alternatively, a unit may have ISO-style module initializers and finalizers, see [to begin do],
page 424, [to end do], page 424.

Note that GPC does not yet check whether all interface declarations are resolved in the
same unit. The implementation of procedures and functions which are in fact not used may
be omitted, and/or procedures and functions may be implemented somewhere else, even in a
different language. However, relying on a GPC bug (that will eventually be fixed) is not a good
idea, so this is not recommended. Instead, declare such routines as ‘external’.

A unit exports everything declared in the interface section. The exported interface has the
name of the unit and is compatible with Extended Pascal module interfaces since GPC uses the
same code to handle both.

6.2 Data Types

6.2.1 Type Definition
As described in Section 6.1.4 [Type Declaration], page 48, a type declaration part looks like
this:

type
type_identifier

type_definition;

type_identifier = type_definition;
where the left side is the type declaration and the right one the type definition side. GNU
Pascal offers various possibilities to implement highly specialized and problem-specific data
types.

6.2.2 Ordinal Types

An ordinal type is one that can be mapped to a range of whole numbers. It includes integer
types, character types, enumerated types and subrange types of them.

A character type is represented by the intrinsic type ‘Char’ which can hold elements of
the operating system’s character set (usually ASCII). Conversion between character types and
integer types is possible with the intrinsic functions Ord and Chr.

An enumerated type defines a range of elements which are referred to by identifiers. Conver-
sion from enumerated types to integer types is possible with the intrinsic function 0rd. Conver-
sion from integer to ordinal types is only possible by type-casting or using the extended form of
‘Succ’.

var
Foo: Char; { foo can hold a character }
Num: °0’ .. ’9’; { Can hold decimal digits, is a subrange type of Char }
Day: (Monday, Tuesday, Wednesday, Thursday, Friday); { Can hold weekday }

See also

[Ord], page 368, [Chr], page 286, Section 6.7 [Type Casts|, page 83

6.2.3 Integer Types

Besides ‘Integer’, GNU Pascal supports a large zoo of integer types. Some of them you
will find in other compilers, too, but most are GNU Pascal extensions, introduced for particular
needs. Many of these types are synonyms for each other. In total, GPC provides 20 built-in

Chapter 6: The Programmer’s Guide to GPC 63

integer types, plus seven families you can play with. (Four of these “families” are signed and
unsigned, packed and unpacked subrange types; the others are explained below.)

See also: Section 6.2.11.1 [Subrange Types|, page 68.

6.2.3.1 The CPU’s Natural Integer Types

For most purposes, you will always use ‘Integer’, a signed integer type which has the “nat-
ural” size of such types for the machine. On most machines GPC runs on, this is a size of 32
bits, so ‘Integer’ usually has a range of ‘~2147483648. .2147483647’ (see |Integer|, page 335).

If you need an unsigned integer type, the “natural” choice is ‘Cardinal’, also called ‘Word’.
Like ‘Integer’, it has 32 bits on most machines and thus a range of ‘0..4294967295 (see
[Cardinal], page 282, [Word], page 439).

These natural integer types should be your first choice for best performance. For instance
on an [A32 CPU operations with ‘Integer’ usually work faster than operations with shorter
integer types like ‘ShortInt’ or ‘ByteInt’ (see below).

6.2.3.2 The Main Branch of Integer Types

‘Integer’, ‘Cardinal’, and ‘Word’ define the three “main branches” of GPC’s integer types.
You won'’t always be able to deal with the natural size; sometimes something smaller or longer
will be needed. Especially when interfacing with libraries written in other languages such as C,
you will need equivalents for their integer types.

The following variants of ‘Integer’, ‘Cardinal’ and ‘Word’ (plus one Boolean type) are
guaranteed to be compatible to the integer types of GNU C. The sizes given, however, are not
guaranteed. They are just typical values currently used on most platforms, but they may be
actually shorter or increase in the future.

signed unsigned also unsigned GNU C equivalent size in bits
(typically)

BytelInt ByteCard Byte [un]signed char 8
ShortInt ShortCard ShortWord [unsigned] short int 16
Integer Cardinal Word [unsigned] int 32
MedInt MedCard MedWord [unsigned] long int 32
LongInt LongCard LongWord [unsigned] long long int 64

— SizeType — size_t 32
PtrDiffType — — ptrdiff_t 32
PtrInt PtrCard PtrWord — 32

— CBoolean — _Bool, bool 8

Since we don’t know whether ‘LongInt’ will always remain the “longest” integer type available
—maybe GNU C will get ‘long long long int’, one day, which we will support as ‘LongLongInt’
— we have added the synonym ‘LongestInt’ for the longest available singed integer type, and
the same holds for ‘LongestCard’ and ‘LongestWord’.

6.2.3.3 Integer Types with Specified Size

In some situations you will need an integer type of a well-defined size. For this purpose, GNU
Pascal provides type attributes (see [attribute], page 270). The type

Integer attribute (Size = 42)

is guaranteed to have a precision of 42 bits. In a realistic context, you will most often give a
power of two as the number of bits, and the machine you will need it on will support variables of
that size. If this is the case, the specified precision will simultaneously be the amount of storage
needed for variables of this type.

64 The GNU Pascal Manual

In short: If you want to be sure that you have a signed integer with 32 bits width, write
‘Integer attribute (Size = 32)’, not just ‘Integer’ which might be bigger. The same works
with unsigned integer types such as ‘Cardinal’ and ‘Word’ and with Boolean types.

This way, you can’t get a higher precision than that of ‘LongestInt’ or ‘LongestCard’ (see
Section 6.2.3.2 [Main Branch Integer Types|, page 63). If you need higher precision, you can
look at the ‘GMP’ unit (see Section 6.14.5 [GMP], page 172) which provides integer types with
arbitrary precision, but their usage is different from normal integer types.

6.2.3.4 Integer Types and Compatibility

If you care about ISO compliance, only use ‘Integer’ and subranges of ‘Integer’.

Some of GPC’s non-ISO integer types exist in Borland Pascal, too: ‘Byte’, ‘ShortInt’, ‘Word’,
and ‘LongInt’. The sizes of these types, however, are not the same as in Borland Pascal. Even
for ‘Byte’ this is not guaranteed (while probable, though).

When designing GNU Pascal, we thought about compatibility to Borland Pascal. Since GNU
Pascal is (at least) a 32-bit compiler, ‘Integer’ must have (at least) 32 bits. But what to do with
‘Word’? Same size as ‘Integer’ (like in BP) or 16 bits (like in BP)? We decided to make ‘Word’
the “natural-sized” unsigned integer type, thus making it (at least) 32 bits wide. Similarly, we
decided to give ‘LongInt’ twice the size of ‘Integer’ (like in BP) rather than making it 32 bits
wide (like in BP). So ‘LongInt’ has 64 bits, and ‘ShortInt’ has 16 bits on the IA32 platform.

On the other hand, to increase compatibility to Borland Pascal and Delphi, GPC provides
the alias name ‘Comp’ for ‘LongInt’ (64 bits on IA32) and ‘SmallInt’ for ‘ShortInt’ (16 bits on
IA32). Note that BP treats ‘Comp’ as a “real” type and allows assignments like ‘MyCompVar :=
42.0’. Since we don’t consider this a feature, GPC does not copy this behaviour.

6.2.3.5 Summary of Integer Types

Here is a summary of all integer types defined in GPC. The sizes and ranges are only typical
values, valid on some, but not all platforms. Compatibility to GNU C however is guaranteed.
[Bytelnt], page 280

signed 8-bit integer type, ‘-128..128’,
compatible to ‘signed char’ in GNU C.

[ByteCard], page 280
unsigned 8-bit integer type, ‘0. .255,
compatible to ‘unsigned char’ in GNU C.

[ShortInt], page 408
signed 16-bit integer type, ‘-32768..32767’,
compatible to ‘short int’ in GNU C.

[ShortCard], page 408
unsigned 16-bit integer type, ‘0..65535,
compatible to ‘unsigned short int’ in GNU C.

[Integer|, page 335
signed 32-bit integer type, ‘-2147483648. .2147483647’,
compatible to ‘int’ in GNU C.

[Cardinal], page 282
unsigned 32-bit integer type, ‘0..4294967295,
compatible to ‘unsigned int’ in GNU C.

[MedInt], page 352
signed 32-bit integer type, ‘-2147483648. .2147483647’,
compatible to ‘long int’ in GNU C.

Chapter 6: The Programmer’s Guide to GPC 65

[MedCard], page 351
unsigned 32-bit integer type, ‘0..4294967295’,
compatible to ‘unsigned long int’ in GNU C.

[LongInt], page 345
signed 64-bit integer type, ‘-=9223372036854775808. .9223372036854775807’,
compatible to ‘long long int’ in GNU C.
[LongCard], page 341
unsigned 64-bit integer type, ‘0. .18446744073709551615’,
compatible to ‘unsigned long long int’ in GNU C.
[LongestInt|, page 343
signed 64-bit integer type, ‘-9223372036854775808. .9223372036854775807 .
[LongestCard], page 343
unsigned 64-bit integer type, ‘0..18446744073709551615".
[Comp], page 288
signed 64-bit integer type, ‘-9223372036854775808 . . 9223372036854775807".
[Smalllnt], page 413
signed 16-bit integer type, ‘-32768..32767".
[SizeType], page 413
integer type (usually unsigned) to represent the size of objects in memory
[PtrDiff Type], page 383
signed integer type to represent the difference between two positions in memory
[PtrInt], page 384
signed integer type of the same size as a pointer
[PtrCard], page 382
unsigned integer type of the same size as a pointer
To specify the number of bits definitely, use type attributes, [attribute|, page 270.
program IntegerTypesDemo (Output);

var
ByteVar: Byte;
ShortIntVar: ShortlInt;
Foo: MedCard;
Big: LongestInt;

begin
ShortIntVar := 1000;
Big := MaxInt * ShortIntVar;
ByteVar := 127;
Foo := 16#deadbeef
end.

See also: Section 6.2.11.1 [Subrange Types|, page 68.

6.2.4 Built-in Real (Floating Point) Types

GPC has three built-in floating point types to represent real numbers. Each of them is
available under two names (for compatibility to other compilers and languages).

For most purposes, you will always use ‘Real’ which is the only one of them that is part
of Standard and Extended Pascal. If memory constraints apply, you might want to choose

66 The GNU Pascal Manual

‘ShortReal’ for larger arrays. On the other hand, if high precision is needed, you can use
‘LongReal’. When interfacing with libraries written in other languages such as C, you will need
the equivalents for their real types.

Note that not all machines support longer floating point types, so ‘LongReal’ is the same
as ‘Real’ on these machines. Also, some machines may support a longer type, but not do all
arithmetic operations (e.g. the ‘Sin’ function, [Sin|, page 411) in a precision higher than that of
‘Real’. If you need higher precision, you can look at the ‘GMP’ unit (see Section 6.14.5 [GMP],
page 172) which provides rational and real numbers with arbitrary precision, but their usage is
different from normal real types.

The following real types are guaranteed to be compatible to the real types of GNU C. The sizes
given, however, are not guaranteed. They are just typical values used on any IEEE compatible
floating point hardware, but they may be different on some machines.

type name alternative name GNU C equivalent size in bits (typically)
ShortReal Single float 32
Real Double double 64
LongReal Extended long double 80

6.2.5 Strings Types

There are several ways to use strings in GNU Pascal. One of them is the use of the intrinsic
string type ‘String’ which is a predefined schema type. The schema discriminant of this type
holds the maximal length, which is of type Integer, so values up to MaxInt can be specified.
For ‘String’, an assignment is defined. There are many built-in functions and procedures for
comfortable strings handling.

@@ 7777 String procedures and functions.

Another way to use strings is to use arrays of type ‘Char’. For these, an intrinsic assignment
is defined as well. Besides, ‘String’ and ‘Char’ are assignment compatible. The preferred way,
however, is ‘String’ because of the numerous possibilities for string handling.

6.2.6 Character Types

Character types are a special case of ordinal types.

See also

Section 6.2.2 [Ordinal Types], page 62, [Chr], page 286, [Ord], page 368, [Pred], page 379,
[Succ], page 419.

6.2.7 Enumerated Types

type
enum_type_identifier = (identifier, ..., Iidentifier) ;

An enumerated type is a a special case of ordinal types and defines a range of elements which
are referred to by identifiers. Enumerated types are ordered by occurence in the identifier list.
So, they can be used as index types in an array definition, and it is possible to define subranges
of them. Since they are ordered, they can be compared to one another. The intrinsic function
Ord applied to name_identifier returns the number of occurence in the identifier list (beginning
with zero), Pred and Succ return the predecessor and successor of name_identifier. ‘Boolean’ is
a special case of an enumerated type.

Chapter 6: The Programmer’s Guide to GPC 67

See also

Section 6.2.2 [Ordinal Types|, page 62, Section 6.2.11.2 [Array Types|, page 68, Sec-
tion 6.2.11.1 [Subrange Types|, page 68, [Ord], page 368, [Boolean], page 277, [Char], page 285,
[Pred], page 379, [Succ], page 419.

6.2.8 File Types

Files are used to store data permanently, normally on hard drives or floppies. There are tree
types of files available: text files, typed and untyped files.

Text files are used to store text in them, where typed files are used to store many entries of
the same type in them, e.g. addresses. Text files and typed files are accessible by ‘Read’ and
‘Write’ operations and do not need the parameter ‘BlockSize’ in ‘Reset’ or ‘Rewrite’. On the
other hand, untyped files are used to store any type of information in them but you need to use
‘BlockWrite’ or ‘BlockRead’ to store or retrieve data out of this file.

var
Fl: Text; { a textfile }
F2: file of Real; { a typed filed used to store real values in it }
F3: File; { an untyped file }

See also

Section 6.10.1 [File Routines|, page 90, [Write|, page 440, [Read], page 388, [BlockRead],
page 276, [BlockWrite|, page 276, [Reset], page 393, [Rewrite|, page 396

6.2.9 Boolean (Intrinsic)

The intrinsic Boolean represents boolean values, i.e. it can only assume true and false (which
are predefined constants). This type corresponds to the enumerated type

type
Boolean = (False, True);
Since it is declared this way, it follows:

Ord (False) = 0
Ord (True) =1
False < True

There are four intrinsic logical operators. The logical and, or and not. In Borland Pascal
and GNU Pascal, there is a logical “exclusive or” xor.

See also

Section 6.2.7 [Enumerated Types], page 66, [and], page 260, [or], page 366, [not], page 362,
[xor], page 441

6.2.10 Pointer (Intrinsic)

The intrinsic Pointer Type is a so-called unspecified or typeless pointer (i.e. a pointer which
does not point to any type but holds simply a memory address).

See also

Section 6.2.11.7 [Pointer Types|, page 74, [nil], page 361

68 The GNU Pascal Manual

6.2.11 Type Definition Possibilities

6.2.11.1 Subrange Types

GNU Pascal supports Standard Pascal’s subrange types:

program SubrangeDemo;
type
MonthInt =1 .. 12;
Capital = ’A’ .. ’Z’;
ControlChar = “A .. “Z;
begin
end.

{ ‘A’ = ‘Chr (1)’ is a BP extension }

Also possible: Subranges of enumerated types:

program EnumSubrangeDemo;
type
{ This is an enumerated type. }
Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

{ This is a subrange of ‘Days’. }
Working = Mon .. Fri;

begin
end.

To increase performance, variables of such a type are aligned in a way which makes them
fastest to access by the CPU. As a result, ‘1 .. 12’ occupies 4 bytes of storage on an IA32 CPU.

For the case you want to save storage at the expense of speed, GPC provides a ‘packed’
variant of these as an extension:

program PackedSubrangeDemo;
type

MonthInt = packed 1 .. 12;
begin
end.

A variable of this type occupies the shortest possible (i.e., addressable) space in memory —
one byte on an TA32 compatible CPU.

See also: [packed|, page 371.

6.2.11.2 Array Types

type
array_type_identifier = array [index_type] of element_type

or

type
array_type_identifier

array [index_type, ..., index_type] of element_type

The reserved word array defines an array type. index_type has to be an ordinal type, sub-
range type or an enumerated type, where several index types, separated by commas, are allowed.
element_type is an arbitrary type. An element of an array is accessed by array_type_variable

[index_number]. The upper and lower index bounds can be determined by the intrinsic functions
High and Low.

Chapter 6: The Programmer’s Guide to GPC 69

type
IntArray = array [1 .. 20] of Integer;
Foo = array [(Mo, Tu, We, Th, Fr, Sa, Su)] of Char;
Bar = array [0 .. 9, ’a’ .. ’z’, (Qux, Glorkl, Fred)] of Real;
Baz1 = array [1 .. 10] of IntArray;
{ equal (but declared differently): }
Baz2 = array [1 .. 10, 1 .. 20] of Integer;
See also

[High], page 325, [Low], page 347

6.2.11.3 Record Types

type
record_type_identifier = record
field_identifier: type_definition;

field_identifier: type_definition;
end;
or, with a variant part,
type
record_type_identifier = record
field_identifier : type_definition;

field_identifier: type_definition;
case bar: variant_type of

selector: (field_declarations) ;

selector: (field_declarations) ;

end;
or, without a variant selector field,
type
record_type_identifier = record
field_identifier: type_definition;

field_identifier : type_definition;
case variant_type of

selector: (field_declarations) ;

selector: (field_declarations) ;

end;

The reserved word record defines a structure of fields. Records can be ‘packed’ to save
memory usage at the expense of speed.

The reserved word ‘record’ and record types are defined in ISO 7185 Pascal. According to
ISO Pascal, the variant type must be an identifier. GNU Pascal, like UCSD and Borland Pascal,
also allows a subrange here.

A record field is accessed by record_type_variable . field_identifier

See also: [packed], page 371, Section 6.1.7.4 [case Statement], page 54.

70 The GNU Pascal Manual

6.2.11.4 Variant Records

GPC supports variant records like in EP and BP. The following construction is not allowed
in Extended Pascal, but in BP and GPC:

program BPVariantRecordDemo;

type
PersonRec = record
Age: Integer;
case EyeColor: (Red, Green, Blue, Brown) of
Red, Green : (WearsGlasses: Boolean);
Blue, Brown: (LengthOfLashes: Integer);
end;

begin
end.
In EP, the variant field needs a type identifier, which, of course, also works in GPC:

program EPVariantRecordDemo;

type
EyeColorType = (Red, Green, Blue, Brown);

PersonRec = record
Age: Integer;
case EyeColor: EyeColorType of
Red, Green : (WearsGlasses: Boolean);
Blue, Brown: (LengthOfLashes: Integer);
end;

begin
end.

6.2.11.5 EP’s Schema Types including ‘String’

Schemata are types that depend on one or more variables, called discriminants. They are an
ISO 10206 Extended Pascal feature.

type
RealArray (n: Integer) = array [1 .. n] of Real;
Matrix (n, m: PositiveInteger) = array [1 .. n, 1 .. m] of Integer;

The type ‘RealArray’ in this example is called a Schema with the discriminant ‘n’.
To declare a variable of such a type, write:

var
Foo: RealArray (42);

The discriminants of every global or local schema variable are initialized at the beginning of
the procedure, function or program where the schema variable is declared.

Schema-typed variables “know” about their discriminants. Discriminants can be accessed
just like record fields:
program SchemalDemo;

type
PositiveInteger = 1 .. MaxInt;

Chapter 6: The Programmer’s Guide to GPC 71

RealArray (n: Integer) = array [1 .. n] of Real;
Matrix (n, m: Positivelnteger) = array [1 .. n, 1 .. m] of Integer;

var
Foo: RealArray (42);

begin
Writeln (Foo.n) { yields 42 }
end.

Schemata may be passed as parameters. While types of schema variables must always have
specified discriminants (which may be other variables), formal parameters (by reference or by
value) may be of a schema type without specified discriminant. In this, the actual parameter
may posses any discriminant. The discriminants of the parameters get their values from the
actual parameters.

Also, pointers to schema variables may be declared without a discriminant:

program Schema2Demo;
type
RealArray (n: Integer) = array [1 .. n] of Real;
RealArrayPtr = "RealArray;
var
Bar: RealArrayPtr;
begin
end.
When applying ‘New’ to such a pointer, you must specify the intended value of the discrimi-
nant as a parameter:

New (Bar, 137)

As a GNU Pascal extension, the above can also be written as
Bar := New (RealArrayPtr, 137)

The allocated variable behaves like any other schema variable:

program Schema3Demo;
type
RealArray (n: Integer) = array [1 .. n] of Real;
RealArrayPtr = "RealArray;
var
Bar: RealArrayPtr;
i: Integer;

begin
Bar := New (RealArrayPtr, 137);
for i := 1 to Bar™.n do
Bar~[i] := 42
end.

Since the schema variable “knows” its size, pointers to schemata can be disposed just like
other pointers:
Dispose (Bar)

Schemata are not limited to arrays. They can be of any type that normally requires constant
values in its definition, for instance subrange types, or records containing arrays etc. (Sets do
not yet work.)

References to the schema discriminants are allowed, and the with statement is also allowed,
SO one can say:

72 The GNU Pascal Manual

program SchemaWithDemo;

type

RealArray (n: Integer) = array [1 .. n] of Real;
var

MyArray: RealArray (42);
begin

Writeln (MyArray.n); { writes 42 }
with MyArray do
WriteLn (n); { writes 42 }
end.

Finally, here is a somewhat exotic example. Here, a ‘ColoredInteger’ behaves just like an
ordinary integer, but it has an additional property ‘Color’ which can be accessed like a record
field.

program SchemaExoticDemo;

type
ColorType = (Red, Green, Blue);
ColoredInteger (Color: ColorType) = Integer;

var
Foo: ColoredInteger (Green);

begin
Foo := 7;
if Foo.Color = Red then
Inc (Foo, 2)
else
Foo := Foo div 3
end.

An important schema is the predefined ‘String’ schema (according to Extended Pascal). It
has one predefined discriminant identifier Capacity. GPC implements the String schema as
follows:

type
String (Capacity: Cardinal) = record
Length: 0 .. Capacity;
Chars: packed array [1 .. Capacity + 1] of Char
end;

The Capacity field may be directly referenced by the user, the Length field is referenced by a
predefined string function Length (Str) and contains the current string length. Chars contains
the chars in the string. The Chars and Length fields cannot be directly referenced by a user
program.

If a formal value parameter is of type ‘String’ (with or without discriminant), the actual
parameter may be either a String schema, a fixed string (character array), a single character, a
string literal or a string expression. If the actual parameter is a ‘String’ schema, it is copied for
the parameter in the usual way. If it is not a schema, a ‘String’ schema is created automatically,
the actual parameter is copied to the new variable and the Capacity field of the new variable
is set to the length of the actual parameter.

Actual parameters to ‘var’ parameters of type ‘String’ must be ‘String’ schemata, not
string literals or character arrays.

program StringDemo (Output);

Chapter 6: The Programmer’s Guide to GPC

type
SType = String (10);
SPtr = “String;

var
Str : SType;

Str2: String (100000) ;

Str3: String (20) value ’string expression’;
DStr: “String;

Z3tr: SPtr;

Len : Integer value 256;

Ch : Char value ’R’;

{ ‘String’ accepts any length of strings }

procedure Foo (z: String);

begin
Writeln (’Capacity: ’, z.Capacity);
WriteLn (’Length : ’, Length (2));
WriteLn (’Contents: ’, z);

end;

{ Another way to use dynamic strings }
procedure Bar (SLen: Integer);
var

LString: String (SLen);

FooStr: type of LString;

begin
LString := ’Hello world!’;
Foo (LString);
FooStr := ’How are you?’;
Foo (FooStr);
end;
begin
Str := ’KUKKUU’;
Str2 := ’A longer string variable’;
New (DStr, 1000); { Select the string Capacity with ‘New’ }
DStr~ := ’The maximum length of this is 1000 chars’;
New (ZStr, Len);
ZStr~ := ’This should fit here’;
Foo (Str);
Foo (Str2);

Foo (’This is a constant string’);
Foo (°This is a ’ + Str3);
Foo (Ch); { A char parameter to string routine }
Foo (’’); { An empty string }
Foo (DStr~);
Foo (ZStr~™);
Bar (10000);
end.

74 The GNU Pascal Manual

In the above example, the predefined procedure New was used to select the capacity of the
strings. Procedure Bar also has a string whose size depends of the parameter passed to it and
another string whose type will be the same as the type of the first string, using the type of
construct.

All string and character types are compatible as long as the destination string is long enough
to hold the source in assignments. If the source string is shorter than the destination, the
destination is automatically blank padded if the destination string is not of string schema type.

6.2.11.6 Set Types

set_type_identifier = set of set_element_type;

set_type_identifier is a set of elements from set_element_type which is either an ordinal type,
an enumerated type or a subrange type. Set element representatives are joined together into a
set by brackets:

[set_element, ..., set_element]

‘[1” indicates the empty set, which is compatible with all set types. Note: Borland Pascal
restricts the maximal set size (i.e. the range of the set element type) to 256, GNU Pascal has
no such restriction. The number of elements a set variable is holding can be determined by the
intrinsic set function Card (which is a GNU Pascal extension, in Extended Pascal and Borland
Pascal you can use SizeOf instead but note the element type size in bytes, then) to the set. There
are four intrinsic binary set operations: the union ‘+’; the intersection ‘*’ and the difference ‘-’.
The symmetric difference ‘><’ is an Extended Pascal extension.

See also

[Card], page 281, [SizeOf], page 412

6.2.11.7 Pointer Types

pointer_type_identifier = ~type_identifier;

A pointer of the type pointer_type_identifier holds the address at which data of the type
type_identifier is situated. Unlike other identifier declarations, where all identifiers in definition
part have to be declared before, in a pointer type declaration type_identifier may be declared after
pointer_type_identifier. The data pointed to is accessed by ‘pointer_type_variable™’. To mark an
unassigned pointer, the ‘nil’ constant (which stands for “not in list”) has to be assigned to it,
which is compatible with all pointer types.

type
ItselfFoo = "ItselfFoo; { possible but mostly senseless }
PInt = "Integer; { Pointer to an Integer }
PNode = "TNode; { Linked 1list }
TNode = record
Key : Integer;
NextNode: PNode;
end;
var

Foo, Bar: PInt;

begin

Chapter 6: The Programmer’s Guide to GPC 75

Foo := Bar; { Modify address which foo is holding }
Foo™ :=5; { Access data foo is pointing to }
end.

GPC also suports pointers to procedures or function and calls through them. This is a
non-standard feature.

program ProcPtrDemo (Output);

type
ProcPtr = “procedure (i: Integer);

var
PVar: ProcPtr;

procedure WriteInt (i: Integer);
begin

Writeln (’Integer: ’, i : 1)
end;

begin
{ Let PVar point to function WritelInt }
PVar := QWritelnt;

{ Call the function by dereferencing the function pointer }
PVar~ (12345)
end.

See also: Section 6.2.10 [Pointer (Intrinsic)], page 67.

6.2.11.8 Procedural and Functional Types

For procedures without a parameter list:
procedure_type_identifier = procedure name_identifier;
or functions:

function_type_identifier =
function name_identifier: function_result_type;
For procedures with a parameter list:
procedure_type_identifier =
procedure name_identifier (parameter_list) ;
or functions:
function_type_identifier =
function name_identifier (parameter_list): function_result_type;
Procedural types can be used as procedures or functions respectively, but also a value can
be assigned to them. Procedural types are a Borland Pascal extension. In Borland Pascal,
function_result_type can only be one of these types: ordinal types, real types, pointer types,

the intrinsic ‘String’ type. In GNU Pascal every function result type for procedural types is
allowed.

BP has procedural and functional types:

type
CompareFunction = function (Keyl, Key2: String): Integer;

76 The GNU Pascal Manual

function Sort (Compare: CompareFunction) ;
begin

end;
Standard Pascal has procedural and functional parameters:

function Sort (function Compare (Keyl, Key2: String): Integer);
begin

end;

Both ways have pros and cons, e.g. in BP you can save, compare, trade, etc. procedural
values, or build arrays of them, while the SP way does not require a type declaration and
prevents problems with uninitialized or invalid pointers (which in BP will usually crash the
program).

GPC supports both ways. An important feature of Standard Pascal (but not BP) that GPC
also supports is the possibility to pass local routines as procedural or functional parameters,
even if the called routine is declared far remote. The called routine can then call the passed
local routine and it will have access to the original caller’s local variables.

program LocalProceduralParameterDemo;

procedure CallProcedure (procedure Proc);
begin

Proc
end;

procedure MainProcedure;
var LocalVariable: Integer;

procedure LocalProcedure;
begin

WriteLn (LocalVariable)
end;

begin
LocalVariable := 42;
CallProcedure (LocalProcedure)
end;

begin
MainProcedure
end.

See also: Section 6.1.6.1 [The Procedure], page 50, Section 6.1.6.2 [The Function], page 51,
Section 6.1.6.4 [Subroutine Parameter List Declaration], page 51, Section 6.1.7.11 [Procedure
Call], page 57.

6.2.11.9 Object Types

Object types are used to encapsulate data and methods. Furthermore, they implement a
mechanism for inheritance.

See also

Section 6.8 [OOP], page 84

Chapter 6: The Programmer’s Guide to GPC 7

6.2.11.10 Initial values to type denoters

A type may be initialized to a value of expression when it is declared, like a variable, as in:

program TypeVarInitDemo;

type

Intl0 = Integer value 10;

FooType = Real;

MyType = Char value Pred (’A’);

EType = (a, b, ¢, d, e, £, g) value d;
const

Answer = 42;

var
ii : Int10; { Value of ii set to 10 }
ch : MyType value Pred (’z’);
aa : Integer value Answer + 10;
foo: FooType value Sqr (Answer);

el : EType; { value set to d }
e2 : EType value g; { value set to g }
begin
end.

Extended Pascal requires the type initializers to be constant expressions. GPC allows any
valid expression.

Note, however, that the expressions that affect the size of storage allocated for objects (e.g.
the length of arrays) may contain variables only inside functions or procedures.

GPC evaluates the initial values used for the type when an identifier is declared for that type.
If a variable is declared with a type-denoter that uses a type-name which already has an initial
value the latter initialization has precedence.

@@ GPC does not know how to calculate constant values for math functions in the run-
time library at compile time, e.g. ‘Exp (Sin (2.4567))’, so you should not use these kind of
expressions in object size expressions. (Extended Pascal allows this.)

6.2.11.11 Restricted Types

GPC supports ‘restricted’ types, defined in Extended Pascal. A value of a restricted type
may be passed as a value parameter to a formal parameter possessing its underlying type, or
returned as the result of a function. A variable of a restricted type may be passed as a variable
parameter to a formal parameter possessing the same type or its underlying type. No other
operations, such as accessing a component of a restricted type value or performing arithmetic,
are possible.

program RestrictedDemo;

type
UnrestrictedRecord = record
a: Integer;
end;
RestrictedRecord = restricted UnrestrictedRecord;

var
rl: UnrestrictedRecord;

78 The GNU Pascal Manual

r2: RestrictedRecord;
i: restricted Integer;
k: Integer;

function AccessRestricted (p: UnrestrictedRecord): RestrictedRecord;
var URes: UnrestrictedRecord;
begin
{ The parameter is treated as unrestricted, even though the actual
parameter may be a restricted object }
URes.a := p.a;
{ It is allowed to assign a function result }

AccessRestricted := URes;
end;
begin

rl.a := 354;

{ Assigning a restricted function result to a restricted object }
r2 := AccessRestricted (rl);

{ Passing a restricted object to unrestricted formal parameter is ok }
r2 := AccessRestricted (r2);

{$ifdef BUG}
{ **x The following statements are not allowed *** }

k := r2.a; { field access (reading) }

r2.a := 100; { field access (writing) }

rl := r2; { assignment source is restricted }

r2 :=ri; { assignment target is restricted }

rl := AccessRestricted (r2); { assigning a restricted function

result to an unrestricted object }

i := 16#ffff; { assignment target is restricted }
k =1+ 2; { arithmetic with restricted value }
{$endif}

end.

6.2.12 Machine-dependencies in Types

6.2.12.1 Endianness

Endianness means the order in which the bytes of a value larger than one byte are stored in
memory. This affects, e.g., integer values and pointers while, e.g., arrays of single-byte characters
are not affected. The GPC ‘String’ schema, however, contains ‘Capacity’ and ‘Length’ fields
before the character array. These fields are integer values larger than one byte, so the ‘String’
schema is affected by endianness.

Endianness depends on the hardware, especially the CPU. The most common forms are:
e Little-endian

Little-endian machines store the least significant byte on the lowest memory address (the
word is stored little-end-first).

Chapter 6: The Programmer’s Guide to GPC 79

E.g., if the 32 bit value $deadbeef is stored on memory address $1234 on a little-endian
machine, the following bytes will occupy the memory positions:

Address Value

$1234 $ef

$1235 $be

$1236 $ad

$1237 $de

Examples for little-endian machines are IA32 and compatible microprocessors and Alpha
processors.

e Big-endian

Big-endian machines store the most significant byte on the lowest memory address (the
word is stored big-end-first).

E.g., if the 32 bit value $deadbeef is stored on memory address $1234 on a big-endian
machine, the following bytes will occupy the memory positions:

Address Value
$1234 $de
$1235 $ad
$1236 $be
$1237 $ef

Examples for big-endian machines are the Sparc and Motorola m68k CPU families and most
RISC processors. Big-endian byte order is also used in the Internet protocols.

Note: There are processors which can run in both little-endian and big-endian mode, e.g. the
MIPS processors. A single program, however, (unless it uses special machine code instructions)
will always run in one endianness.

Under normal circumstances, programs do not need to worry about endianness, the CPU
handles it by itself. Endianness becomes important when exchanging data between different
machines, e.g. via binary files or over a network. To avoid problems, one has to choose the
endianness to use for the data exchange. E.g., the Internet uses big-endian data, and most
known data formats have a specified endianness (usually that of the CPU on which the format
was originally created). If you define your own binary data format, you're free to choose the
endianness to use.

To deal with endianness, GPC predefines the symbol ‘__BYTES_LITTLE_ENDIAN__’ on little-
endian machines and ‘__BYTES_BIG_ENDIAN__’ on big-endian machines. Besides, the Run Time
System defines the constant ‘BytesBigEndian’ as False on little-endian machines and True on
big-endian machines.

There are also the symbols ‘__BITS_LITTLE_ENDIAN__’ ‘__BITS_BIG_ENDIAN

- -

‘__WORDS_LITTLE_ENDIAN__’, ‘__WORDS_BIG_ENDIAN__’ and the constants ‘BitsBigEndian’

and ‘WordsBigEndian’ which concern the order of bits within a byte (e.g., in packed records)
or of words within multiword-numbers, but these are usually less important.

The Run Time System also contains a number of routines to convert endianness and to read
or write data from/to binary files in a given endianness, independent of the CPU’s endian-
ness. These routines are described in the RTS reference (see Section 6.13 [Run Time System],
page 100), under ‘endianness’. The demo program ‘endiandemo.pas’ contains an example on
how to use these routines.

6.2.12.2 Alignment

(Under construction.) @@ 7777

80 The GNU Pascal Manual

6.3 Operators

GNU Pascal supports all operators of ISO Pascal and Borland Pascal. In addition, you can
define your own operators according to the Pascal-SC (PXSC) syntax.

6.3.1 Built-in Operators

The following table lists all built-in GNU Pascal operators, ordered by precedence: ‘<’ etc.
have the lowest precedence, ‘not’ etc. the highest. As usual, the precedence of operators can be
superseded with parentheses.

In an assignment statement, ‘:=" has lower precedence than all operators. (This is rather
obvious from the syntax of assignment statements, and is merely noted for programmers familiar
with C where ‘=" is an operator.)

< = > in < >= <=
+ - or +< =< +> >
* / div mod and shl shr =xor *< /< *> />

pow k% ><
not & e
The Pascal-SC (PXSC) operators ‘+<’, ‘=<’ “4>7 ‘=>" <’ /<0 %>7 and ‘/>’ are not yet
implemented into GNU Pascal but may be defined by the user (see below).

6.3.2 User-defined Operators

GNU Pascal allows the (re-)definition of binary operators according to the Pascal-SC (PXSC)
syntax. The following vector addition example illustrates how to do this:

program OperatorDemo;

type
Vector3 = record
X, y, z: Real;
end;

var
a, b, c: Vector3 = (1, 2, 3);

operator + (u, v: Vector3) w: Vector3;
begin

W.X = u.Xx + V.X;

W.y = u.y + V.y;

W.Z = u.z + v.z;
end;
begin

c:=a+b
end.

Between the closing parenthesis of the argument list and the result variable (‘w” in the above
example), GPC allows an optional equal sign. This is not allowed in PXSC, but it is consistent
with Extended Pascal’s function result variable definitions, where the equal sign is obligatory
(but also optional in GPC).

The argument types needn’t be equal, and the name of the operator may be an identifier
instead of a known symbol. You cannot define new symbols in GPC.

Chapter 6: The Programmer’s Guide to GPC 81

The PXSC operators ‘“+>’) ‘“+<’/ etc. for exact numerical calculations currently are not imple-
mented in GPC, but you can define them. Also, the other real-type operators do not meet the
requirements of PXSC; a module which fixes that would be a welcome contribution.

6.4 Procedure And Function Parameters

6.4.1 Parameters declared as ‘protected’ or ‘const’

All the following works in GPC:

procedure Foo (protected a, b, c: Integer); { 3 arguments }
procedure Foo (a, b, c, protected: Integer); { 4 arguments }
procedure Foo (a, b, protected, c: Integer); { 4 arguments }
procedure Foo (protected: Integer); { 1 argument }
procedure Foo (var protected: Integer); { 1 argument }
procedure Foo (protected protected: Integer); { 1 argument }

Furthermore, GPC supports const, according to BP, which i
or protected var, up to the compiler’s discretion.

n
D

quivalent to either protected

6.4.2 The Standard way to pass arrays of variable size

@@ (Under construction.)
A feature of Standard Pascal level 1.

6.4.3 BP’s alternative to Conformant Arrays

Borland Pascal “open array” formal parameters are implemented into GPC. Within the
function body, they have integer type index with lower bound 0.

In constrast to conformant arrays (which are not supported by BP), open arrays allow any
ordinal type as the index of the actual parameter (which is useful, e.g., if you want to be able
to pass values of any enumeration type). However, they lose information about the lower bound
(which is a problem, e.g., if you want to return information to the caller that relates to the
actual array index, like the function ‘I0Select’ in the Run Time System does).

6.5 Accessing parts of strings (and other arrays)

GPC allows the access of parts (“slices”) of strings as defined in Extended Pascal. For
example:

program StringSliceDemo;

const
HelloWorld = ’Hello, world!’;

begin
Writeln (HelloWorld[8 .. 12]) { yields ‘world’ }
end.

As an extension, it also allows write access to a string slice:

program SliceWriteDemo;

var
s: String (42) = ’Hello, world!’;

82 The GNU Pascal Manual

begin

s[8 .. 12] := ’folks’;

Writeln (s) { yields ‘Hello, folks!’ }
end.

As a further extension, GPC allows slice access also to non-string arrays. However, the
usefulness of this feature is rather limited because of Pascal’s strict type checking rules: If
you have, e.g., an ‘array [1 .. 10] of Integer’ and take a slice ‘[1 .. 5]’ of it, it will not
be compatible to another ‘array [1 .. 5] of Integer’ because distinct array types are not
compatible in Pascal, even if they look the same.

However, array slice access can be used in connection with conformant or open array param-
eters. See the program ‘arrayslicedemo.pas’ (in the ‘demos’ directory) for an example.

6.6 Pointer Arithmetics

GPC allows to increment, decrement, compare, and subtract pointers or to use them in ‘for’
loops just like the C language.

GPC implements the address operator @ (a Borland Pascal extension).

program PointerArithmeticDemo;

var
a: array [1 .. 7] of Char;
p, q: “Char;

i: Integer;
{$X+} { We need extended syntax for pointer arithmetic }

begin
for p := @a[1l] to @a[7] do

p 1= 0y,

p := @a[7];
q := @a[3];
while p > q do
begin
pT =y
Dec (p)
end;

= Qal[7];
@al[3];
q - Pp; { yields 4 }

P -
0o

end.

Incrementing a pointer by one means to increment the address it contains by the size of the
variable it is pointing to. For typeless pointers (‘Pointer’), the address is incremented by one
instead.

Similar things hold when decrementing a pointer.

Subtracting two pointers yields the number of variables pointed to between both pointers,
i.e. the difference of the addresses divided by the size of the variables pointed to. The pointers
must be of the same type.

Chapter 6: The Programmer’s Guide to GPC 83

6.7 Type Casts

In some cases, especially in low-level situations, Pascal’s strong typing can be an obstacle. To
temporarily circumvent this, GPC defines explicit “type casts” in a Borland Pascal compatible
way.

There are two kinds of type casts, value type casts and variable type casts.

Value type casts

To convert a value of one data type into another type, you can use the target type like the
name of a function that is called. The value to be converted can be a variable or an expression.
Both the value’s type and the destination type must be ordinal or pointer types. The ordinal
value (extended to pointers to mean the address) is preserved in the cast.

An example:
program TypeCastDemo;

var
Ch: Char;
i: Integer;

begin
i := Integer (Ch)
end.
Another, more complicated, example:

program TypeCst2Demo;

type
CharPtr = “Char;
CharArray = array [0 .. 99] of Char;
CharArrayPtr = “CharArray;

var
Fool, Foo2: CharPtr;
Bar: CharArrayPtr;

{$X+} { We need extended syntax in order to use ‘‘Succ’’ on a pointer }
y P

begin

Fool := CharPtr (Bar);

Foo2 := CharPtr (Succ (Bar))
end.

However, because of risks involved with type casts, explained below, and because type-casts
are non-standard, you should try to avoid type casts whenever possible — and it should be
possible in most cases. For instance, the first example above could use the built-in function
“Ord” instead of the type cast:

i := 0rd (Ch);
The assignments in the second example could be written in the following way without any
type casts:
Fool := @Bar~[0];
Foo2 := @Bar~[1];

Note: In the case of pointers, a warning is issued if the dereferenced target type requires a
bigger alignment than the dereferenced source type (see Section 6.2.12.2 [Alignment]|, page 79).

84 The GNU Pascal Manual

Variable type casts

It is also possible to temporarily change the type of a variable (more generally, any “lvalue”,
i.e. something whose address can be taken), without converting its contents in any way. This is
called variable type casting.

The syntax is the same as for value type casting. The type-casted variable is still the same
variable (memory location) as the original one, just with a different type. Outside of the type
cast, the variable keeps its original type.

There are some important differences between value and variable type casting;:
e Variable type casting only works on lvalues, not on expressions.

e The result of a variable type casting is still an lvalue, so it can be used, e.g., on the left
side of an assignment, or as the operand of an address operator, or passed by reference to
a procedure.

e No values are converted in variable type-casting. The contents of the variable, seen as a
raw bit pattern, are just interpreted according to the new type.

e Because bit patterns are just interpreted differently, the source and target type must have
the same size. If this is not the case, GPC will give a warning.

e Beware: Variable type casts might have unexpected effects on different platforms since you
cannot rely on a specific way the data is stored (e.g. see Section 6.2.12.1 [Endianness]|,
page 78).

There are cases where a type-cast could be either a value or a variable cast. This is when
both types are ordinal or pointer, and of the same size, and the value is an lvalue. Fortunately,
in those cases, the results of both forms are the same, since the same ordinal values (or pointer
addresses) are represented by the same bit patterns (when of the same size). Therefore, it
doesn’t matter which form of type-casting is actually used in these cases.

When dealing with objects (see Section 6.8 [OOP], page 84), it is sometimes necessary to
cast a polymorphic pointer to an object into a pointer to a more specialized (derived) object
(after checking the actual type). However, the ‘as’ operator is a safer approach, so type-casts
should be used there only for backward-compatibility (e.g., to BP).

See also: [absolute], page 256, Section 6.2.12.2 [Alignment], page 79, Section 6.2.12.1 [Endian-
ness|, page 78, Section 6.8 [OOP], page 84, [Ord], page 368, [Chr], page 286, [Round], page 398,
[Trunc], page 426.

6.8 Object-Oriented Programming

GNU Pascal follows the object model of Borland Pascal 7.0. The BP object extensions are
almost fully implemented into GPC. This includes inheritance, virtual and non-virtual methods,
constructors, destructors, pointer compatibility, extended ‘New’ syntax (with constructor call
and/or as a Boolean function), extended ‘Dispose’ syntax (with destructor call).

The Borland object model is different from the ISO draft, but it will not be too difficult now
to implement that too (plus the Borland Delphi Object Extensions which are quite similar to
the ISO draft).

The syntax for an object type declaration is as follows:
program ObjectDemo;

type
Str100 = String (100);

FooParentPtr = “FooParent;
FooPtr = “Foo;

Chapter 6: The Programmer’s Guide to GPC

FooParent = object

constructor Init;

destructor Done; virtual;

procedure Bar (c: Real); virtual;

function Baz (b, a, z: Char): Str100; { not virtual }
end;

Foo = object (FooParent)
x, y: Integer;
constructor Init (a, b: Integer);
destructor Done; virtual;
procedure Bar (c: Real); virtual; { overrides ‘FooParent.Bar’ }
z: Real; { GPC extension: data fields after methods }
function Baz: Boolean; { new function }
end;

constructor FooParent.Init;
begin

WriteLn (’FooParent.Init’)
end;

destructor FooParent.Done;
begin

Writeln (°I’’m also done.’)
end;

procedure FooParent.Bar (c: Real);
begin

Writeln (’FooParent.Bar (’, c, ’)’)
end;

function FooParent.Baz (b, a, z: Char) = s: Str100;
begin

WriteStr (s, ’FooParent.Baz (°, b, >, ’, a, >, ’, z, ’)7)
end;

constructor Foo.Init (a, b: Integer);

begin
inherited Init;
X = a;
y := b;
z := 3.4;
FooParent.Bar (1.7)
end;

destructor Foo.Done;
begin
WriteLn (°I’’m done.’);
inherited Done
end;

85

86 The GNU Pascal Manual

procedure Foo.Bar (c: Real);
begin

Writeln (°Foo.Bar (’, c, ’)?)
end;

function Foo.Baz: Boolean;
begin

Baz := True
end;

var
Ptr: FooParentPtr;

begin
Ptr := New (FooPtr, Init (2, 3));
Ptr~.Bar (3);

Dispose (Ptr, Domne);
New (Ptr, Init);
with Ptr~ do
Writeln (Baz (’b’, ’a’, ’z’))
end.
Remarks:
e Data fields and methods can be mixed.

e GPC currently does not support ‘private’ declarations and such. These directives are
syntactically accepted but ignored.

e Constructors and destructors are ordinary functions, internally. When a constructor is
called, GPC creates some inline code to initialize the object; destructors do nothing special.

e Currently, the compiler does not check whether all declared methods are really implemented.
Unimplemented methods will produce linking errors when they are called or if they are
virtual.

A pointer to ‘FooParent’ may be assigned the address of a ‘Foo’ object. A ‘FooParent’
formal ‘var’ parameter may get a ‘Foo’ object as the actual parameter. In such cases, a call to
a ‘virtual’ method calls the child’s method, whereas a call to a non-‘virtual’ method selects
the parent’s one:

var
MyFooParent: FooParentPtr;
SomeFoo: Foo;

[...]

SomeFoo.Init (4, 2);
MyFooParent := @SomeFoo;
MyFooParent”.bar (3.14); { calls ‘foo.bar’ }
MyFooParent”.baz (°b’, ’a’, ’z’); { calls ‘fooParent.baz’ }
if SomeFoo.baz then { calls ‘foo.baz’ }
WriteLn (’Baz!’);
In a method, an overwritten method of a parent object can be called either prefixing it with
the parent type name, or using the keyword ‘inherited’:

procedure Foo.Bar (c: Real);

Chapter 6: The Programmer’s Guide to GPC 87

begin

Z = C;

inherited bar (z) { or: FooParent.Bar (z) }
end;

Use ‘FooParent .bar (z)’ if you want to be sure that this method is called, even if somebody
decides not to derive ‘foo’ directly from ‘fooParent’ but to have some intermediate object.
If you want to call the method ‘bar’ of the immediate parent — whether it be ‘fooParent’ or
whatever — use ‘inherited bar (z)’.

To allocate an object on the heap, use ‘New’ in one of the following manners:

var
MyFoo: FooPtr;

[...]
New (MyFoo, Init (4, 2));

MyFooParent := New (FooPtr, Init (4, 2))

The second possibility has the advantage that ‘MyFoo’ needn’t be a ‘FooPtr’ but can also be
a ‘FooParentPtr’, i.e. a pointer to an ancestor of ‘foo’.

Destructors can and should be called within Dispose:

Dispose (MyFooParent, Fini)

6.9 Compiler Directives And The Preprocessor

GPC, like UCSD Pascal and BP, treats comments beginning with a ‘¢’ immediately following
the opening ‘{’ or ‘(*¥’ as a compiler directive. As in Borland Pascal, {$...} and (*$...*) are
equivalent. When a single character plus a ‘+’ or ‘=’ follows, this is also called a compiler switch.
All of these directives are case-insensitive (but some of them have case-sensitive arguments).
Directives are local and can be changed during one compilation (except include files etc. where
this makes no sense).

In general, compiler directives are compiler-dependent. (E.g., only the include directive {$I
FileName} is common to UCSD and BP.) Because of BP’s popularity, GPC supports all of BP’s
compiler directives (and ignores those that are unnecessary on its platforms — these are those
not listed below), but it knows a lot more directives.

Some BP directives are — of course not by chance — just an alternative notation for C prepro-
cessor directives. But there are differences: BP’s conditional definitions (‘{$define Foo}’) go
into another name space than the program’s definitions. Therefore you can define conditionals
and check them via {$ifdef Foo}, but the program will not see them as an identifier ‘Foo’, so
macros do not exist in Borland Pascal.

GPC does support macros, but disables this feature when the ‘~-no-macros’ option or the

dialect option ‘--borland-pascal’ or ‘--delphi’ is given, to mimic BP’s behaviour. Therefore,
the following program will react differently when compiled with GPC either without special
options or with, e.g., the ‘~-borland-pascal’ option (and in the latter case, it behaves the
same as when compiled with BP).

program MacroDemo;
const Foo = ’Borland Pascal’;

{$define Foo ’Default’}

88 The GNU Pascal Manual

begin
WriteLn (Foo)
end.

Of course, you should not rely on such constructs in your programs. To test if the program
is compiled with GPC, you can test the ‘'__GPC__’ conditional, and to test the dialect used in
GPC, you can test the dialect, e.g., with ‘{$ifopt borland-pascall}’.

In general, almost every GPC specific command line option (see Section 5.1 [GPC Command
Line Options|, page 33) can be turned into a compiler directive (exceptions are those options
that contain directory names, such as ‘--unit-path’, because they refer to the installation on
a particular system, and therefore should be set system-wide, rather than in a source file):

--foo {$foo}
--no-foo {$no-foo}
-Wbar {$W bar} { note the space after the ‘W’ }

-Wno-bar {$W no-bar}

The following table lists some such examples as well as all those directives that do not
correspond to command-line options or have syntactical alternatives (for convenience and/or
BP compatibility).

--[no-]short-circuit $B+ $B- like in Borland Pascal:
$B- means short-circuit Boolean
operators; $B+ complete evaluation

—--[no-Jio-checking $I+ $I- like in Borland Pascal:
enable/disable I/0 checking

--[no-]stack-checking $S+ $S- like in Borland Pascal:
enable/disable stack checking

-—[no-Jtyped-address $T+ $T- like in Borland Pascal:
make the result of the address
operator and the Addr functiomn a
typed or untyped pointer

-W[no-Jwarnings $W+ $W- enable/disable warnings. Note: in
‘--borland-pascal’ mode, the
short version is disabled because
$W+/$W- has a different meaning in
Borland Pascal (which can safely be
ignored in GPC), but the long version
is still available.

—--[no-Jextended-syntax $X+ $X- mostly like in Borland Pascal:
enable/disable extended syntax
(ignore function resuls, operator
definitions, ‘PChar’, pointer

arithmetic, ...)
--borland-pascal disable or warn about GPC features
--extended-pascal not supported by the standard or
--pascal-sc dialect given, do not warn about its
etc. ¢ ‘dangerous’’ features (especially BP).

The dialect can be changed during one

{$M Hello!'}

{$define FOO}
or

{$CIDefine FOO}
—--cidefine=F00
{$CSDefine FOO}
-D FOO

or
—-csdefine=F00
or

—-define=F00
{$define loop while True do}

or
{$CIDefine loop ...}

--cidefine="loop=..."
{$CSDefine loop ...}
--csdefine="loop=..."
or

--define="loop=..."

{$I FileName}

{$undef FOO}
{$ifdef FOO}
($else}

{$endif}

Chapter 6: The Programmer’s Guide to GPC

compilation via directives like,
e.g., ‘{$borland-pascall}’.

write message ‘Hello!’ to

standard error during compilation. In
‘--borland-pascal’ mode, it is
ignored it if only numbers follow
(for compatibility to Borland
Pascal’s memory directive)

like in Borland Pascal:

define FOO (for conditional compilation)

(case-insensitively)
the same on the command line
define FOO case-sensitively

the same on the command line

Note: ‘--define’ on the command
line is case-sensitive like in GCC,
but ‘{$define}’ in the source code
is case-insensitive like in BP

define ‘loop’ to be ‘while True do’
as a macro like in C. The name of the
macro is case-insensitive. Note:
Macros are disabled in
‘--borland-pascal’ mode because BP
doesn’t support macros.

the same on the command line
define a case-sensitive macro

the same on the command line

like in Borland Pascal:
include ‘filename.pas’
(the name is converted to lower case)

like in Borland Pascal: undefine FO0O

conditional compilation

(1ike in Borland Pascal).

Note: GPC predefines the symbol
¢__GPC__’> (with two leading
and trailing underscores).

89

90 The GNU Pascal Manual

{$include "filename.pas"} include (case-sensitive)

{$include <filename.pas>} the same, but don’t search in the
current directory

...and all the other C preprocessor directives.

You also can use the preprocessor directives in C style, e.g. ‘#include’, but this is deprecated
because of possible confusion with Borland Pascal style ‘#42’ character constants. Besides, in
the Pascal style, e.g. ‘{$include "foo.bar"}’, there may be more than one directive in the
same line.

6.10 Routines Built-in or in the Run Time System

In this section we describe the routines and other declarations that are built into the compiler
or part of the Run Time System, sorted by topics.

6.10.1 File Routines

Extended Pascal treats files quite differently from Borland Pascal. GPC supports both forms,
even in mixed ways, and provides many extensions.

@@ A lot missing here
e An example of getting the size of a file (though a ‘FileSize’ function is already built-in).

function FileSize (FileName : String) : LongInt;
var
f: bindable file [0 .. MaxInt] of Char;
b: BindingType;
begin
Unbind (£);
b := Binding (f);
b.Name := FileName;
Bind(f, b);
b := Binding(f);
SeekRead (f, 0);
if Empty (f) then
FileSize := 0
else
FileSize := LastPosition (f) + 1;
Unbind (f) ;
end;

Prospero’s Extended Pascal has a bug in this case. Replace the MaxInt in the type definition
of f by a sufficiently large integer. GNU Pascal works correct in this case.

e GPC implements lazy text file I/O, i.e. does a Put as soon as possible and a Get as late
as possible. This should avoid most of the problems sometimes considered to be the most
stupid feature of Pascal. When passing a file buffer as parameter the buffer is validated
when the parameter is passed.

e GPC supports direct access files. E.g., declaring a type for a file that contains 100 integers.
program DirectAccessFileDemo;
type
DFile = file [1 .. 100] of Integer;
var
F: DFile;

Chapter 6: The Programmer’s Guide to GPC 91

P, N: 1 .. 100;

begin
Rewrite (F);
P := 42;
N := 17;

SeekWrite (F, P);
Write (F, N)
end.

The following direct access routines may be applied to a direct access file:

SeekRead (F, N); { Open file in inspection mode, seek to record N }
SeekWrite (F, N); { Open file in generation mode, seek to record N }
SeekUpdate (F, N); { Open file in update mode, seek to record N }
Update (F); { Writes F~, position not changed. F~ kept. }

p :=Position (F); { Yield the current record number }

p := LastPosition (F); { Yield the last record number in file }

If the file is open for inspection or update, Get may be applied. If the file is open for
generation or update, Put may be applied.

In BP, you can associate file variables with files using the ‘Assign’ procedure which GPC
supports.

program AssignTextDemo;

var
t: Text;
Line: String (4096);
begin
Assign (t, ’mytext.txt’);
Reset (t);
while not EOF (t) do
begin
ReadlLn (t, Line);
WritelLn (Line)
end
end.

In Extended Pascal, files are considered entities external to your program. External entities,
which don’t need to be files, need to be bound to a variable your program. Any variable
to which external entities can be bound needs to be declared ‘bindable’. Extended Pascal
has the ‘Bind’ function that binds a variable to an external entity as well as ‘Unbind’ to
undo a binding and the function ‘Binding’ to get the current binding of a variable.

GPC supports these routines when applied to files. The compiler will reject binding of other
object types.

Only the fields ‘Bound’ and ‘Name’ of the predefined record type ‘BindingType’ are required
by Extended Pascal. Additionally, GPC implements some extensions. For the full definition
of ‘BindingType’, see [BindingTypel, page 274.
The following is an example of binding:

program BindingDemo (Input, Output, f);

var
f: bindable Text;
b: BindingType;

92

The GNU Pascal Manual

procedure BindFile (var f: Text);
var
b: BindingType;
begin
Unbind (f);
b := Binding (f);
repeat
Write (’Enter a file name: ’);
Readln (b.Name);
Bind (f, b);
b := Binding (f);
if not b.Bound then
Writeln (’File not bound -- try again.’)
until b.Bound
end;

begin

BindFile (f);

{ Now the file f is bound to an external file. We can use the
implementation defined fields of BindingType to check if the
file exists and is readable, writable or executable. }

b := Binding (f);

Write (’The file ’);

if b.Existing then
Writeln (’exists.’)

else
WriteLn (’does not exist.’);

Write (°It is ’);

if not b.Readable then Write (’not ’);

Write (’readable, ’);

if not b.Writable then Write (’not ’);

Write (’writable and ’);

if not b.Executable then Write (’not ’);

WritelLn (’executable.’)

end.

Note that Prospero’s Pascal defaults to creating the file if it does not exists! You need to use

Prospero’s local addition of setting b.Existing to True to work-around this. GPC does not
behave like this.

6.10.2 String Operations

In the following description, s1 and s2 may be arbitrary string expressions, s is a variable of

string type.

WriteStr (s, write-parameter-list)

ReadStr (s1, read-parameter-1list)

Write to a string and read from a string. The parameter lists are identical to
‘Write’/‘Read’ from Text files. The semantics is closely modeled after file I/0O.

Index (s1, s2)

If s2 is empty, return 1 else if s1 is empty return 0 else returns the position of s2
in s1 (an integer).

Chapter 6: The Programmer’s Guide to GPC 93

Length (s1)
Return the length of s1 (an integer from 0 .. s1.Capacity).

Trim (s1) Returns a new string with spaces stripped of the end of s.

SubStr (s1, i)

SubStr (si, i, j)
Return a new substring of s1 that contains j characters starting from i. If j is
missing, return all the characters starting from 1i.

EQ (s1, s2)
NE (s1, s2)
LT (s1, s2)
LE (s1, s2)
GT (s1, s2)
GE (s1, s2)

Lexicographic comparisons of s1 and s2. Returns a boolean result. Strings are not
padded with spaces.

sl =s2
sl <> s2
sl < s2
sl <=s2
sl > s2

sl >=s2 Lexicographic comparisons of s1 and s2. Returns a boolean result. The shorter
string is blank padded to length of the longer one, but only in ‘--extended-pascal’
mode.

GPC supports string catenation with the + operator or the ‘Concat’ function. All string-
types are compatible, so you may catenate any chars, fixed length strings and variable length
strings.

program ConcatDemo (Input, Output);

var
Ch : Char;
Str : String (100);
Str2: String (50);
FStr: packed array [1 .. 20] of Char;

begin
Ch := ’$’;
FStr := ’demo’; { padded with blanks }
Write (’Give me some chars to play with: ’);
ReadlLn (Str);

Str := ’7’ + ’prefix:’ + Str + ’:suffix:’ + FStr + Ch;
Writeln (Concat (’Le’, ’ng’, ’th’), ’> = ’, Length (Str));
WriteLn (Str)

end.

Note: The length of strings in GPC is limited only by the range of ‘Integer’ (at least 32
bits, i.e., 2 GB), or the available memory, whichever is smaller. :—)

When trying to write programs portable to other EP compilers, it is however safe to assume
a limit of about 32 KB. At least Prospero’s Extended Pascal compiler limits strings to 32760
bytes. DEC Pascal limits strings to 65535 bytes.

94 The GNU Pascal Manual

6.10.3 Accessing Command Line Arguments
GPC supports access to the command line arguments with the BP compatible ParamStr and
ParamCount functions.
e ParamStr[0] is the program name,
e ParamStr[1] .. ParamStr[ParamCount] are the arguments.
The program below accesses the command line arguments.
program CommandLineArgumentsDemo (Output);

var
Counter: Integer;

begin
Writeln (’This program displays command line arguments one per line.’);
for Counter := 0 to ParamCount do
Writeln (’Command line argument #°’, Counter, ’ is ¢’,
ParamStr (Counter), ’’’’)
end.

6.10.4 Memory Management Routines
Besides the standard ‘New’ and ‘Dispose’ routines, GPC also allows BP style dynamic mem-
ory management with GetMem and FreeMem:

GetMem (MyPtr, 1024);
FreeMem (MyPtr, 1024);

One somehow strange feature of Borland is not supported: You cannot free parts of a variable
with FreeMem, while the rest is still used and can be freed later by another FreeMem call:

program PartialFreeMemDemo;

type
Vector = array [0 .. 1023] of Integer;
VecPtr = “Vector;

var
p, q: VecPtr;

begin

GetMem (p, 1024 * SizeOf (Integer));
q := VecPtr (@p~[512]);

{ ...}
FreeMem (p, 512 * SizeOf (Integer));
{ ...}

FreeMem (q, 512 * Size0f (Integer));
end.

Chapter 6: The Programmer’s Guide to GPC 95

6.10.5 Operations for Integer and Ordinal Types

e Bit manipulations: The BP style bit shift operators shl and shr exist in GPC as well as
bitwise and, or, xor and not for integer values.

2#100101 and (1 shl 5) = 2#100000
GPC also supports and, or, xor and not as procedures:

program BitOperatorProcedureDemo;
var x: Integer;

begin
X :=7;
and (x, 14); { sets x to 6 }
xor (x, 3); { sets x to 5 }
end.
e Succ, Pred: The standard functions ‘Succ’ and ‘Pred’ exist in GPC and accept a second
parameter.

e Increment, decrement: The BP built-in Procedures Inc and Dec exist in GPC.

program IncDecDemo;
var
i: Integer;
c: Char;
begin
Inc (i);
Dec (i, 7);
Inc (c, 3);
end.

=1+ 1; }
i-7;1%
Succ (c, 3); }

N
o -
]

e Min, Max: These are a GNU Pascal extension and work for reals as well as for ordinal types.
Mixing reals and integers is okay, the result is real then.

6.10.6 Complex Number Operations

@@ A lot of details missing here
e Dbinary operators +, -, *, / and unary -, +
e exponentiation operators (pow and **)
e functions (Sqr, ArcTan, SqRt, Exp, Ln, Sin, Cos)
e number info with Re, Im and Arg functions
e numbers constructed by Cmplx or Polar

The following sample programs illustrates most of the Complex type operations.

program ComplexOperationsDemo (Output) ;

var
z1, z2: Complex;
Len, Angle: Real;

begin
z1 := Cmplx (2, 1);
WritelLn;
Writeln (’Complex number zl is: (°, Re (z1) : 1, ’,’, Im (z1) : 1, ’)’);
WritelLn;
z2 := Conjugate(zl); { GPC extension }

96 The GNU Pascal Manual

WriteLn (’Conjugate of zl1 is: (°, Re (22) : 1, ?,’, Im (22) : 1, ’)?);

Writeln;

Len := Abs (z1);

Angle := Arg (z1);

WriteLn (’The polar representation of zl is: Length=’, Len : 1,
>, Angle=’, Angle : 1);

WritelLn;

z2 := Polar (Len, Angle);
WriteLn (’Converting (Length, Angle) back to (x, y) gives: (’,
Re (z2) : 1, >,’, Im (z2) : 1, ’)’);

Writeln;

Writeln (’The following operations operate on the complex number z1’);
WriteLn;

z2 := ArcTan (z1);

WritelLn (’ArcTan (z1) = (’, Re (z2), ’, ’, Im (z2), ’)’);

WritelLn;

z2 := z1 *x*x 3.141;

WritelLn (’z1 *x 3.141 =’, Re (z2), ’, ’, Im (22), ’)’);

Writeln;

z2 := Sin (z1);

Writeln (°Sin (z1) = (, Re (z2), ’, 7, Im (z2), ’)’);

WriteLln (’(Cos, Ln, Exp, SqRt and Sqr exist also.)’);

WritelLn;

z2 := zl1 pow 8;

Writeln (°zl1 pow 8 = (°, Re (z2), ’, ’, Im (22), ?)’);

WritelLn;

z2 := z1 pow (-8);

Writeln (’z1 pow (-8) = (’, Re (22), ’, ’, Im (22), ’)’);
end.

6.10.7 Set Operations

GPC supports Standard Pascal set operations. In addition it supports the Extended Pas-
cal set operation symmetric difference (setl >< set2) operation whose result consists of those
elements which are in exactly one of the operannds.

It also has a function that counts the elements in the set: ‘a := Card (set1)’.

In the following description, S1 and S2 are variables of set type, s is of the base type of the
set.

S1 :=82 Assign a set to a set variable.
S1 + 82 Union of sets

S1 - 82 Difference between two sets.
S1 * 82 Intersection of two sets.

S1 >< 82 Symmetric difference

S1 =252 Comparison between two sets. Returns boolean result. True if S1 has the same
elements as S2.

S1 <> 82 Comparison between two sets. Returns boolean result. True if S1 does not have the
same elements as S2.

S1<8S2

Chapter 6: The Programmer’s Guide to GPC 97

S2 > S1 Comparison between two sets. Returns boolean result. True if S1 is a strict subset
of S2.

S1<=82

S2 >=S1 Comparison between two sets. Returns boolean result. True if S1 is a subset of (or
equal to) S2.

s in S1 Set membership test between an element s and a set. Returns boolean result. True
if s is an element of S1.

The following example demonstrates some set operations. The results of the operations are
given in the comments.

program SetOpDemo;

type
TCharSet = set of Char;

var
S1, S2, S3: TCharSet;
Result: Boolean;

begin
S1 := [’a’, ’b’, ’c’];
S2 = [’C’, ’d’,)e)];

S3 := S1 + S2; {83 =1[’a’, ’b’, ’c’, ’d’, ’e’] }
S3 := S1 *x S2; {83 =1[’c’] }
S3 := S1 - S2; {83 =1[’a’, ’b’] }

{

S3 := S1 >< 82; 83 = [’a’, ’b’, ’d’, ’e’] }

Sl = [)C)’ 7d), 7e7]
Result :

= S1 = S2; { False }
Result := S1 < S2; { False }
Result := S1 <= S2; { True }

S1 := [’¢c’, ’d’];

Result := S1 <> S2; { True }

Result := S2 > Si; { True }

Result := S2 >= S1 { True }
end.

6.10.8 Date And Time Routines

procedure GetTimeStamp (var t: TimeStamp);

function Date (t: TimeStamp): packed array [1 .. DateLength] of Char;

function Time (t: TimeStamp): packed array [1 .. TimeLength] of Char;
DateLength and TimeLength are implementation dependent constants.

GetTimeStamp (t) fills the record ‘t’ with values. If they are valid, the Boolean flags are set
to True.

TimeStamp is a predefined type in the Extended Pascal standard. It may be extended in
an implementation, and is indeed extended in GPC. For the full definition of ‘TimeStamp’, see
[TimeStamp|, page 422.

98 The GNU Pascal Manual

6.11 Interfacing with Other Languages

The standardized GNU compiler back-end makes it relatively easy to share libraries between
GNU Pascal and other GNU compilers. On Unix-like platforms (not on Dos-like platforms), the
GNU compiler back-end usually complies to the standards defined for that system, so commu-
nication with other compilers should be easy, too.

In this chapter we discuss how to import libraries written in other languages, and how to
import libraries written in GNU Pascal from other languages. While the examples will specialize
to compatibility to GNU C, generalization is straightforward if you are familiar with the other
language in question.

6.11.1 Importing Libraries from Other Languages

To use a function written in another language, you need to provide an external declaration
for it — either in the program, or in the interface part of a unit, or an interface module.

Let’s say you want to use the following C library from Pascal:

File ‘callc.c’:

#include <unistd.h>
#include "callc.h"

int foo = 1;

void bar (void)
{

sleep (foo);
}

File ‘callc.h’:

/* Actually, we wouldn’t need this header file, and could instead
put these prototypes into callc.c, unless we want to use callc.c
also from other C source files. */

extern int foo;
extern void bar (void);

Then your program can look like this:

program CallCDemo;
{$L callc.c} { Or: ‘callc.o’ if you don’t have the source }

var
MyFoo: Integer; external name ’foo’;

procedure Bar; external name ’bar’;

begin
MyFoo := 42;
Bar

end.

Or, if you want to provide a ‘CallCUnit’ unit:

Chapter 6: The Programmer’s Guide to GPC 99

unit CallCUnit;
interface

var
MyFoo: Integer; external name ’foo’;

procedure Bar; external name ’bar’;
implementation
{$L callc.c} { Or: ‘callc.o’ if you don’t have the source }

end.
program CallCUDemo;

uses CallCUnit;

begin
MyFoo := 42;
Bar

end.

You can either link your program manually with ‘callc.o’ or put a compiler directive ‘{$L
callc.o} into your program or unit, and then GPC takes care of correct linking. If you have
the source of the C library (you always have it if it is Free Software), you can even write ‘{$L
callc.c}’ in the program (like above). Then GPC will also link with ‘callc.o’, but in addition
GPC will run the C compiler whenever ‘callc.c’ has changed if ‘-—automake’ is given, too.

While it is often convenient, there is no must to give the C function ‘bar’ the name ‘Bar’
in Pascal; you can name it as you like (e.g., the variable ‘MyFoo’ has a C name of ‘foo’ in the
example above).

If you omit the ‘name’, the default is the Pascal identifier, converted to lower-case. So, in
this example, the ‘name’ could be omitted for ‘Bar’, but not for ‘MyFoo’.

It is important that data types of both languages are mapped correctly onto each other. C’s
‘int’, for instance, translates to GPC’s ‘Integer’, and C’s ‘unsigned long’ to ‘MedCard’. For
a complete list of integer types with their C counterparts, see Section 6.2.3 [Integer Types],
page 62.

In some cases it can be reasonable to translate a C pointer parameter to a Pascal ‘var’
parameter. Since const parameters in GPC can be passed by value or by reference internally,
possibly depending on the system, ‘const foo *’ parameters to C functions cannot reliably be
declared as ‘const’ in Pascal. However, Extended Pascal’s ‘protected var’ can be used since
this guarantees passing by reference.

Some libraries provide a ‘main’ function and require your program’s “main” to be named
differently. To achive this with GPC, invoke it with an option ‘--gpc-main="GPCmain"’ (where
‘GPCmain’ is an example how you might want to name the program). You can also write it into
your source as a directive ‘{$gpc-main="GPCmain"}’.

6.11.2 Exporting GPC Libraries to Other Languages

The ‘.0’ files produced by GPC are in the same format as those of all other GNU compilers,
so there is no problem in writing libraries for other languages in Pascal. To use them, you will
need to write kind of interface — a header file in C. However there are some things to take into
account, especially if your Pascal unit exports objects:

100 The GNU Pascal Manual

e By default, GPC capitalizes the first letter (only) of each identifier, so ‘procedure FooBAR’
must be imported as ‘extern void Foobar ()’ from C.

e If you want to specify the external name explicitly, use ‘attribute’:
procedure FooBAR; attribute (name = ’FooBAR’);
begin
WriteLn (’FooBAR’)
end;

This one can be imported from C with ‘extern void FooBar()’.

e Objects are “records” internally. They have an implicit ‘vmt’ field which contains a pointer
to the “virtual method table”. This table is another record of the following structure:

type

VMT = record
ObjectSize: PtrInt; { Size of object in bytes }
NegObjectSize: PtrInt; { Negated size }
Methods: array [1 .. n] of procedure;

{ Pointers to the virtual methods. The entries are of the
repective procedure or function types. }
end;

You can call a virtual method of an object from C if you explicitly declare this ‘struct’
and explicitly dereference the ‘Fun’ array. The VMT of an object ‘FooBAR’ is an external
(in C sense) variable ‘vmt_Foobar’ internally.

e Methods of objects are named ‘Myobject_Mymethod’ (with exactly two capital letters) in-
ternally.

e If you want to put a program in a library for some reason, and you want to give the ‘main’
program an internal name different from ‘main’, call GPC with the command-line option
‘~-gpc-main="GPCmain"’ (see the previous subsection).

6.12 Notes for Debugging

e The GNU debugger, ‘gdb’, does not yet understand Pascal sets, files or subranges. Now
‘gdb’ allows you to debug these things, even though it does not yet understand some stabs.

e Forward referencing pointers generate debug info that appears as generic pointers.
e No information of ‘with’ statements is currently given to the debugger.

e When debugging, please note that the Initial Letter In Each Identifier Is In Upper Case And
The Rest Are In Lower Case, unless explicitly overriden with ‘name’ (see [name|, page 357).
This is to reduce name clashes with libc and other possible libraries.

e All visible GPC Run Time System routines have linker names starting with ‘_p_’.

e The linker name of the main program is ‘pascal_main_program’. This is done because ISO
Standard wants to have the program name in a separate name space.

6.13 Pascal declarations for GPC’s Run Time System

Below is a Pascal source of the declarations in GPC’s Run Time System (RTS). A file
‘gpc.pas’ with the same contents is included in the GPC distribution in a ‘units’ subdirectory
of the directory containing ‘libgcc.a’. (To find out the correct directory for your installation,
type ‘gpc ——print-file-name=units’ on the command line.)

{ This file was generated automatically from gpc-pas.in.
DO NOT CHANGE THIS FILE MANUALLY! }

Chapter 6: The Programmer’s Guide to GPC 101

{ Pascal declarations of the GPC Run Time System that are visible to
each program.

This unit contains Pascal declarations of many RTS routines which
are not built into the compiler and can be called from programs.
Don’t copy the declarations from this unit into your programs, but
rather include this unit with a ‘uses’ statement. The reason is
that the internal declarations, e.g. the linker names, may change,
and this unit will be changed accordingly. @@In the future, this
unit might be included into every program automatically, so there
will be no need for a ‘uses’ statement to make the declarations
here available.

Note about ‘protected var’ parameters:

Since ‘const’ parameters in GPC may be passed by value *or* by
reference internally, possibly depending on the system,

‘const foo*’ parameters to C functions *cannot* reliably be
declared as ‘const’ in Pascal. However, Extended Pascal’s
‘protected var’ can be used since this guarantees passing by
reference.

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Authors: Jukka Virtanen <jtvG@hut.fi>
Peter Gerwinski <peter@gerwinski.de>
Frank Heckenbach <frank@pascal.gnu.de>
J.J. v.der Heijden <j.j.vanderheijden@student.utwente.nl>
Nicola Girardi <nicola@g-n-u.de>
Prof. Abimbola A. Olowofoyeku <African_Chief@bigfoot.com>
Emil Jerabek <jerabek@math.cas.cz>
Maurice Lombardi <Maurice.Lombardi@ujf-grenoble.fr>
Toby Ewing <ewingQiastate.edu>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled

102 The GNU Pascal Manual

with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ <> 20030507}

{$error

Trying to compile gpc.pas with a non-matching GPC version is likely
to cause problems.

In case you are building the RTS separately from GPC, make sure you
install a current GPC version previously. If you are building GPC
now and this message appears, something is wrong -- if you are
overriding the GCC_FOR_TARGET or GPC_FOR_TARGET make variables, this
might be the problem. If you are cross-building GPC, build and
install a current GPC cross-compiler first, sorry. If that’s not the
case, please report it as a bug.

If you are not building GPC or the RTS currently, you might have
installed things in the wrong place, so the compiler and RTS
versions do not match.}

{$endif}

{ Command-line options must not change the layout of RTS types
declared here. 7
{$no-pack-struct, maximum-field-alignment O}

module GPC;

export
GPC = all,;
GPC_SP = (ERead { @@ not really, but an empty export doesn’t work
s
GPC_EP = (ERead { @@ not really, but an empty export doesn’t work
s
GPC_BP = (MaxLongInt, ExitCode, ErrorAddr, FileMode, Pos);

GPC_Delphi = (MaxLongInt, Int64, InitProc, EConvertError,
ExitCode, ErrorAddr, FileMode, Pos, SetString,
String0fChar,
TextFile, AssignFile, CloseFile);

{ Pascal declarations of the GPC Run Time System routines that are
implemented in C, from rtsc.pas }

const
MaxLongInt = High (LongInt);

{ Maximum size of a variable }
MaxVarSize = MaxInt div 8;

Chapter 6: The Programmer’s Guide to GPC 103

{ If set, characters >= #$80 are assumed to be letters even if the
locale routines don’t say so. This is a kludge because some
systems don’t have correct non-English locale tables. }

var
FakeHighLetters: Boolean; attribute (name = ’_p_FakeHighLetters’);
external;

type
PCStrings
TCStrings
CString;

"TCStrings;
array [0 .. MaxVarSize div SizeOf (CString) - 1] of

Int64 = Integer attribute (Size = 64);

UnixTimeType = LongInt; { This is hard-coded in the compiler. Do
not change here. }

MicroSecondTimeType = LongInt;

FileSizeType = LongInt;

SignedSizeType = Integer attribute (Size = BitSizeOf (SizeType));
TSignalHandler = procedure (Signal: Integer);

StatFSBuffer = record
BlockSize, BlocksTotal, BlocksFree: LongestInt;
FilesTotal, FilesFree: Integer

end;

InternalSelectType = record
Handle: Integer;
Read, Write, Exception: Boolean
end;

PString = "String;

{ ‘Max’ so the size of the array is not zero for Count = 0 }
PPStrings = "TPStrings;

TPStrings (Count: Cardinal) = array [1 .. Max (Count, 1)] of
PString;

GlobBuffer = record
Result: PPStrings;
Internall: Pointer;
Internal2: PCStrings;
Internal3: Integer

end;

{ Mathematical routines }

function SinH (x: Real): Real; attribute (const); external
name ’_p_SinH’;

function CosH (x: Real): Real; attribute (const); external
name ’_p_CosH’;

104 The GNU Pascal Manual

function ArcTan2 (y: Real; x: Real): Real; attribute (const);
external name ’_p_ArcTan2’;

function IsInfinity (x: LongReal): Boolean; attribute (const);
external name ’_p_IsInfinity’;

function IsNotANumber (x: LongReal): Boolean; attribute (const);
external name ’_p_IsNotANumber’;

procedure SplitReal (x: LongReal; var Exponent: Integer; var
Mantissa: LongReal); external name ’_p_SplitReal’;

{ Character routines }

{ Convert a character to upper case, according to the current
locale.
Except in ‘--borland-pascal’ mode, ‘UpCase’ does the same. }
function UpCase (ch: Char): Char; attribute (const); external
name ’_p_UpCase’;

4

{ Convert a character to lower case, according to the current
locale.
Except in ‘--borland-pascal’ mode, ‘UpCase’ does the same. }

function LoCase (ch: Char): Char; attribute (const); external
name ’_p_LoCase’;

function IsUpCase (ch: Char): Boolean; attribute (const); external
name ’_p_IsUpCase’;

function IsLoCase (ch: Char): Boolean; attribute (const); external
name ’_p_IsLoCase’;

function IsAlpha (ch: Char): Boolean; attribute (const); external
name ’_p_IsAlpha’;

function IsAlphaNum (ch: Char): Boolean; attribute (const);
external name ’_p_IsAlphalNum’;

function IsAlphaNumUnderscore (ch: Char): Boolean; attribute
(const); external name ’_p_IsAlphaNumUnderscore’;

function IsSpace (ch: Char): Boolean; attribute (const); external
name ’_p_IsSpace’;

function IsPrintable (ch: Char): Boolean; attribute (const);
external name ’_p_IsPrintable’;

[4

{ Time routines }

{ Sleep for a given number of seconds. }
procedure Sleep (Seconds: Integer); external name ’_p_Sleep’;

{ Sleep for a given number of microseconds. }
procedure SleepMicroSeconds (MicroSeconds: Integer); external
name ’_p_SleepMicroSeconds’;

{ Set an alarm timer. }
function Alarm (Seconds: Integer): Integer; external

name ’_p_Alarm’;

{ Convert a Unix time value to broken-down local time.

Chapter 6: The Programmer’s Guide to GPC 105

A1l parameters except Time may be Null. }
procedure UnixTimeToTime (Time: UnixTimeType; var Year: Integer; var
Month: Integer; var Day: Integer; var Hour: Integer; var Minute:
Integer; var Second: Integer;
var TimeZone: Integer; var DST:
Boolean; var TZNamel: CString; var TZName2: CString); external
name ’_p_UnixTimeToTime’;

{ Convert broken-down local time to a Unix time value. }
function TimeToUnixTime (Year: Integer; Month: Integer; Day:
Integer; Hour: Integer; Minute: Integer; Second: Integer):

UnixTimeType; external name ’_p_TimeToUnixTime’;

{ Get the real time. MicroSecond can be Null and is ignored then. }
function GetUnixTime (var MicroSecond: Integer): UnixTimeType;
external name ’_p_GetUnixTime’;

{ Get the CPU time used. MicroSecond can be Null and is ignored
then. Now, GetCPUTime can measure long CPU times reliably on most
systems (e.g. Solaris where it didn’t work before). }

function GetCPUTime (var MicroSecond: Integer): Integer; external
name ’_p_GetCPUTime’;

{ Signal and process routines }

{ Extract information from the status returned by PWait }

function StatusExited (Status: Integer): Boolean; attribute
(const); external name ’_p_StatusExited’;

function StatusExitCode (Status: Integer): Integer; attribute
(const); external name ’_p_StatusExitCode’;

function StatusSignaled (Status: Integer): Boolean; attribute
(const); external name ’_p_StatusSignaled’;

function StatusTermSignal (Status: Integer): Integer; attribute
(const); external name ’_p_StatusTermSignal’;

function StatusStopped (Status: Integer): Boolean; attribute
(const); external name ’_p_StatusStopped’;

function StatusStopSignal (Status: Integer): Integer; attribute
(const); external name ’_p_StatusStopSignal’;

{ Install a signal handler and optionally return the previous
handler. OldHandler and OldRestart may be Null. }

function InstallSignalHandler (Signal: Integer; Handler:
TSignalHandler; Restart: Boolean; UnlessIgnored: Boolean;
var 0ldHandler: TSignalHandler; var OldRestart: Boolean): Boolean;
external name ’_p_InstallSignalHandler’;

{ Block or unblock a signal. }
procedure BlockSignal (Signal: Integer; Block: Boolean); external

name ’_p_BlockSignal’;

{ Test whether a signal is blocked. }

106 The GNU Pascal Manual

function SignalBlocked (Signal: Integer): Boolean; external
name ’_p_SignalBlocked’;

{ Sends a signal to a process. Returns True if successful. If Signal
is 0, it doesn’t send a signal, but still checks whether it would
be possible to send a signal to the given process. }

function Kill (PID: Integer; Signal: Integer): Boolean; external
name ’_p_Kill’;

{ Constant for WaitPID }
const
AnyChild = -1;

{ Waits for a child process with the given PID (or any child process
if PID = AnyChild) to terminate or be stopped. Returns the PID of
the process. WStatus will contain the status and can be evaluated
with StatusExited etc.. If nothing happened, and Block is False,
the function will return O, and WStatus will be 0. If an error
occurred (especially on single tasking systems where WaitPID is
not possible), the function will return a negative value, and
WStatus will be 0. }

function WaitPID (PID: Integer; var WStatus: Integer; Block:
Boolean): Integer; external name ’_p_WaitPID’;

{ Returns the process ID. }
function ProcessID: Integer; external name ’_p_ProcessID’;

{ Returns the process group. }
function ProcessGroup: Integer; external name ’_p_ProcessGroup’;

{ Returns the real or effective user ID of the process. }
function UserID (Effective: Boolean): Integer; external
name ’_p_UserID’;

{ Tries to change the real and/or effective user ID. }
function SetUserID (Real: Integer; Effective: Integer): Boolean;
external name ’_p_SetUserID’;

{ Returns the real or effective group ID of the process. }
function GroupID (Effective: Boolean): Integer; external
name ’_p_GroupID’;

{ Tries to change the real and/or effective group ID. }
function SetGroupID (Real: Integer; Effective: Integer): Boolean;
external name ’_p_SetGroupID’;

{ Low-level file routines. Mostly for internal use. }
{ Get information about a file system. }

function StatFS (Path: CString; var Buf: StatFSBuffer): Boolean;
external name ’_p_StatFS’;

Chapter 6: The Programmer’s Guide to GPC 107

function CStringOpenDir (DirName: CString): Pointer; external
name ’_p_CStringOpenDir’;

function CStringReadDir (Dir: Pointer): CString; external
name ’_p_CStringReadDir’;

procedure CStringCloseDir (Dir: Pointer); external
name ’_p_CStringCloseDir’;

{ Returns the value of the symlink FileName in a CString allocated
from the heap. Returns nil if it is no symlink or the function
is not supported. }

function ReadLink (FileName: CString): CString; external
name ’_p_ReadLink’;

{ The result of the following function is a pointer to a *static*
buffer! }

function CStringRealPath (Path: CString): CString; external
name ’_p_CStringRealPath’;

{ File mode constants that are ORed for BindingType.Mode, ChMod,
CStringChMod and Stat. The values below are valid for all 0Ss
(as far as supported). If the 0S uses different values, they’re
converted internally. 7

const
fm_SetUID = 8#4000;
fm_SetGID = 8#2000;
fm_Sticky = 8#1000;
fm_UserReadable = 8#400;
fm_UserWritable = 8#200;
fm_UserExecutable = 8#100;
fm_GroupReadable = 8#40;
fm_GroupWritable = 8#20;
fm_GroupExecutable = 8#10;
fm_OthersReadable = 8#4;
fm_OthersWritable = 8#2;
fm_OthersExecutable = 8#1;

{ Constants for _p_Access() and _p_OpenHandle() }

const
MODE_EXEC = 1 shl 0;
MODE_WRITE 1 shl 1;
MODE_READ = 1 shl 2;
MODE_FILE 1 shl 3;
MODE_DIR 1 shl 4;
MODE_SPECIAL = 1 shl 5;
MODE_SYMLINK = 1 shl 6;
MODE_CREATE 1 shl 7;
MODE_TRUNCATE = 1 shl 8;
MODE_BINARY = 1 shl 9;

{ Check if a file name is accessible. }
function Access (FileName: CString; Request: Integer): Integer;

108 The GNU Pascal Manual

external name ’_p_Access’;

{ Get information about a file. Any argument except Name can
be Null. }

function Stat (FileName: CString; var Size: FileSizeType;
var ATime: UnixTimeType; var MTime: UnixTimeType; var CTime:
UnixTimeType;
var User: Integer; var Group: Integer; var Mode: Integer; var
Device: Integer; var INode: Integer; var Links: Integer;
var SymLink: Boolean; var Dir: Boolean; var Special: Boolean):
Integer; external name ’_p_Stat’;

function OpenHandle (FileName: CString; Mode: Integer): Integer;
external name ’_p_0OpenHandle’;

function ReadHandle (Handle: Integer; Buffer: Pointer; Size:
SizeType): SignedSizeType; external name ’_p_ReadHandle’;

function WriteHandle (Handle: Integer; Buffer: Pointer; Size:
SizeType): SignedSizeType; external name ’_p_WriteHandle’;

function CloseHandle (Handle: Integer): Integer; external
name ’_p_CloseHandle’;

procedure FlushHandle (Handle: Integer); external
name ’_p_FlushHandle’;

function DupHandle (Src: Integer; Dest: Integer): Integer; external
name ’_p_DupHandle’;

function CStringRename (OldName: CString; NewName: CString):
Integer; external name ’_p_CStringRename’;

function CStringUnlink (FileName: CString): Integer; external
name ’_p_CStringUnlink’;

function CStringChDir (FileName: CString): Integer; external
name ’_p_CStringChDir’;

function CStringMkDir (FileName: CString): Integer; external
name ’_p_CStringMkDir’;

function CStringRmDir (FileName: CString): Integer; external
name ’_p_CStringRmDir’;

function CStringChMod (FileName: CString; Mode: Integer): Integer;
external name ’_p_CStringChMod’;

function CStringChOwn (FileName: CString; Owner: Integer; Group:
Integer): Integer; external name ’_p_CStringChOwn’;

function CStringUTime (FileName: CString; AccessTime: UnixTimeType;
ModificationTime: UnixTimeType): Integer; external
name ’_p_CStringUTime’;

function SeekHandle (Handle: Integer; Offset: FileSizeType; Whence:
Integer): FileSizeType; external name ’_p_SeekHandle’;

function TruncateHandle (Handle: Integer; Size: FileSizeType):
Integer; external name ’_p_TruncateHandle’;

function LockHandle (Handle: Integer; WriteLock: Boolean; Block:
Boolean): Boolean; external name ’_p_LockHandle’;

function UnlockHandle (Handle: Integer): Boolean; external
name ’_p_UnlockHandle’;

function SelectHandle (Count: Integer; var Events:
InternalSelectType; MicroSeconds: MicroSecondTimeType): Integer;
external name ’_p_SelectHandle’;

Chapter 6: The Programmer’s Guide to GPC 109

{ Constants for MMapHandle and MemoryMap }

const
mm_Readable =1;
mm_Writable = 2;
mm_Executable = 4;

{ Try to map (a part of) a file to memory. }

function MMapHandle (Start: Pointer; Length: SizeType; Access:
Integer; Shared: Boolean; Handle: Integer; Offset: FileSizeType):
Pointer; external name ’_p_MMapHandle’;

{ Unmap a previous memory mapping. }
function MUnMapHandle (Start: Pointer; Length: SizeType): Integer;
external name ’_p_MUnMapHandle’;

{ Returns the file name of the terminal device that is open on
Handle. Returns nil if (and only if) Handle is not open or not
connected to a terminal. If NeedName is False, it doesn’t bother
to search for the real name and just returns DefaultName if it
is a terminal and nil otherwise. DefaultName is also returned if
NeedName is True, Handle is connected to a terminal, but the
system does not provide information about the real file name. }

function GetTerminalNameHandle (Handle: Integer; NeedName: Boolean;
DefaultName: CString): CString; external
name ’_p_GetTerminalNameHandle’;

{ I/0 routines }

{ Sets the process group of Process (or the current one if Process
is 0) to ProcessGroup (or its PID if ProcessGroup is 0). Returns
True if successful. }

function SetProcessGroup (Process: Integer; ProcessGroup: Integer):
Boolean; external name ’_p_SetProcessGroup’;

{ Sets the process group of a terminal given by Terminal (as a file
handle) to ProcessGroup. ProcessGroup must be the ID of a process
group in the same session. Returns True if successful. }

function SetTerminalProcessGroup (Handle: Integer; ProcessGroup:
Integer): Boolean; external name ’_p_SetTerminalProcessGroup’;

{ Returns the process group of a terminal given by Terminal (as a
file handle), or -1 on error. }

function GetTerminalProcessGroup (Handle: Integer): Integer;
external name ’_p_GetTerminalProcessGroup’;

{ Set the standard input’s signal generation, if it is a terminal. }
procedure SetInputSignals (Signals: Boolean); external

name ’_p_SetInputSignals’;

{ Get the standard input’s signal generation, if it is a terminal. }

110 The GNU Pascal Manual

function GetInputSignals: Boolean; external
name ’_p_GetInputSignals’;

{ Internal routines 7}

{ Returns system information if available. Fields not available will
be set to nil. }

procedure CStringSystemInfo (var SysName: CString; var NodeName:
CString; var Release: CString; var Version: CString; var Machine:
CString; var DomainName: CString); external
name ’_p_CStringSystemInfo’;

{ Returns the path of the running executable *if possiblex. }
function CStringExecutablePath (Buffer: CString): CString; external
name ’_p_CStringExecutablePath’;

{ Sets ErrNo to the value of ‘errno’ and returns the description
for this error. May return nil if not supported! ErrNo may be
Null (then only the description is returned). }

function CStringStrError (var ErrNo: Integer): CString; external
name ’_p_CStringStrError’;

{ File routines }

type
TOpenMode = (fo_None, fo_Reset, fo_Rewrite, fo_Append,
fo_SeekRead, fo_SeekWrite, fo_SeekUpdate);
PAnyFile = "AnyFile;

var
FileMode: Integer; external name ’_p_FileMode’; external;

procedure GetBinding (protected var aFile: AnyFile; var aBinding:
BindingType); external name ’_p_Binding’;

procedure ClearBinding (var aBinding: BindingType); external
name ’_p_ClearBinding’;

{ TFDD interface @@ Subject to change! Use with caution! }

type
TOpenProc = procedure (var PrivateData; Mode: TOpenMode);
TSelectFunc = function (var PrivateData; Writing: Boolean):
Integer; { called before SelectHandle, must return a file handle
}
TSelectProc = procedure (var PrivateData; var ReadSelect,
WriteSelect, ExceptSelect: Boolean); { called before and after
SelectHandle }

TReadFunc = function (var PrivateData; var Buffer; Size:
SizeType): SizeType;
TWriteFunc = function (var PrivateData; const Buffer; Size:

SizeType): SizeType;

Chapter 6: The Programmer’s Guide to GPC

TFileProc = procedure (var PrivateData);
TFlushProc = TFileProc;
TCloseProc = TFileProc;
TDoneProc = TFileProc;

procedure AssignTFDD (var f: AnyFile;

OpenProc : TOpenProc;
SelectFunc : TSelectFunc;
SelectProc : TSelectProc;
ReadFunc : TReadFunc;
WriteFunc : TWriteFunc;
FlushProc : TFlushProc;
CloseProc : TCloseProc;
DoneProc : TDoneProc;

PrivateData: Pointer); external

name ’_p_AssignTFDD’;

procedure SetTFDD

(var f: AnyFile;

111

OpenProc : TOpenProc;
SelectFunc : TSelectFunc;
SelectProc : TSelectProc;
ReadFunc : TReadFunc;
WriteFunc : TWriteFunc;
FlushProc : TFlushProc;
CloseProc : TCloseProc;
DoneProc : TDoneProc;

PrivateData: Pointer); external

name ’_p_SetTFDD’;

{ Any parameter except f may be Null }

procedure GetTFDD (var f: AnyFile;

var OpenProc

var SelectFunc :
var SelectProc :
: TReadFunc;
: TWriteFunc;
: TFlushProc;
: TCloseProc;
: TDoneProc;

var ReadFunc
var WriteFunc
var FlushProc
var CloseProc
var DoneProc

: TOpenProc;

TSelectFunc;
TSelectProc;

var PrivateData: Pointer); external

name ’_p_GetTFDD’;

procedure FileMove (var f: AnyFile; NewName: CString; Overwrite:
Boolean); attribute (iocritical); external name ’_p_Mv’;

{ Flags that can be ORed into FileMode. The default value of
FileMode is FileMode_Reset_ReadWrite. The somewhat confusing
values are meant to be compatible to BP (as far as BP supports

them). }
const

{ Allow writing to binary files opened with Reset 1}

112 The GNU Pascal Manual

FileMode_Reset_ReadWrite = 2;

{ Do not allow reading from files opened with Rewrite }
FileMode_Rewrite_WriteOnly = 4;

{ Do not allow reading from files opened with Extend }
FileMode_Extend_WriteOnly = 8;

{ Allow writing to text files opened with Reset }
FileMode_Text_Reset_ReadWrite = $100;

type
TextFile = Text;
const
NoChange = -1; { can be passed to ChOwn for Owner and/or Group to

not change that value }

procedure CloseFile (var aFile: AnyFile); external name ’_p_Close’;

procedure ChMod (var aFile: AnyFile; Mode: Integer); attribute
(iocritical); external name ’_p_ChMod’;

procedure ChOwn (var aFile: AnyFile; Owner, Group: Integer);
attribute (iocritical); external name ’_p_ChQOwn’;

{ Checks if data are available to be read from aFile. This is
similar to ‘not EOF (aFile)’, but does not block on "files" that
can grow, like Ttys or pipes. }

function CanRead (var aFile: AnyFile): Boolean; external
name ’_p_CanRead’;

{ Get the file handle. }
function FileHandle (protected var aFile: AnyFile): Integer;
external name ’_p_FileHandle’;

{ Lock files }

function FileLock (var aFile: AnyFile; WriteLock, Block:
Boolean): Boolean; external name ’_p_FileLock’;

function FileUnlock (var aFile: AnyFile): Boolean; external
name ’_p_FileUnlock’;

{ Try to map (a part of) a file to memory. }
function MemoryMap (Start: Pointer; Length: SizeType; Access:
Integer; Shared: Boolean;
var aFile: AnyFile; Offset: FileSizeType):
Pointer; external name ’_p_MemoryMap’;

{ Unmap a previous memory mapping. }
pap y mapping
procedure MemoryUnMap (Start: Pointer; Length: SizeType); external

name ’_p_MemoryUnMap’;

{ Mathematical routines, from math.pas }

Chapter 6: The Programmer’s Guide to GPC 113

function LnlPlus (x: Real): Real; attribute (const, name
= ’_p_LnlPlus’); external;

{ String handling routines (lower level), from string.pas }

{ TString is a string type that is used for function results and
local variables, as long as undiscriminated strings are not
allowed there. The default size of 2048 characters should be
enough for file names on any system, but can be changed when
necessary. It should be at least as big as MAXPATHLEN. }

const
TStringSize = 2048;
SpaceCharacters = [’ ’, #9];
NewLine = "\n"; { the separator of lines within a string }

LineBreak = {$if defined (__0S_DOS__) and not defined
(__CYGWIN__)}

n \r\n"
{$else}
"\Il"
{$endif}; { the separator of lines within a file }
type
TString = String (TStringSize);
TStringBuf = packed array [0 .. TStringSize] of Char;
CharSet = set of Char;
Stré4 = String (64);
var
CParamCount: Integer; attribute (name = ’_p_CParamCount’);
external;
CParameters: PCStrings; attribute (name = ’_p_CParameters’);
external;
function MemCmp (const s1, s2; Size: SizeType): Integer;
external name ’memcmp’;
function MemComp (const s1, s2; Size: SizeType): Integer;

external name ’memcmp’;
function MemCompCase (const sl, s2; Size: SizeType): Boolean;

attribute (name = ’_p_MemCompCase’); external;
procedure UpCaseString (var s: String); attribute (name
= ’_p_UpCaseString’); external;
procedure LoCaseString (var s: String); attribute (name
= ’_p_LoCaseString’); external;
function UpCaseStr (const s: String): TString; attribute
(name = ’_p_UpCaseStr’); external;
function LoCaseStr (const s: String): TString; attribute

(name = ’_p_LoCaseStr’); external;

114 The GNU Pascal Manual

function StrEqualCase (const s1, s2: String): Boolean; attribute
(name = ’_p_StrEqualCase’); external;

function Pos (const SubString, s: String): Integer;
attribute (name = ’_p_Pos’); external;

function LastPos (const SubString, s: String): Integer;
attribute (name = ’_p_LastPos’); external;

function PosCase (const SubString, s: String): Integer;
attribute (name = ’_p_PosCase’); external;

function LastPosCase (const SubString, s: String): Integer;
attribute (name = ’_p_LastPosCase’); external;

function CharPos (const Chars: CharSet; const s: String):
Integer; attribute (name = ’_p_CharPos’); external;

function LastCharPos (const Chars: CharSet; const s: String):
Integer; attribute (name = ’_p_LastCharPos’); external;

function PosFrom (const SubString, s: String; From:
Integer): Integer; attribute (name = ’_p_PosFrom’); external;

function LastPosTill (const SubString, s: String; Till:
Integer): Integer; attribute (name = ’_p_LastPosTill’); external;

function PosFromCase (const SubString, s: String; From:
Integer): Integer; attribute (name = ’_p_PosFromCase’); external;

function LastPosTillCase (const SubString, s: String; Till:
Integer): Integer; attribute (name = ’_p_LastPosTillCase’);
external;

function CharPosFrom (const Chars: CharSet; const s: String;
From: Integer): Integer; attribute (name = ’_p_CharPosFrom’);
external;

function LastCharPosTill (const Chars: CharSet; const s: String;
Till: Integer): Integer; attribute (name = ’_p_LastCharPosTill’);

external;

function IsPrefix (const Prefix, s: String): Boolean;
attribute (name = ’_p_IsPrefix’); external;

function IsSuffix (const Suffix, s: String): Boolean;
attribute (name = ’_p_IsSuffix’); external;

function IsPrefixCase (const Prefix, s: String): Boolean;
attribute (name = ’_p_IsPrefixCase’); external;

function IsSuffixCase (const Suffix, s: String): Boolean;
attribute (name = ’_p_IsSuffixCase’); external;

function CStringlLength (Src: CString): SizeType; attribute
(inline, name = ’_p_CStringlength’); external;

function CStringEnd (Src: CString): CString; attribute
(inline, name = ’_p_CStringEnd’); external;

function CStringNew (Src: CString): CString; attribute
(name = ’_p_CStringNew’); external;

function CStringComp (s1, s2: CString): Integer; attribute
(name = ’_p_CStringComp’); external;

function CStringCaseComp (s1, s2: CString): Integer; attribute

(name = ’_p_CStringCaseComp’); external;

Chapter 6: The Programmer’s Guide to GPC 115

function CStringLComp (s1, s2: CString; MaxLen: SizeType):
Integer; attribute (name = ’_p_CStringLComp’); external;

function CStringlCaseComp (s1, s2: CString; MaxLen: SizeType):
Integer; attribute (name = ’_p_CStringLCaseComp’); external;

function CStringCopy (Dest, Source: CString): CString;
attribute (name = ’_p_CStringCopy’); external;

function CStringCopyEnd (Dest, Source: CString): CString;
attribute (name = ’_p_CStringCopyEnd’); external;

function CStringLCopy (Dest, Source: CString; MaxLen:
SizeType): CString; attribute (name = ’_p_CStringLCopy’);
external;

function CStringMove (Dest, Source: CString; Count:
SizeType): CString; attribute (name = ’_p_CStringMove’); external;

function CStringCat (Dest, Source: CString): CString;
attribute (name = ’_p_CStringCat’); external;

function CStringlCat (Dest, Source: CString; MaxLen:
SizeType): CString; attribute (name = ’_p_CStringlCat’); external;

function CStringChPos (Src: CString; ch: Char): CString;
attribute (inline, name = ’_p_CStringChPos’); external;

function CStringlLastChPos (Src: CString; ch: Char): CString;
attribute (inline, name = ’_p_CStringLastChPos’); external;

function CStringPos (s, SubString: CString): CString;
attribute (name = ’_p_CStringPos’); external;

function CStringlastPos (s, SubString: CString): CString;
attribute (name = ’_p_CStringlastPos’); external;

function CStringCasePos (s, SubString: CString): CString;
attribute (name = ’_p_CStringCasePos’); external;

function CStringlastCasePos (s, SubString: CString): CString;
attribute (name = ’_p_CStringlastCasePos’); external;

function CStringUpCase (s: CString): CString; attribute (name
= ’_p_CStringUpCase’); external;

function CStringLoCase (s: CString): CString; attribute (name
= ’_p_CStringloCase’); external;

function CStringIsEmpty (s: CString): Boolean; attribute (name
= ’_p_CStringIsEmpty’); external;

function NewCString (const Source: String): CString;
attribute (name = ’_p_NewCString’); external;

function CStringCopyString (Dest: CString; const Source: String):
CString; attribute (name = ’_p_CStringCopyString’); external;

procedure CopyCString (Source: CString; var Dest: String);
attribute (name = ’_p_CopyCString’); external;

function NewString (const s: String): PString; attribute
(name = ’_p_NewString’); external;

procedure DisposeString (p: PString); external name ’_p_Dispose’;

procedure SetString (var s: String; Buffer: PChar; Count:
Integer); attribute (name = ’_p_SetString’); external;

function String0fChar (ch: Char; Count: Integer) = s: TString;
attribute (name = ’_p_StringOfChar’); external;

116

The GNU Pascal Manual

procedure TrimLeft (var s: String); attribute (name
= ’_p_TrimLeft’); external;

procedure TrimRight (var s: String); attribute (name
= ’_p_TrimRight’); external;

procedure TrimBoth (var s: String); attribute (name
= ’_p_TrimBoth’); external;

function TrimLeftStr (const s: String): TString; attribute
(name = ’_p_TrimLeftStr’); external;

function TrimRightStr (const s: String): TString; attribute
(name = ’_p_TrimRightStr’); external;

function TrimBothStr (const s: String): TString; attribute
(name = ’_p_TrimBothStr’); external;

function LTrim (const s: String): TString; external

name ’_p_TrimLeftStr’;

function GetStringCapacity (const s: String): Integer; attribute
(name = ’_p_GetStringCapacity’); external;

{ A shortcut for a common use of WriteStr as a function }
function Integer2String (i: Integer): Str64; attribute (name

= ’_p_Integer2String’); external;

{ String handling routines (higher level), from string2.pas }

type
PChars0O = "“TCharsO;
TCharsO = array [0 .. MaxVarSize div SizeOf (Char) - 1] of Char;
PChars = “TChars;
TChars = packed array [1 .. MaxVarSize div SizeOf (Char)] of Char;

{ Under development. Interface subject to change.
Use with caution. 7}

{ When a const or var AnyString parameter is passed, internally
these records are passed as const parameters. Value AnyString
parameters are passed like value string parameters. }

ConstAnyString = record
Length: Integer;

Chars: PChars
end;

{ Capacity is the allocated space (used internally). Count is the
actual number of environment strings. The CStrings array
contains the environment strings, terminated by a nil pointer,
which is not counted in Count. @CStrings can be passed to libc
routines like execve which expect an environment (see
GetCEnvironment). }

PEnvironment = “TEnvironment;

TEnvironment (Capacity: Integer) = record
Count: Integer;

CStrings: array [1 .. Capacity + 1] of CString

Chapter 6: The Programmer’s Guide to GPC

end;

var
Environment: PEnvironment; attribute (name = ’_p_Environment’);
external;

{ Get an environment variable. If it does not exist, GetEnv returns
the empty string, which can’t be distinguished from a variable
with an empty value, while CStringGetEnv returns nil then. Note,
Dos doesn’t know empty environment variables, but treats them as
non-existing, and does not distinguish case in the names of
environment variables. However, even under Dos, empty environment
variables and variable names with different case can now be set
and used within GPC programs. }

function GetEnv (const EnvVar: String): TString; attribute (name
= ’_p_GetEnv’); external;

function CStringGetEnv (EnvVar: CString): CString; attribute (name
= ’_p_CStringGetEnv’); external;

{ Sets an environment variable with the name given in VarName to the
value Value. A previous value, if any, is overwritten. }

procedure SetEnv (const VarName, Value: String); attribute (name
= ’_p_SetEnv’); external;

{ Un-sets an environment variable with the name given in VarName. }
procedure UnSetEnv (const VarName: String); attribute (name
= ’_p_UnSetEnv’); external;

{ Returns @Environment~.CStrings, converted to PCStrings, to be
passed to libc routines like execve which expect an environment. 7
function GetCEnvironment: PCStrings; attribute (name
= ’_p_GetCEnvironment’); external;

type
FormatStringTransformType = “function (const Format: String):
TString;

var
FormatStringTransformPtr: FormatStringTransformType; attribute
(name = ’_p_FormatStringTransformPtr’); external;

{ Runtime error and signal handling routines, from error.pas }

const
EAssert = 381;
EAssertString = 382;

EOpen = 405;
EMMap = 408;
ERead = 413;

EWrite = 414;
EWriteReadOnly = 422;

117

118 The GNU Pascal Manual

EOpenRead = 442;

EOpenWrite = 443;
EOpenUpdate = 444;

EReading = 464;

EWriting = 466;
ECannotWriteAll = 467;
ECannotFork = 600;
ECannotSpawn = 601;
EProgramNotFound = 602;
EProgramNotExecutable = 603;

EPipe = 604;
EPrinterRead = 610;
EIOCtl = 630;

EConvertError = 875;
ELibraryFunction = 952;
EExitReturned = 953;

RuntimeErrorExitValue = 42;
DummyReturnAddress = Pointer ($deadbeef);

var

{ Error number (after runtime error) or exit status (after Halt)
or 0 (during program run and after succesful termination). }
ExitCode: Integer; attribute (name = ’_p_ExitCode’); external;

{ Contains the address of the code where a runtime occurred, nil
if no runtime error occurred. }
ErrorAddr: Pointer; attribute (name = ’_p_ErrorAddr’); external;

{ Error message }
ErrorMessageString: TString; attribute (name
= ’_p_ErrorMessageString’); external;

{ String parameter to some error messages, *not* the text of the
error message (the latter can be obtained with
GetErrorMessage) . }

InOutResString: PString; attribute (name = ’_p_InOutResString’);

external;

{ Optional libc error string to some error messages.
InOutResCErrorString: PString; attribute (name
= ’_p_InOutResCErrorString’); external;

RTSErrorFD: Integer; attribute (name = ’_p_ErrorFD’); external;
RTSErrorFileName: PString; attribute (name = ’_p_ErrorFileName’);
external;

function GetErrorMessage (n: Integer): CString;
attribute (name = ’_p_GetErrorMessage’); external;

procedure RuntimeError (n: Integer); attribute

Chapter 6: The Programmer’s Guide to GPC 119

(noreturn, name = ’_p_RuntimeError’); external;

procedure RuntimeErrorErrNo (n: Integer); attribute
(noreturn, name = ’_p_RuntimeErrorErrNo’); external;

procedure RuntimeErrorInteger (n: Integer; i: MedInt);
attribute (noreturn, name = ’_p_RuntimeErrorInteger’); external;

procedure RuntimeErrorCString (n: Integer; s: CString);
attribute (noreturn, name = ’_p_RuntimeErrorCString’); external;

procedure InternalError (n: Integer); attribute
(noreturn, name = ’_p_InternalError’); external;

procedure InternalErrorInteger (n: Integer; i: MedInt);
attribute (noreturn, name = ’_p_InternalErrorInteger’); external;

procedure InternalErrorCString (n: Integer; s: CString);
attribute (noreturn, name = ’_p_InternalErrorCString’); external;

procedure RuntimeWarning (Message: CString);
attribute (name = ’_p_RuntimeWarning’); external;

procedure RuntimeWarninglInteger (Message: CString; i:
MedInt); attribute (name = ’_p_RuntimeWarningInteger’); external;

procedure RuntimeWarningCString (Message: CString; s:
CString); attribute (name = ’_p_RuntimeWarningCString’); external;

procedure DebugStatement (const FileName: String;
Line: Integer); attribute (name = ’_p_DebugStatement’); external;

procedure IOError (n: Integer; ErrNoFlag:
Boolean); attribute (iocritical, name = ’_p_IOError’); external;

procedure IOErrorInteger (n: Integer; i: MedInt;

ErrNoFlag: Boolean); attribute (iocritical, name
= ’_p_I0ErrorInteger’); external;

procedure IOErrorCString (n: Integer; s: CString;
ErrNoFlag: Boolean); attribute (iocritical, name
= ’_p_I0ErrorCString’); external;

procedure IOErrorFile (n: Integer; protected var
f: AnyFile; ErrNoFlag: Boolean); attribute (iocritical, name
= ’_p_I0ErrorFile’); external;

function GetIOErrorMessage: TString; attribute (name
= ’_p_GetIOErrorMessage’); external;

procedure CheckInOutRes; attribute (name = ’_p_CheckInOutRes’);
external;

{ Registers a procedure to be called to restore the terminal for
another process that accesses the terminal, or back for the
program itself. Used e.g. by the CRT unit. The procedures must
allow for being called multiple times in any order, even at the
end of the program (see the comment for RestoreTerminal). }

procedure RegisterRestoreTerminal (ForAnotherProcess: Boolean;
procedure Proc); attribute (name = ’_p_RegisterRestoreTerminal’);
external;

{ Unregisters a procedure registered with RegisterRestoreTerminal.
Returns False if the procedure had not been registered, and True
if it had been registered and was unregistered successfully. }

120 The GNU Pascal Manual

function UnregisterRestoreTerminal (ForAnotherProcess: Boolean;
procedure Proc): Boolean; attribute (name
= ’_p_UnregisterRestoreTerminal’); external;

{ Calls the procedures registered by RegisterRestoreTerminal. When
restoring the terminal for another process, the procedures are
called in the opposite order of registration. When restoring back
for the program, they are called in the order of registration.

‘RestoreTerminal (True)’ will also be called at the end of the
program, before outputting any runtime error message. It can also
be used if you want to write an error message and exit the program
(especially when using e.g. the CRT unit). For this purpose, to
avoid side effects, call RestoreTerminal immediately before
writing the error message (to StdErr, not to Output!), and then
exit the program (e.g. with Halt). }

procedure RestoreTerminal (ForAnotherProcess: Boolean); attribute

(name = ’_p_RestoreTerminal’); external;
procedure AtExit (procedure Proc); attribute (name = ’_p_AtExit’);
external;

function ReturnAddr2Hex (p: Pointer): TString; attribute (name
= ’_p_ReturnAddr2Hex’); external;

{ This function is used to write error messages etc. It does not use
the Pascal I/0 system here because it is usually called at the
very end of a program after the Pascal I/0 system has been shut

down. }
function WriteErrorMessage (const s: String; StdErrFlag: Boolean):
Boolean; attribute (name = ’_p_WriteErrorMessage’); external;

procedure SetReturnAddress (Address: Pointer); attribute (name
= ’_p_SetReturnAddress’); external;
procedure RestoreReturnAddress; attribute (name
= ’_p_RestoreReturnAddress’); external;
function SetTempDummyReturnAddress: Pointer; attribute (name
= ’_p_SetTempDummyReturnAddress’); external;
procedure RestoreTempReturnAddress (Address: Pointer); attribute
(name = ’_p_RestoreTempReturnAddress’); external;

{ Returns a description for a signal }
function StrSignal (Signal: Integer): TString; attribute (name
= ’_p_StrSignal’); external;

{ Installs some signal handlers that cause runtime errors on certain
signals. This procedure runs only once, and returns immediately
when called again (so you can’t use it to set the signals again if
you changed them meanwhile). @@Does not work on all systems (since
the handler might have too little stack space). }

procedure InstallDefaultSignalHandlers; attribute (name

Chapter 6: The Programmer’s Guide to GPC

= ’_p_InstallDefaultSignalHandlers’); external;

var
{ Signal actions }

SignalDefault: TSignalHandler; attribute (const); external

name ’_p_SIG_DFL’;
Signallgnore :
name ’_p_SIG_IGN’;
SignalError
name ’_p_SIG_ERR’;

TSignalHandler; attribute (const); external

: TSignalHandler; attribute (const); external

{ Signals. The constants are set to the signal numbers, and
are 0 for signals not defined. }

{ POSIX signals }

SigHUp Integer;
Siglnt Integer;
SigQuit Integer;
SigIll Integer;
SigAbrt Integer;
SigFPE Integer;
SigKill Integer;
SigSegV Integer;
SigPipe Integer;
SigAlrm Integer;
SigTerm Integer;
SigUsril Integer;
SigUsr2 Integer;
SigChld Integer;
SigCont Integer;
SigStop Integer;
SigTStp Integer;
SigTTIn Integer;
SigTTOu Integer;
{ Non-POSIX signals
SigTrap Integer;
SigIOT Integer;
SigEMT Integer;
SigBus Integer;
SigSys Integer;
SigStkFlt: Integer;
name ’_p_SIGSTKFLT’;
Siglrg Integer;
SigI0 Integer;
SigPoll Integer;
SigXCPU Integer;
SigXFSz Integer;
SigVTAlrm: Integer;
name ’_p_SIGVTALRM’;
SigProf Integer;
SigPur Integer;

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

}

attribute
attribute
attribute
attribute
attribute
attribute

attribute
attribute
attribute
attribute
attribute
attribute

attribute
attribute

(const);
(const);
(const);
(const) ;
(const) ;
(const) ;
(const) ;
(const) ;
(const) ;
(const);
(const);
(const);
(const) ;
(const) ;
(const) ;
(const) ;
(const);
(const) ;
(const);

(const) ;
(const) ;
(const) ;
(const) ;
(const);
(const) ;

(const);
(const);
(const) ;
(const) ;
(const) ;
(const) ;

(const) ;
(const);

external
external
external
external
external
external
external
external
external
external
external
external
external
external
external
external
external
external
external

external
external
external
external
external
external

external
external
external
external
external
external

external
external

name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name

name
name
name
name
name

name
name
name
name
name

name
name

’_p_SIGHUP’;
’_p_SIGINT’;
’_p_SIGQUIT’;
’_p_SIGILL’;
’_p_SIGABRT’;
’_p_SIGFPE’;
’_p_SIGKILL’;
>_p_SIGSEGV’;
’_p_SIGPIPE’;
’_p_SIGALRM’;
> _p_SIGTERM’;
’_p_SIGUSR1’;
’_p_SIGUSR2’;
’_p_SIGCHLD’;
’_p_SIGCONT’;
>_p_SIGSTOP’;
’_p_SIGTSTP’;
’_p_SIGTTIN’;
’_p_SIGTTOU’;

’_p_SIGTRAP’;
’ _p_SIGIOT’;
’_p_SIGEMT’;
’_p_SIGBUS’;
’_p_SIGSYS’;

»_p_SIGURG’;
» _p_SIGIO’;

’_p_SIGPOLL’;
»_p_SIGXCPU’;
’_p_SIGXFSZ’;

»_p_SIGPROF’;
> _p_SIGPWR’;

121

122 The GNU Pascal Manual

SigInfo : Integer; attribute (const); external name ’_p_SIGINFO’;
Siglost : Integer; attribute (const); external name ’_p_SIGLOST’;
SigWinCh : Integer; attribute (const); external

name ’_p_SIGWINCH’;

{ Signal subcodes (only used on some systems, -1 if not used) }
FPEIntegerQOverflow : Integer; attribute (const); external
name ’_p_FPE_INTOVF_TRAP’;
FPEIntegerDivisionByZero: Integer; attribute (const); external
name ’_p_FPE_INTDIV_TRAP’;

FPESubscriptRange : Integer; attribute (const); external
name ’_p_FPE_SUBRNG_TRAP’;
FPERealOverflow : Integer; attribute (const); external
name ’_p_FPE_FLTOVF_TRAP’;
FPERealDivisionByZero : Integer; attribute (const); external
name ’_p_FPE_FLTDIV_TRAP’;
FPERealUnderflow : Integer; attribute (const); external
name ’_p_FPE_FLTUND_TRAP’;
FPEDecimalOverflow : Integer; attribute (const); external

name ’_p_FPE_DECOVF_TRAP’;

{ Routines called implicitly by the compiler. }
procedure GPC_Assert (Condition: Boolean; const Message: String);

attribute (name = ’_p_Assert’); external;
function O0ObjectTypels (Left, Right: PObjectType): Boolean;
attribute (const, name = ’_p_0bjectTypels’); external;

procedure ObjectTypeAsError; attribute (name
= ’_p_ObjectTypeAsError’); external;

procedure CaseNoMatchError; attribute (name
= ’_p_CaseNoMatchError’); external;

procedure ModRangeError; attribute (name = ’_p_ModRangeError’);
external;

{ Time and date routines, from time.pas }

const
InvalidYear = -MaxInt;

var
{ DayOfWeekName is a constant and therefore does not respect the
locale. Therefore, it’s recommended to use FormatTime instead. }
DayOfWeekName: array [0 .. 6] of String [9]; attribute (const,
name = ’_p_DayOfWeekName’); external;

{ MonthName is a constant and therefore does not respect the
locale. Therefore, it’s recommended to use FormatTime instead. }

MonthName: array [1 .. 12] of String [9]; attribute (const, name

= ’_p_MonthName’); external;

function GetDayOfWeek (Day, Month, Year: Integer): Integer;
attribute (name = ’_p_GetDayOfWeek’); external;

Chapter 6: The Programmer’s Guide to GPC 123

function GetDayOfYear (Day, Month, Year: Integer): Integer;

attribute (name = ’_p_GetDayOfYear’); external;

function GetSundayWeekOfYear (Day, Month, Year: Integer): Integer;
attribute (name = ’_p_GetSundayWeekOfYear’); external;

function GetMondayWeekOfYear (Day, Month, Year: Integer): Integer;
attribute (name = ’_p_GetMondayWeekOfYear’); external;

procedure GetISOWeekOfYear (Day, Month, Year: Integer; var ISOWeek,
ISOWeekYear: Integer); attribute (name = ’_p_GetISOWeekOfYear’);
external;

procedure UnixTimeToTimeStamp (UnixTime: UnixTimeType; var
aTimeStamp: TimeStamp); attribute (name
= ’_p_UnixTimeToTimeStamp’); external;

function TimeStampToUnixTime (protected var aTimeStamp: TimeStamp):
UnixTimeType; attribute (name = ’_p_TimeStampToUnixTime’);
external;

function GetMicroSecondTime: MicroSecondTimeType; attribute (name
= ’_p_GetMicroSecondTime’); external;

{ Is the year a leap year? }
function IsLeapYear (Year: Integer): Boolean; attribute (name
= ’_p_IsLeapYear’); external;

{ Returns the length of the month, taking leap years into account. }
function MonthLength (Month, Year: Integer): Integer; attribute
(name = ’_p_MonthLength’); external;

{ Formats a TimeStamp value according to a Format string. The format
string can contain date/time items consisting of ‘J%’, followed by
the specifiers listed below. All characters outside of these items
are copied to the result unmodified. The specifiers correspond to
those of the C function strftime(), including POSIX.2 and glibc
extensions and some more extensions. The extensions are also
available on systems whose strftime() doesn’t support them.

The following modifiers may appear after the ¢J’:

¢_? The item is left padded with spaces to the given or default
width.

¢~> The item is not padded at all.

‘0’ The item is left padded with zeros to the given or default
width.

¢/’ The item is right trimmed if it is longer than the given
width.

¢~? The item is converted to upper case.

¢~> The item is converted to lower case.

124 The GNU Pascal Manual

After zero or more of these flags, an optional width may be
specified for padding and trimming. It must be given as a decimal
number (not starting with ‘0’ since ‘0’ has a meaning of its own,
see above).

Afterwards, the following optional modifiers may follow. Their
meaning is locale-dependent, and many systems and locales just
ignore them.

‘E’ Use the locale’s alternate representation for date and time.
In a Japanese locale, for example, ‘JEx’ might yield a date
format based on the Japanese Emperors’ reigns.

‘0’ Use the locale’s alternate numeric symbols for numbers. This
modifier applies only to numeric format specifiers.

Finally, exactly one of the following specifiers must appear. The
padding rules listed here are the defaults that can be overriden
with the modifiers listed above.

(4

a’ The abbreviated weekday name according to the current locale.
‘A’ The full weekday name according to the current locale.

‘b’> The abbreviated month name according to the current locale.
‘B> The full month name according to the current locale.

c’ The preferred date and time representation for the current
locale.

‘C’ The century of the year. This is equivalent to the greatest
integer not greater than the year divided by 100.

‘d’> The day of the month as a decimal number (01’ .. €317).

‘D’ The date using the format ‘%m/%d/%y’. NOTE: Don’t use this
format if it can be avoided. Things like this caused Y2K
bugs!

‘e’ The day of the month like with ‘%d’, but padded with blanks
(¢ 1 .. 31°).

‘F’ The date using the format ‘%Y-%m-%d’. This is the form
specified in the ISO 8601 standard and is the preferred form
for all uses.

g’ The year corresponding to the IS0 week number, but without
the century (‘00° .. ‘99’). This has the same format and
value as ‘y’, except that if the IS0 week number (see ‘V’)
belongs to the previous or next year, that year is used

Chapter 6: The Programmer’s Guide to GPC

(G;

(h)

(HJ

(I;

lkz

(l;

(P)

(Q;

instead. NOTE: Don’t use this format if it can be avoided.
Things like this caused Y2K bugs!

The year corresponding to the ISO week number. This has the
same format and value as ‘Y’, except that if the ISO week
number (see ‘V’) belongs to the previous or next year, that

year is used instead.

The abbreviated month name according to the current locale.
This is the same as ‘b’.

The hour as a decimal number, using a 24-hour clock
(€00’ .. 23°).

The hour as a decimal number, using a 12-hour clock
(o1’ .. 127).

The day of the year as a decimal number (‘001° .. €366’).

The hour as a decimal number, using a 24-hour clock like ‘H’,
but padded with blanks (¢ 0’ .. €237).

The hour as a decimal number, using a 12-hour clock like ‘I’,

but padded with blanks (¢ 1’ .. ‘127).
The month as a decimal number (‘01° .. ‘127).
The minute as a decimal number (00’ .. ‘59?).

A single newline character.

Either ‘AM’ or ‘PM’, according to the given time value; or
the corresponding strings for the current locale. Noon is
treated as ‘PM’ and midnight as ‘AM’.

Either ‘am’ or ‘pm’, according to the given time value; or
the corresponding strings for the current locale, printed in
lowercase characters. Noon is treated as ‘pm’ and midnight as
‘am’ .

The fractional part of the second. This format has special
effects on the modifiers. The width, if given, determines the
number of digits to output. Therefore, no actual clipping or
trimming is done. However, if padding with spaces is
specified, any trailing (i.e., right!) zeros are converted to
spaces, and if "no padding" is specified, they are removed.
The default is "padding with zeros", i.e. trailing zeros are
left unchanged. The digits are cut when necessary without
rounding (otherwise, the value would not be consistent with
the seconds given by ‘S’ and ‘s’). Note that GPC’s TimeStamp
currently provides for microsecond resolution, so there are

125

126 The GNU Pascal Manual

at most 6 valid digits (which is also the default width), any
further digits will be 0 (but if TimeStamp will ever change,
this format will be adjusted). However, the actual resolution
provided by the operating system via GetTimeStamp etc. may be
far lower (e.g., “1/18s under Dos).

r’ The complete time using the AM/PM format of the current
locale.

‘R’ The hour and minute in decimal numbers using the format
“RH:YM .

s’ Unix time, i.e. the number of seconds since the epoch, i.e.,
since 1970-01-01 00:00:00 UTC. Leap seconds are not counted
unless leap second support is available.

‘S’ The seconds as a decimal number (‘00° .. ‘607°).
‘t’ A single tab character.
‘T> The time using decimal numbers using the format ‘%H:%M:%S’.

u’ The day of the week as a decimal number (‘1’ .. ‘7’), Monday
being ‘1°.

‘U’ The week number of the current year as a decimal number
(00’ .. ‘B3?), starting with the first Sunday as the first
day of the first week. Days preceding the first Sunday in the
year are considered to be in week ‘00°’.

‘V’ The ISO 8601:1988 week number as a decimal number
(01’ .. “B3?). ISO weeks start with Monday and end with
Sunday. Week ‘01’ of a year is the first week which has the
majority of its days in that year; this is equivalent to the
week containing the year’s first Thursday, and it is also
equivalent to the week containing January 4. Week ‘01’ of a
year can contain days from the previous year. The week before
week ‘01’ of a year is the last week (52’ or ‘53’) of the
previous year even if it contains days from the new year.

w’ The day of the week as a decimal number (‘0’ .. ‘6’), Sunday
being ‘0’.

‘W> The week number of the current year as a decimal number
(‘00° .. ‘B37), starting with the first Monday as the first
day of the first week. All days preceding the first Monday in
the year are considered to be in week ‘00’.

x’ The preferred date representation for the current locale, but
without the time.

Chapter 6: The Programmer’s Guide to GPC

(X)

(Y)

ZJ

(Z;

(%)

The preferred time representation for the current locale, but
with no date.

The year without a century as a decimal number

(‘00” .. ‘997). This is equivalent to the year modulo 100.
NOTE: Don’t use this format if it can be avoided. Things like
this caused Y2K bugs!

The year as a decimal number, using the Gregorian calendar.
Years before the year ‘1’ are numbered ‘0’, ‘-1’, and so on.

RFC 822/IS0 8601:1988 style numeric time zone (e.g., ‘-0600°’
or ‘+0100’), or nothing if no time zone is determinable.

The time zone abbreviation (empty if the time zone can’t be
determined) .

(i.e., an item ‘%%’) A literal ¢J’ character. }

function FormatTime (const Time: TimeStamp; const Format: String):
TString; attribute (name = ’_p_FormatTime’); external;

{ Pseudo random number generator, from random.pas }

type

RandomSeedType = Cardinal attribute (Size = 32);

RandomizeType = “procedure;

SeedRandomType = “procedure (Seed: RandomSeedType);

RandRealType = “function: LongestReal;

RandIntType = “function (MaxValue: LongestCard): LongestCard;
var

RandomizePtr : RandomizeType; attribute (name
= ’_p_RandomizePtr’); external;
SeedRandomPtr: SeedRandomType; attribute (name
= ’_p_SeedRandomPtr’); external;

RandRealPtr : RandRealType; attribute (name = ’_p_RandRealPtr’);
external;

RandIntPtr : RandIntType; attribute (name = ’_p_RandIntPtr’);
external;

procedure SeedRandom (Seed: RandomSeedType); attribute (name
= ’_p_SeedRandom’); external;

{ File name routines, from filename.pas }

{ Define constants for different systems:

0SDosFlag: flag to indicate whether the target system is

Dos

QuotingCharacter: the character used to quote wild cards and

127

128 The GNU Pascal Manual

other special characters (#0 if not available)

PathSeparator: the separator of multiple paths, e.g. in the
PATH environment variable

DirSeparator: the separator of the directories within a full
file name

DirSeparators: a set of all possible directory and drive name
separators

ExtSeparator: the separator of a file name extension

DirRoot: the name of the root directory

DirSelf: the name of a directory in itself

DirParent: the name of the parent directory

MaskNoStdDir: a file name mask that matches all names except

the standard directories DirSelf and DirParent
NullDeviceName: the full file name of the null device
TtyDeviceName: the full file name of the current Tty

ConsoleDeviceName: the full file name of the system console. On
Dos systems, this is the same as the Tty, but
on systems that allow remote login, this is a
different thing and may reach a completely
different user than the one running the
program, so use it with care.

EnvVarCharsFirst: the characters accepted at the beginning of the
name of an environment variable without quoting

EnvVarChars: the characters accepted in the name of an
environment variable without quoting

PathEnvVar: the name of the environment variable which
(usually) contains the executable search path

ShellEnvVar: the name of the environment variable which
(usually) contains the path of the shell
executable (see GetShellPath)

ShellExecCommand: the option to the (default) shell to execute
the command specified in the following argument

(see GetShellPath)

ConfigFileMask: a mask for the option file name as returned by

Chapter 6: The Programmer’s Guide to GPC

ConfigFileName

FileNamesCaseSensitive:
flag to indicate whether file names are case

sensitive }

const
UnixShellEnvVar
UnixShellExecCommand

{$ifdef __0S_DOS__}

const
0SDosFlag
QuotingCharacter
PathSeparator
{$endif};
DirSeparator
DirSeparators
ExtSeparator
DirRoot
DirSelf
DirParent
MaskNoStdDir
NullDeviceName
TtyDeviceName
ConsoleDeviceName
EnvVarCharsFirst
EnvVarChars
PathEnvVar
ShellEnvVar
ShellExecCommand
ConfigFileMask
FileNamesCaseSensitive

{$else}

const
0SDosFlag
QuotingCharacter
PathSeparator
DirSeparator
DirSeparators
ExtSeparator
DirRoot
DirSelf
DirParent
MaskNoStdDir
NullDeviceName
TtyDeviceName
ConsoleDeviceName

>SHELL’ ;

)_C);

True;

= #0;

{$ifdef __CYGWIN__} ’:’ {$else} ’;’

)\:;

= [):)’ 1\1’)/J];

—_—).
L
= {x,. [".]%,..7%}7;
= ’nul’;
= ’con’;

’con’;
[;A) . JZ), ’a’ L. ’Z’,) ;];
EnvVarCharsFirst + [0’ .. ’9°];

= "PATH’;
= ’COMSPEC’ ;

)/C);

= ’'x . cfg’;

False;

= 2{*,. . [".]%,..7x};
= ’/dev/null’;
= ’/dev/tty’;

> /dev/console’;

129

130 The GNU Pascal Manual

EnvVarCharsFirst = [°A .. 227, Ca’ ..z, ’_’];
EnvVarChars = EnvVarCharsFirst + [0’ .. ’9°];
PathEnvVar = 'PATH’;
ShellEnvVar = UnixShellEnvVar;
ShellExecCommand = UnixShellExecCommand;
ConfigFileMask =7 %7,
FileNamesCaseSensitive = True;

{$endif}

const

WildCardChars = [’*’, 7>, *[’, ’]’];
FileNameSpecialChars = (WildCardChars + SpaceCharacters +
°{’, ’}’, ’$’, QuotingCharacter]) - DirSeparators;

type
DirPtr = Pointer;

{ Convert ch to lower case if FileNamesCaseSensitive is False, leave
it unchanged otherwise. }

function FileNameLoCase (ch: Char): Char; attribute (name
= ’_p_FileNameLoCase’); external;

{ Change a file name to use the 0S dependent directory separator }
function Slash20SDirSeparator (comnst s: String): TString; attribute
(name = ’_p_Slash20SDirSeparator’); external;

{ Change a file name to use ’/’ as directory separator }
function O0SDirSeparator2Slash (const s: String): TString; attribute

(name = ’_p_0SDirSeparator2Slash’); external;

{ Like Slash20SDirSeparator for CStrings. *Note*: overwrites the

CString }
function Slash20SDirSeparator_CString (s: CString): CString;
attribute (name = ’_p_Slash20SDirSeparator_CString’); external;

{ Like 0SDirSeparator2Slash for CStrings. *Note*: overwrites the

CString }
function 0SDirSeparator2Slash_CString (s: CString): CString;
attribute (name = ’_p_0SDirSeparator2Slash_CString’); external;

{ Add a DirSeparator to the end of s, if there is not already one
and s denotes an existing directory }

function AddDirSeparator (const s: String): TString; attribute
(name = ’_p_AddDirSeparator’); external;

{ Like AddDirSeparator, but also if the directory does not exist }
function ForceAddDirSeparator (const s: String): TString; attribute

(name = ’_p_ForceAddDirSeparator’); external;

{ Remove all trailing DirSeparators from s, if there are any, as

Chapter 6: The Programmer’s Guide to GPC 131

long as removing them doesn’t change the meaning (i.e., they don’t
denote the root directory. }

function RemoveDirSeparator (const s: String): TString; attribute
(name = ’_p_RemoveDirSeparator’); external;

{ Returns the current directory using 0S dependent directory
separators }

function GetCurrentDirectory: TString; attribute (name
= ’_p_GetCurrentDirectory’); external;

{ Returns a directory suitable for storing temporary files using 0S
dependent directory separators. If found, the result always ends
in DirSeparator. If no suitable directory is found, an empty
string is returned. }

function GetTempDirectory: TString; attribute (name
= ’_p_GetTempDirectory’); external;

{ Returns a non-existing file name in the directory given. If the
directory doesn’t exist or the Directory name is empty, an I/0
error is raised, and GetTempFileNameInDirectory returns the empty
string. }

function GetTempFileNameInDirectory (const Directory: String):
TString; attribute (iocritical, name
= ’_p_GetTempFileNameInDirectory’); external;

{ Returns a non-existing file name in GetTempDirectory. If no temp
directory is found, i.e. GetTempDirectory returns the empty
string, an I/0 error is raised, and GetTempFileName returns the
empty string as well. }

function GetTempFileName: TString; attribute (iocritical, name
= ’_p_GetTempFileName’); external;

{ The same as GetTempFileName, but returns a CString allocated from

the heap. }
function GetTempFileName CString: CString; attribute (iocritical,
name = ’_p_GetTempFileName_CString’); external;

{ Get the external name of a file }
function FileName (protected var f: AnyFile): TString; attribute
(name = ’_p_FileName’); external;

{ Returns True if the given file name is an existing plain file }
function FileExists (const aFileName: String): Boolean;
attribute (name = ’_p_FileExists’); external;

{ Returns True if the given file name is an existing directory }
function DirectoryExists (const aFileName: String): Boolean;
attribute (name = ’_p_DirectoryExists’); external;

{ Returns True if the given file name is an existing file, directory
or special file (device, pipe, socket, etc.) }

132

The GNU Pascal Manual

function PathExists (const aFileName: String): Boolean;
attribute (name = ’_p_PathExists’); external;

{ If a file of the given name exists in one of the directories given
in DirList (separated by PathSeparator), returns the full path,
otherwise returns an empty string. If aFileName already contains
an element of DirSeparators, returns Slash20SDirSeparator
(aFileName) if it exists. }

function FSearch (const aFileName, DirList: String): TString;
attribute (name = ’_p_FSearch’); external;

{ Like FSearch, but only find executable files. Under Dos, if not
found, the function tries appending ’.com’, ’.exe’, ’.bat’ and
‘.cmd’ (the last one only if $COMSPEC points to a ‘cmd.exe’), so
you don’t have to specify these extensions in aFileName (and with
respect to portability, it might be preferable not to do so). }

function FSearchExecutable (const aFileName, DirList: String):
TString; attribute (name = ’_p_FSearchExecutable’); external;

{ Replaces all occurrences of ‘$F00° and ‘"’ in s by the value of
the environment variables FOO or HOME, respectively. If a variable
is not defined, the function returns False, and s contains the
name of the undefined variable (or the empty string if the
variable name is invalid, i.e., doesn’t start with a character
from EnvVarCharsFirst). Otherwise, if all variables are found, s
contains the replaced string, and True is returned. }

function ExpandEnvironment (var s: String): Boolean; attribute
(name = ’_p_ExpandEnvironment’); external;

{ Expands the given path name to a full path name. Relative paths
are expanded using the current directory, and occurrences of
DirSelf and DirParent are resolved. Under Dos, the result is
converted to lower case and a trailing ExtSeparator (except in a
trailing DirSelf or DirParent) is removed, like Dos does. If the
directory, i.e. the path without the file name, is invalid, the
empty string is returned. }

function FExpand (const Path: String): TString; attribute
(name = ’_p_FExpand’); external;

{ Like FExpand, but unquotes the directory before expanding it, and
quotes WildCardChars again afterwards. Does not check if the
directory is valid (because it may contain wild card characters).
Symlinks are expanded only in the directory part, not the file
name. }

function FExpandQuoted (const Path: String): TString; attribute
(name = ’_p_FExpandQuoted’); external;

{ FExpands Path, and then removes the current directory from it, if
it is a prefix of it. If OnlyCurDir is set, the current directory
will be removed only if Path denotes a file in, not below, it. }

function RelativePath (const Path: String; OnlyCurDir, Quoted:

Chapter 6: The Programmer’s Guide to GPC 133

Boolean): TString; attribute (name = ’_p_RelativePath’); external;

{ Is aFileName a UNC filename? (Always returns False on non-Dos
systems.) }

function IsUNC (const aFileName: String): Boolean; attribute (name
= ’_p_IsUNC’); external;

{ Splits a file name into directory, name and extension. Each of
Dir, BaseName and Ext may be Null. }

procedure FSplit (const Path: String; var Dir, BaseName, Ext:
String); attribute (name = ’_p_FSplit’); external;

{ Functions that extract one or two of the parts from FSplit.
DirFromPath returns DirSelf + DirSeparator if the path contains no
directory. }

function DirFromPath (const Path: String): TString; attribute
(name = ’_p_DirFromPath’); external;

function NameFromPath (const Path: String): TString; attribute
(name = ’_p_NameFromPath’); external;

function ExtFromPath (const Path: String): TString; attribute
(name = ’_p_ExtFromPath’); external;

function NameExtFromPath (const Path: String): TString; attribute
(name = ’_p_NameExtFromPath’); external;

{ Start reading a directory. If successful, a pointer is returned
that can be used for subsequent calls to ReadDir and finally
CloseDir. On failure, an I/0 error is raised and (in case it is
ignored) nil is returned. }

function OpenDir (const DirName: String): DirPtr; attribute
(iocritical, name = ’_p_OpenDir’); external;

{ Reads one entry from the directory Dir, and returns the file name.
On errors or end of directory, the empty string is returned. }
function ReadDir (Dir: DirPtr): TString; attribute (name
= ’_p_ReadDir’); external;

{ Closes a directory opened with OpenDir. }
procedure CloseDir (Dir: DirPtr); attribute (name = ’_p_CloseDir’);
external;

{ Returns the first position of a non-quoted character of CharSet in
s, or 0 if no such character exists. }

function FindNonQuotedChar (Chars: CharSet; const s: String; From:
Integer): Integer; attribute (name = ’_p_FindNonQuotedChar’);
external;

{ Returns the first occurence of SubString in s that is not quoted
at the beginning, or O if no such occurence exists. }

function FindNonQuotedStr (const SubString, s: String; From:
Integer): Integer; attribute (name = ’_p_FindNonQuotedStr’);
external;

134 The GNU Pascal Manual

{ Does a string contain non-quoted wildcard characters? }
function HasWildCards (const s: String): Boolean; attribute (name
= ’_p_HasWildCards’); external;

{ Does a string contain non-quoted wildcard characters, braces or

spaces? }
function HasWildCardsOrBraces (const s: String): Boolean; attribute
(name = ’_p_HasWildCardsOrBraces’); external;

{ Insert QuotingCharacter into s before any special characters }

function QuoteFileName (const s: String; const SpecialCharacters:
CharSet): TString; attribute (name = ’_p_QuoteFileName’);
external;

{ Remove QuotingCharacter from s }
function UnQuoteFileName (const s: String): TString; attribute
(name = ’_p_UnQuoteFileName’); external;

{ Splits s at non-quoted spaces and expands non-quoted braces like
bash does. The result and its entries should be disposed after
usage, e.g. with DisposePPStrings. }

function BraceExpand (const s: String): PPStrings; attribute (name
= ’_p_BraceExpand’); external;

{ Dispose of a PPStrings array as well as the strings it contains.
If you want to keep the strings (by assigning them to other string
pointers), you should instead free the PPStrings array with
‘Dispose’. }

procedure DisposePPStrings (Strings: PPStrings); attribute (name
= ’_p_DisposePPStrings’); external;

{ Tests if a file name matches a shell wildcard pattern (7, *, []1) }
function FileNameMatch (const Pattern, FileName: String): Boolean;
attribute (name = ’_p_FileNameMatch’); external;

{ FileNameMatch with BraceExpand }
function MultiFileNameMatch (const Pattern, FileName: String):
Boolean; attribute (name = ’_p_MultiFileNameMatch’); external;

File name globbing }

GlobInit is implied by Glob and MultiGlob, not by GlobOn and
MultiGlobOn. GlobOn and MultiGlobOn must be called after Globlnit,
Glob or MultiGlob. MultiGlob and MultiGlobOn do brace expansion,
Glob and GlobOn do not. GlobFree frees the memory allocated by the
globbing functions and invalidates the results in Buf. It should
be called after globbing. }

.

procedure GlobInit (var Buf: GlobBuffer); attribute (name
= ’_p_GlobInit’); external;
procedure Glob (var Buf: GlobBuffer; const Pattern: String);

attribute (name = ’_p_Glob’); external;

Chapter 6: The Programmer’s Guide to GPC 135

procedure GlobOn (var Buf: GlobBuffer; const Pattern: String);
attribute (name = ’_p_GlobOn’); external;

procedure MultiGlob (var Buf: GlobBuffer; const Pattern: String);
attribute (name = ’_p_MultiGlob’); external;

procedure MultiGlobOn (var Buf: GlobBuffer; const Pattern: String);
attribute (name = ’_p_MultiGlobOn’); external;

procedure GlobFree (var Buf: GlobBuffer); attribute (name

= ’_p_GlobFree’); external;

type
TPasswordEntry = record
UserName, RealName, Password, HomeDirectory, Shell: PString;
UID, GID: Integer
end;

PPasswordEntries = “TPasswordEntries;
TPasswordEntries (Count: Integer) = array [1 .. Count] of
TPasswordEntry;

{ Finds a password entry by user name. Returns True if found, False
otherwise. }

function GetPasswordEntryByName (const UserName: String; var Entry:
TPasswordEntry): Boolean; attribute (name
= ’_p_GetPasswordEntryByName’); external;

{ Finds a password entry by UID. Returns True if found, False
otherwise. }

function GetPasswordEntryByUID (UID: Integer; var Entry:
TPasswordEntry): Boolean; attribute (name
= ’_p_GetPasswordEntryByUID’); external;

{ Returns all password entries, or nil if none found. }
function GetPasswordEntries: PPasswordEntries; attribute (name
= ’_p_GetPasswordEntries’); external;

{ Dispose of a TPasswordEntry. }
procedure DisposePasswordEntry (Entry: TPasswordEntry); attribute
(name = ’_p_DisposePasswordEntry’); external;

{ Dispose of a PPasswordEntries. }
procedure DisposePasswordEntries (Entries: PPasswordEntries);
attribute (name = ’_p_DisposePasswordEntries’); external;

{ Returns the mount point (Unix) or drive (Dos) which is part of the
given path. If the path does not contain any (i.e., is a relative
path), an empty string is returned. Therefore, if you want to get
the mount point or drive in any case, apply ‘FExpand’ or
‘RealPath’ to the argument. }

function GetMountPoint (const Path: String): TString; attribute
(name = ’_p_GetMountPoint’); external;

136

The GNU Pascal Manual

type

TSystemInfo = record
OSName,
OSRelease,
OSVersion,
MachineType,
HostName,
DomainName: TString

end;

{ Returns system information if available. Fields not available will
be empty. }

function SystemInfo: TSystemInfo; attribute (name
= ’_p_SystemInfo’); external;

{ Returns the path to the shell (as the result) and the option that
makes it execute the command specified in the following argument
(in ‘Option’). Usually these are the environment value of
ShellEnvVar, and ShellExecCommand, but on Dos systems, the
function will first try UnixShellEnvVar, and UnixShellExecCommand
because ShellEnvVar will usually point to command.com, but
UnixShellEnvVar can point to bash which is usually a better choice
when present. If UnixShellEnvVar is not set, or the shell given
does not exist, it will use ShellEnvVar, and ShellExecCommand.
Option may be Null (in case you want to invoke the shell
interactively). }

function GetShellPath (var Option: String): TString; attribute
(name = ’_p_GetShellPath’); external;

{ Returns the path of the running executable. *Note*: On most
systems, this is *not* guaranteed to be the full path, but often
just the same as ‘ParamStr (0)’ which usually is the name given on
the command line. Only on some systems with special support, it
returns the full path when ‘ParamStr (0)’ doesn’t. }

function ExecutablePath: TString; attribute (name
= ’_p_ExecutablePath’); external;

{ Returns a file name suitable for a global (system-wide) or local
(user-specific) configuration file, depending on the Global
parameter. The function does not guarantee that the file name
returned exists or is readable or writable.

In the following table, the base name ‘<base>’ is given with the
BaseName parameter. If it is empty, the base name is the name of
the running program (as returned by ExecutablePath, without
directory and extension. ‘<prefix>’ (Unix only) stands for the
value of the Prefix parameter (usual values include ’’, ’/usr’ and
>/usr/local’). ‘<dir>’ (Dos only) stands for the directory where
the running program resides. ‘$foo’ stands for the value of the
environment variable ‘foo’.

Chapter 6: The Programmer’s Guide to GPC

Global Local
Unix: <prefix>/etc/<base>.conf $HOME/.<base>
DJGPP: $DJDIR\etc\<base>.ini $HOME\<base>.cfg
<dir>\<base>.ini <dir>\<base>.cfg
Other $HOME\<base>.ini $HOME\<base>.cfg
Dos: <dir>\<base>.ini <dir>\<base>.cfg

As you see, there are two possibilities under Dos. If the first
file exists, it is returned. Otherwise, if the second file exists,
that is returned. If none of them exists (but the program might
want to create a file), if the environment variable (DJDIR or
HOME, respectively) is set, the first file name is returned,
otherwise the second one. This rather complicated scheme should
give the most reasonable results for systems with or without DJGPP
installed, and with or without already existing config files. Note
that DJDIR is always set on systems with DJGPP installed, while
HOME is not. However, it is easy for users to set it if they want
their config files in a certain directory rather than with the
executables. }

function ConfigFileName (const Prefix, BaseName: String; Global:
Boolean): TString; attribute (name = ’_p_ConfigFileName’);
external;

{ Returns a directory name suitable for global, machine-independent
data. The function garantees that the name returned ends with a
DirSeparator, but does not guarantee that it exists or is
readable or writable.

Note: If the prefix is empty, it is assumed to be ’/usr’. (If you
really want /share, you could pass ’/’ as the prefix, but that’s
very uncommon.)

Unix: <prefix>/share/<base>/

DJGPP: $DJDIR\share\<base>\
<dir>\

Other $HOME\<base>\
Dos: <dir>\

About the symbols used above, and the two possibilities under Dos,
see the comments for ConfigFileName. }

function DataDirectoryName (const Prefix, BaseName: String):
TString; attribute (name = ’_p_DataDirectoryName’); external;

{ Executes a command line. Reports execution errors via the IOResult
mechanism and returns the exit status of the executed program.
Execute calls RestoreTerminal with the argument True before and
False after executing the process, ExecuteNoTerminal does not. }

137

138 The GNU Pascal Manual

function Execute (const CmdLine: String): Integer; attribute
(iocritical, name = ’_p_Execute’); external;

function ExecuteNoTerminal (const CmdLine: String): Integer;
attribute (iocritical, name = ’_p_ExecuteNoTerminal’); external;

{ File handling routines, from files.pas }

type
Natural = 1 .. MaxInt;
I0SelectEvents = (SelectReadOrEOF, SelectRead, SelectEOF,
SelectWrite, SelectException, SelectAlways);

const
I0SelectEventMin = { @@ Low (IOSelectEvents); } SelectReadOrEQF;

I0SelectEventMax = Pred (SelectAlways);
type
I0SelectType = record
f: PAnyFile;

Wanted: set of IOSelectEvents;
Occurred: set of IOSelectEventMin .. IOSelectEventMax
end;

{ Waits for one of several events to happen. Returns when one or
more of the wanted events for one of the files occur. If they have
already occurred before calling the function, it returns
immediately. MicroSeconds can specify a timeout. If it is 0, the
function will return immediately, whether or not an event has
occurred. If it is negative, the function will wait forever until
an event occurs. The Events parameter can be Null, in which case
the function only waits for the timeout. If any of the file
pointers (f) in Events are nil or the files pointed to are closed,
they are simply ignored for convenience.

It returns the index of one of the files for which any event has
occurred. If events have occurred for several files, is it
undefined which of these file’s index is returned. If no event
occurs until the timeout, O is returned. If an error occurs or the
target system does not have a select() system call and Events is
not Null, a negative value is returned. In the Occurred field of
the elements of Events, events that have occurred are set. The
state of events not wanted is undefined.

The possible events are:
SelectReadOrEOF: the file is at EOF or data can be read now.

SelectRead: data can be read now.

SelectEQF: the file is at EOF.

SelectWrite: data can be written now.

SelectException: an exception occurred on the file.
SelectAlways: if this is set, *all* requested events will be

checked for this file in any case. Otherwise,

Chapter 6: The Programmer’s Guide to GPC 139

checks may be skipped if already another event
for this or another file was found.

Notes:

Checking for EOF requires some reading ahead internally (just like
the EOF function) which can be avoided by setting SelectReadOrEQOF
instead of SelectRead and SelectEOF. If this is followed by, e.g.,
a BlockRead with 4 parameters, the last parameter will be 0 if and
only the file is at EOF, and otherwise, data will be read directly
from the file without reading ahead and buffering.

SelectAlways should be set for files for which events are
considered to be of higher priority than others. Otherwise, if one
is interested in just any event, not setting SelectAlways may be a
little faster. }

function IOSelect (var Events: array [m .. n: Natural] of
I0SelectType; MicroSeconds: MicroSecondTimeType): Integer;
attribute (name = ’_p_IO0Select’); external;

{ A simpler interface to SelectIO for the most common use. Waits for
SelectReadOrEQOF on all files and returns an index. }

function IO0SelectRead (const Files: array [m .. n: Natural] of
PAnyFile; MicroSeconds: MicroSecondTimeType): Integer; attribute
(name = ’_p_IOSelectRead’); external;

{ Bind a filename to an external file }

procedure AssignFile (var t: AnyFile; const FileName: String);
attribute (name = ’_p_Assign’); external;

procedure AssignBinary (var t: Text; const FileName: String);
attribute (name = ’_p_AssignBinary’); external;

procedure AssignHandle (var t: AnyFile; Handle: Integer; CloseFlag:
Boolean); attribute (name = ’_p_AssignHandle’); external;

{ BP compatible seeking routines }

function Internal_SeekEOF (var f: Text): Boolean; attribute (name
= ’_p_SeekEQF’); external;

function Internal_SeekEOLn (var f: Text): Boolean; attribute (name
= ’_p_SeekEOLn’); external;

{ Under development }
procedure AnyStringTFDD_Reset (var f: AnyFile; var Buf:

ConstAnyString); attribute (name = ’_p_AnyStringTFDD_Reset’);
external;

{ @@ procedure AnyStringTFDD_Rewrite (var f: AnyFile; var Buf:
VarAnyString); attribute (name = ’_p_AnyStringTFDD_Rewrite’); }
procedure StringTFDD_Reset (var f: AnyFile; var Buf: ConstAnyString;
const s: String); attribute (name = ’_p_StringTFDD_Reset’);

external;

{ @@ procedure StringTFDD_Rewrite (var f: AnyFile; var Buf:
VarAnyString; var s: String); attribute (name
= ’_p_StringTFDD_Rewrite’); }

140 The GNU Pascal Manual

{ Returns True is a terminal device is open on the file f, False if
f is not open or not connected to a terminal. }

function IsTerminal (protected var f: AnyFile): Boolean; attribute
(name = ’_p_IsTerminal’); external;

{ Returns the file name of the terminal device that is open on the
file f. Returns the empty string if (and only if) f is not open or
not connected to a terminal. }

function GetTerminalName (protected var f: AnyFile): TString;
attribute (name = ’_p_GetTerminalName’); external;

{ Command line option parsing, from getopt.pas }

const
EndOfOptions = #255;
NoOption = #1;
UnknownOption =27
LongOption = #0;
UnknownLongOption = ’77;

var
FirstNonOption : Integer; attribute (name
= ’_p_FirstNonOption’); external;
HasOptionArgument : Boolean; attribute (name
= ’_p_HasOptionArgument’); external;
OptionArgument : TString; attribute (name

= ’_p_OptionArgument’); external;
UnknownOptionCharacter: Char; attribute (name

= ’_p_UnknownOptionCharacter’); external;
GetOptErrorFlag : Boolean; attribute (name
= ’_p_GetOptErrorFlag’); external;

{ Parses command line arguments for options and returns the next

one.
If a command line argument starts with ‘-’, and is not exactly ‘-’
or ‘--’, then it is an option element. The characters of this

element (aside from the initial ‘-’) are option characters. If

‘GetOpt’ is called repeatedly, it returns successively each of the
option characters from each of the option elements.

If ‘GetOpt’ finds another option character, it returns that
character, updating ‘FirstNonOption’ and internal variables so
that the next call to ‘GetOpt’ can resume the scan with the
following option character or command line argument.

If there are no more option characters, ‘GetOpt’ returns
EndOfOptions. Then ‘FirstNonOption’ is the index of the first
command line argument that is not an option. (The command line
arguments have been permuted so that those that are not options

Chapter 6: The Programmer’s Guide to GPC 141

now come last.)
OptString must be of the form ‘[+|-Jabcd:e:f:g::h::i::’.

a, b, ¢ are options without arguments
d, e, f are options with required arguments
g, h, i are options with optional arguments

Arguments are text following the option character in the same
command line argument, or the text of the following command line
argument. They are returned in OptionArgument. If an option has no
argument, OptionArgument is empty. The variable HasOptionArgument
tells whether an option has an argument. This is mostly useful for
options with optional arguments, if one wants to distinguish an
empty argument from no argument.

If the first character of OptString is ‘+’, GetOpt stops at the
first non-option argument.

If it is ‘-’, GetOpt treats non-option arguments as options and
return NoOption for them.

Otherwise, GetOpt permutes arguments and handles all optionms,
leaving all non-options at the end. However, if the environment
variable POSIXLY_CORRECT is set, the default behaviour is to stop
at the first non-option argument, as with ‘+’.

The special argument ‘--’ forces an end of option-scanning
regardless of the first character of OptString. In the case of
‘=?, only ‘--’ can cause GetOpt to return EndOfOptions with
FirstNonOption <= ParamCount.

If an option character is seen that is not listed in OptString,

UnknownOption is returned. The unrecognized option character is

stored in UnknownOptionCharacter. Unless GetOptErrorFlag is set to

False, an error message is printed to StdErr automatically. }
function GetOpt (const OptString: String): Char; attribute (name

= ’_p_GetOpt’); external;

type
OptArgType = (NoArgument, RequiredArgument, OptionalArgument);

OptionType = record
OptionName: CString;
Argument : OptArgType;

Flag : “Char; { if nil, v is returned. Otherwise, Flag~ is
}
v : Char { ... set to v, and LongOption is returned }
end;

{ Recognize short options, described by OptString as above, and long

142

The GNU Pascal Manual

options, described by LongQOptions.

Long-named options begin with ‘--’ instead of ‘-’. Their names may
be abbreviated as long as the abbreviation is unique or is an
exact match for some defined option. If they have an argument, it
follows the option name in the same argument, separated from the
option name by a ‘=’, or else the in next argument. When GetOpt
finds a long-named option, it returns LongOption if that option’s
‘Flag’ field is non-nil, and the value of the option’s ‘v’ field
if the ‘Flag’ field is nil.

LongIndex, if not Null, returns the index in LongOptions of the
long-named option found. It is only valid when a long-named option
has been found by the most recent call.

If LongOnly is set, ‘-’ as well as ‘--’ can indicate a long
option. If an option that starts with ‘-’ (not ‘--’) doesn’t match
a long option, but does match a short option, it is parsed as a
short option instead. If an argument has the form ‘-f’, where f is
a valid short option, don’t consider it an abbreviated form of a
long option that starts with ‘f’. Otherwise there would be no way
to give the ‘-f’ short option. On the other hand, if there’s a
long option ‘fubar’ and the argument is ‘-fu’, do consider that an
abbreviation of the long option, just like ‘--fu’, and not ‘-f’
with argument ‘u’. This distinction seems to be the most useful
approach.

As an additional feature (not present in the C counterpart), if
the last character of OptString is ‘-’ (after a possible starting
‘+? or ‘-’ character), or OptString is empty, all long options
with a nil ‘Flag’ field will automatically be recognized as short
options with the character given by the ‘v’ field. This means, in
the common (and recommended) case that all short options have long
equivalents, you can simply pass an empty OptString (or pass ‘+-’
or ‘--’ as OptString if you want this behaviour, see the comment
for GetOpt), and you will only have to maintain the LongOptions
array when you add or change options. }

function GetOptLong (const OptString: String; const LongOptions:

array [m .. n: Integer] of OptionType { can be Null };

var LongIndex: Integer { can be Null };
LongOnly: Boolean): Char; attribute (name = ’_p_GetOptLong’);
external;

Reset GetOpt’s state and make the next GetOpt or GetOptLong start
(again) with the StartArgument’th argument (may be 1). This is
useful for special purposes only. It is *necessary* to do this
after altering the contents of CParamCount/CParameters (which is
not usually done, either). }

procedure ResetGetOpt (StartArgument: Integer); attribute (name

= ’_p_ResetGetOpt’); external;

Chapter 6: The Programmer’s Guide to GPC 143

{ Set operations, from sets.pas }

{ A1l set operations are built-in identifiers and not declared in
gpc.pas. }

{ Heap management routines, from heap.pas }

{ GPC implements both Mark/Release and Dispose. Both can be mixed
freely in the same program. Dispose should be preferred, since
it’s faster. }

{ C heap management routines. NOTE: if Release is used anywhere in
the program, CFreeMem and CReAllocMem may not be used for pointers
that were not allocated with CGetMem. }

function CGetMem (Size: SizeType): Pointer; external
name ’malloc’;
procedure CFreeMem (aPointer: Pointer); external name ’free’;

function CReAllocMem (aPointer: Pointer; NewSize: SizeType):
Pointer; external name ’realloc’;

type
GetMemType = “function (Size: SizeType): Pointer;
FreeMemType = “procedure (aPointer: Pointer);
ReAllocMemType = “function (aPointer: Pointer; NewSize: SizeType):
Pointer;

{ These variables can be set to user-defined routines for memory
allocation/deallocation. GetMemPtr may return nil when
insufficient memory is available. GetMem/New will produce a
runtime error then. }

var
GetMemPtr : GetMemType; attribute (name = ’_p_GetMemPtr’);
external;
FreeMemPtr : FreeMemType; attribute (name = ’_p_FreeMemPtr’);
external;

ReAllocMemPtr: ReAllocMemType; attribute (name
= ’_p_ReAllocMemPtr’); external;

{ Address of the lowest byte of heap used }
HeapLow: PtrCard; attribute (name = ’_p_Heaplow’); external;

{ Address of the highest byte of heap used }
HeapHigh: PtrCard; attribute (name = ’_p_HeapHigh’); external;

{ If set to true, ‘Dispose’ etc. will raise a runtime error if
given an invalid pointer. }

HeapChecking: Boolean; attribute (name = ’_p_HeapChecking’);

external;

const
UndocumentedReturnNil = Pointer (-1);

144 The GNU Pascal Manual

{ Calls the procedure Proc for each block that would be released
with ‘Release (aMark)’. aMark must have been marked with Mark. For
an example of its usage, see the HeapMon unit. }

procedure ForEachMarkedBlock (aMark: Pointer; procedure Proc
(aPointer: Pointer; aSize: SizeType; aCaller: Pointer)); attribute
(name = ’_p_ForEachMarkedBlock’); external;

procedure ReAllocMem (var aPointer: Pointer; NewSize: SizeType);
attribute (name = ’_p_ReAllocMem’); external;

{ Memory transfer procedures, from move.pas }

{ The move operations are built-in identifiers and not declared in
gpc.pas. }

{ Routines to handle endianness, from endian.pas }
{ Boolean constants about endianness and alignment }

const
BitsBigEndian

{$ifdef __BITS_LITTLE_ENDIAN__}

False

{$elif defined (__BITS_BIG_ENDIAN__)}
True

{$else}

{$error Bit endianness is not defined!}
{$endif};

{$ifdef __BYTES_LITTLE_ENDIAN__}

False

{$elif defined (__BYTES_BIG_ENDIAN__)}
True

{$else}

{$error Byte endianness is not defined!}
{$endif};

BytesBigEndian

{$ifdef __WORDS_LITTLE_ENDIAN__}

False

{$elif defined (__WORDS_BIG_ENDIAN__)}
True

{$else}

{$error Word endianness is not defined!}
{$endif};

WordsBigEndian

{$ifdef __NEED_ALIGNMENT__}

True

{$elif defined (__NEED_NO_ALIGNMENT__)}
False

{$else’

{$error Alignment is not defined!}

NeedAlignment

Chapter 6: The Programmer’s Guide to GPC 145

{$endif};

{ Convert single variables from or to little or big endian format.
This only works for a single variable or a plain array of a simple
type. For more complicated structures, this has to be done for
each component separately! Currently, ConvertFromFooEndian and
ConvertToFooEndian are the same, but this might not be the case on
middle-endian machines. Therefore, we provide different names. }

procedure ReverseBytes (var Buf; ElementSize, Count:
SizeType); attribute (name = ’_p_ReverseBytes’); external;

procedure ConvertFromLittleEndian (var Buf; ElementSize, Count:
SizeType); attribute (name = ’_p_ConvertLittleEndian’); external;

procedure ConvertFromBigEndian (var Buf; ElementSize, Count:
SizeType); attribute (name = ’_p_ConvertBigEndian’); external;

procedure ConvertToLittleEndian (var Buf; ElementSize, Count:
SizeType); external name ’_p_ConvertLittleEndian’;

procedure ConvertToBigEndian (var Buf; ElementSize, Count:
SizeType); external name ’_p_ConvertBigEndian’;

{ Read a block from a file and convert it from little or
big endian format. This only works for a single variable or a
plain array of a simple type, note the comment for
‘ConvertFromLittleEndian’ and ‘ConvertFromBigEndian’. }
procedure BlockReadLittleEndian (var aFile: File; var Buf;
ElementSize, Count: SizeType); attribute (iocritical, name
= ’_p_BlockRead_LittleEndian’); external;
procedure BlockReadBigEndian (var aFile: File; var Buf;
ElementSize, Count: SizeType); attribute (iocritical, name
= ’_p_BlockRead_BigEndian’); external;

{ Write a block variable to a file and convert it to little or big
endian format before. This only works for a single variable or a
plain array of a simple type. Apart from this, note the comment
for ‘ConvertTolLittleEndian’ and ‘ConvertToBigEndian’. }

procedure BlockWriteLittleEndian (var aFile: File; const Buf;
ElementSize, Count: SizeType); attribute (iocritical, name
= ’_p_BlockWrite_LittleEndian’); external;

procedure BlockWriteBigEndian (var aFile: File; const Buf;
ElementSize, Count: SizeType); attribute (iocritical, name
= ’_p_BlockWrite_BigEndian’); external;

{ Read and write strings from/to binary files, where the length is
stored in the given endianness and with a fixed size (64 bits),
and therefore is independent of the system. }

procedure ReadStringlittleEndian (var f: File; var s: String);

attribute (iocritical, name = ’_p_ReadStringLittleEndian’);
external;

procedure ReadStringBigEndian (var f: File; var s: String);
attribute (iocritical, name = ’_p_ReadStringBigEndian’); external;

procedure WriteStringlLittleEndian (var f: File; const s: String);
attribute (iocritical, name = ’_p_WriteStringLittleEndian’);

146 The GNU Pascal Manual

external;

procedure WriteStringBigEndian (var f: File; const s: String);
attribute (iocritical, name = ’_p_WriteStringBigEndian’);
external;

{ Initialization, from init.pas }

var
InitProc: “procedure; attribute (name = ’_p_InitProc’); external;

6.14 Units included with GPC

GPC distributions now include a number of useful Pascal units and a complete set of BP
compatibility units — except for the ‘Graph’ unit (which is currently distributed separately due
to its license) and the OOP stuff. The main use of these units is to provide a way to port
BP programs to GPC as easily as possible. Some of the units also implement functionaliy not
available otherwise.

Most of the BP compatibility units — except ‘CRT’ and ‘Printer’ — are merely meant to let
programs written for BP compile with GPC as easily as possible. They should not be used
in newly written code, and for code ported from BP to GPC, it is suggested to replace them
successively with the more powerful — and often easier to use — alternatives that GPC’s Run
Time System (see Section 6.13 [Run Time System|, page 100) offers.

The following sections describe all units included with GPC (besides the ‘GPC’ module which
describes the interface to the Run Time System, Section 6.13 [Run Time System]|, page 100).

6.14.1 BP compatibility: CRT & WinCRT, portable, with many
extensions

The following listing contains the interface of the CRT unit.

‘CRT’ is a ‘curses’ based unit for text screen handling. It is compatible to BP’s ‘CRT’ unit,
even in a lot of minor details like the values of function key codes and includes some routines for
compatibility with TP5’s ‘Win’ unit as well as BP’s ‘WinCRT’ and Turbo Power’s ‘TPCrt’ units,
and some extensions.

The unit has been extended by many functions that were lacking in BP’s unit and required
assembler code or direct memory/port access to be implemented under BP. The GPC version is
now fully suited for portable, real-world programming without any dirty tricks.

The unit is also available as ‘WinCRT’, completely identical to ‘CRT’. The only purpose of this
“feature” is to let programs written for TPW or BP, with a ‘uses WinCRT’ directive, compile
without changes. Unlike TPW/BP’s ‘WinCRT’ unit, GPC’s unit is not crippled, compared to
‘CRT’.

To use this unit, you will need the ‘ncurses’ (version 5.0 or newer) or ‘PDCurses’ library
which can be found in http://www.gnu-pascal.de/libs/.

{ CRT (Crt Replacement Tool)
Portable BP compatible CRT unit for GPC with many extensions

This unit is aware of terminal types. This means programs using
this unit will work whether run locally or while being logged in
remotely from a system with a completely different terminal type
(as long as the appropriate terminfo entry is present on the
system where the program is run).

http://www.gnu-pascal.de/libs/

Chapter 6: The Programmer’s Guide to GPC 147

NOTES:

- The CRT unit needs the ncurses and panel libraries which should
be available for almost any system. For Dos systems, where
ncurses is not available, it is configured to use the PDCurses
and its panel library instead. On Unix systems with X11, it can
also use PDCurses (xcurses) and xpanel to produce X11 programs.
The advantage is that the program won’t need an xterm with a
valid terminfo entry, the output may look a little nicer and
function keys work better than in an xterm, but the disadvantage
is that it will only run under X. The ncurses and PDCurses
libraries (including panel and xpanel, resp.) can be found in
http://www.gnu-pascal.de/libs/

(Note that ncurses is already installed on many Unix systems.)
For ncurses, version 5.0 or newer is strongly recommended
because older versions contain a bug that severely affects CRT
programs.

When an X11 version under Unix is wanted, give ‘-DX11’ when
compiling crt.pas and crtc.c (or when compiling crt.pas or a
program that uses CRT with ‘--automake’). On pre-X11R6 systems,
give ‘-DNOX11R6’ additionally. You might also have to give the
path to the X11 libraries with ‘-L’, e.g. ‘-L /usr/X11/1ib’.

- A few features cannot be implemented in a portable way and are
only available on some systems:

Sound, NoSound 1) = mmmmmmmmeeeeee)
CetShiftState e)
TextMode etc. 2) mmmmmmee .
CRTSavePreviousScreen ———————— .
Interrupt signal (Ctrl-C) handling ---.

N_____

I
| I
| I
| I
X 5) X 6)
X

|
| I
Linux/IA32 3) (terminal) X X 4) 6)
Other Unix (terminal) X X7) X5 - -
Unix (X11 version) X X -8) X -
Dos (DJGPP) X X X X X
MS-Windows (Cygwin or mingw) X - X9 X -

Notes:

1) If you define NO_CRT_DUMMY_SOUND while compiling CRT, you
will get linking errors when your program tries to use
Sound/NoSound on a platform where it’s not supported (which
is useful to detect at compile time if playing sound is a
major task of your program). Otherwise, Sound/NoSound will
simply do nothing (which is usually acceptable if the program
uses these routines just for an occasional beep).

2) Changing to monochrome modes works on all platforms. Changing

148

The GNU Pascal Manual

the screen size only works on those indicated. However, even
on the platforms not supported, the program will react to
screen size changes by external means (e.g. changing the
window size with the mouse if running in a GUI window or
resizing a console or virtual terminal).

3) Probably also on other processors, but I’ve had no chance to
test this yet.

4) Only on a local console with access permissions to the
corresponding virtual console memory device or using the
‘crtscreen’ utility (see crtscreen.c in the demos directory).

5) Only if supported by an external command (e.g., in xterms and
on local Linux consoles). The command to be called can be
defined in the environment variable ‘RESIZETERM’ (where the
variables ‘columns’ and ‘lines’ in the command are set to the
size wanted). If not set, the code will try ‘resize -s’ in an
xterm and otherwise ‘SVGATextMode’ and ‘setfont’. For this to
work, these utilities need to be present in the PATH or
¢/usr/sbin’ or ‘/usr/local/sbin’. Furthermore, SVGATextMode
and setfont require root permissions, either to the
executable of the program compiled with CRT or to resizecons
(called by setfont) or SVGATextMode. To allow the latter, do
"chmod u+s ‘which resizecons‘" and/or

"chmod u+s ‘which SVGATextMode‘", as root once, but only if
you really want each user to be allowed to change the text
mode.

6) Only on local consoles.

7) Some terminals only. Most xterms etc. support it as well as
other terminals that support an "alternate screen" in the
smcup/rmcup terminal capabilities.

8) But the user can resize the window.

9) Only with PDCurses, not with ncurses. Changing the number of
screen *columns* doesn’t work in a full-screen session.

When CRT is initialized (automatically or explicitly; see the
comments for CRTInit), the screen is cleared, and at the end of
the program, the cursor is placed at the bottom of the screen
(curses behaviour) .

A1l the other things (including most details like color and
function key constants) are compatible with BP’s CRT unit, and
there are many extensions that BP’s unit does not have.

When the screen size is changed by an external event (e.g.,
resizing an xterm or changing the screen size from another VC

Chapter 6: The Programmer’s Guide to GPC 149

under Linux), the virtual "function key" kbScreenSizeChanged is
returned. Applications can use the virtual key to resize their
windows. kbScreenSizeChanged will not be returned if the screen
size change was initiated by the program itself (by using
TextMode or SetScreenSize). Note that TextMode sets the current
panel to the full screen size, sets the text attribute to the
default and clears the window (BP compatibility), while
SetScreenSize does not.

- After the screen size has been changed, whether by using
TextMode, SetScreenSize or by an external event, ScreenSize will
return the new screen size. The current window and all panels
will have been adjusted to the new screen size. This means, if
their right or lower ends are outside the new screen size, the
windows are moved to the left and/or top as far as necessary. If
this is not enough, i.e., if they are wider/higher than the new
screen size, they are shrinked to the total screen width/height.
When the screen size is enlarged, window sizes are not changed,
with one exception: Windows that extend through the whole screen
width/height are enlarged to the whole new screen width/height
(in particular, full-screen windows remain full-screen). This
behaviour might not be optimal for all purposes, but you can
always resize your windows in your application after the screen
size change.

- (ncurses only) The environment variable ‘ESCDELAY’ specifies the
number of milliseconds allowed between an ‘Esc’ character and
the rest of an escape sequence (default 1000). Setting it to a
value too small can cause problems with programs not recognizing
escape sequences such as function keys, especially over slow
network connections. Setting it to a value too large can delay
the recognition of an ‘ESC’ key press notably. On local Linux
consoles, e.g., 10 seems to be a good value.

- When trying to write portable programs, don’t rely on exactly
the same look of your output and the availability of all the key
combinations. Some kinds of terminals support only some of the
display attributes and special characters, and usually not all
of the keys declared are really available. Therefore, it’s safer
to provide the same function on different key combinations and
to not use the more exotic ones.

- CRT supports an additional modifier key (if present), called
‘Extra’. On DJGPP, it’s the <Scroll Lock> key, under X11 it’s
the modifier #4, and on a local Linux console, it’s the ‘CtrlL’
modifier (value 64) which is unused on many keytabs and can be
mapped to any key(s), e.g. to those keys on new keyboards with
these ugly symbols waiting to be replaced by penguins (keycodes
125 and 127) by inserting the following two lines into your
/etc/default.keytab and reloading the keytab with ‘loadkeys’
(you usually have to do this as root):

150 The GNU Pascal Manual

keycode 125 = CtrlL
keycode 127 = CtrlL

Copyright (C) 1998-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License.

Please also note the license of the curses library used. }
{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}

{$endif}

unit {$ifdef THIS_IS_WINCRT} WinCRT {$else} CRT {$endif};

interface

uses GPC;

const
{ CRT modes }
BW40 = 0; { 40x25 Black/White }
C040 =1; { 40x25 Color }
BW80 = 2; { 80x25 Black/White }
C080 = 3; { 80x25 Color }

Chapter 6: The Programmer’s Guide to GPC 151

7 { 80x25 Black/White }
256; { Add-in for 80x43 or 80x50 mode }

Mono
Font8x8

{ Mode constants for Turbo Pascal 3.0 compatibility }
C40 = C040;
€80 C080;

{ Foreground and background color constants }
Black =
Blue =
Green =
Cyan

Red

Magenta =
Brown
LightGray

e we we

. e

e we

~NO O W N - O

[

{ Foreground color constants }

DarkGray = 8;
LightBlue = 9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14,
White = 15;

{ Add-in for blinking }
Blink = 128;

type
TTextAttr = Byte;

var
{ If False (default: True), catch interrupt signals (SIGINT;
Ctrl-C), and other flow control characters as well as SIGTERM,
SIGHUP and perhaps other signals }
CheckBreak: Boolean = True; attribute (name = ’crt_CheckBreak’);

{ If True (default : False), replace Ctrl-Z by #O0 in input }
CheckEQOF: Boolean = False; attribute (name = ’crt_CheckEOF’);

{ Ignored -- meaningless here }
DirectVideo: Boolean = True;

{ Ignored -- curses or the terminal driver will take care of that
when necessary }
CheckSnow: Boolean = False;

{ Current (sic!) text mode }
LastMode: Word = 3; attribute (name = ’crt_LastMode’);

152

The GNU Pascal Manual

{ Current text attribute }
TextAttr: TTextAttr = 7; attribute (name = ’crt_TextAttr’);

{ Window upper left coordinates. *Obsolete*! Please see WindowMin
below. }
WindMin: Word = not Word (0); attribute (name = ’crt_WindMin’);

{ Window lower right coordinates. *0Obsoletex! Please see WindowMax
below. }
WindMax: Word = not Word (0); attribute (name = ’crt_WindMax’);

procedure AssignCRT (var f: Text);
function KeyPressed: Boolean; external name ’crt_KeyPressed’;
function ReadKey: Char; external name ’crt_ReadKey’;

{ Not effective on all platforms, see above. See also SetScreenSize
and SetMonochrome. }
procedure TextMode (Mode: Integer);

procedure Window (x1, yl1, x2, y2: Integer); external
name ’crt_Window’;

procedure GotoXY (x, y: Integer); external name ’crt_GotoXY’;

function WhereX: Integer; external name ’crt_WhereX’;

function WhereY: Integer; external name ’crt_WhereY’;

procedure ClrScr; external name ’crt_ClrScr’;

procedure ClrEOL; external name ’crt_ClrEQL’;

procedure InsLine; external name ’crt_InsLine’;

procedure Delline; external name ’crt_DellLine’;

procedure TextColor (Color: TTextAttr);

procedure TextBackground (Color: TTextAttr);

procedure LowVideo;

procedure HighVideo;

procedure NormVideo;

procedure Delay (MS: Word); external name ’crt_Delay’;

{ Not available on all platforms, see above }
procedure Sound (Hz: Word); external name ’crt_Sound’;
procedure NoSound; external name ’crt_NoSound’;

{ Extensions over BP’s CRT }

{ Initializes the CRT unit. Should be called before using any of
CRT’s routines.

Note: For BP compatibility, CRT is initizalized automatically when
(almost) any of its routines are used for the first time. In this
case, some defaults are set to match BP more closely. In
particular, the PC charset (see SetPCCharSet) is enabled then
(disabled otherwise), and the update level (see SetCRTUpdate) is
set to UpdateRegularly (UpdateWaitInput otherwise). This feature

Chapter 6: The Programmer’s Guide to GPC 153

is meant for BP compatibility *only*. Don’t rely on it when
writing a new program. Use CRTInit then, and set the defaults to
the values you want explicitly.

SetCRTUpdate is one of those few routines which will not cause CRT
to be initialized immediately, and a value set with it will
survive both automatic and explicit initialization, so you can use
it to set the update level without caring which way CRT will be
initialized. (This does not apply to SetPCCharSet. Since it works
on a per-panel basis, it has to initialize CRT first, so there is
a panel to start with.)

If you terminate the program before calling CRTInit or any routine
that causes automatic initialization, curses will never be
initialized, so e.g., the screen won’t be cleared. This can be
useful, e.g., to check the command line arguments (or anything
else) and if there’s a problem, write an error and abort. Just be
sure to write the error to StdErr, not Output (because Output will
be assigned to CRT, and therefore writing to Output will cause CRT
to be initialized, and because errors belong to StdErr, anyway),
and to call ‘RestoreTerminal (True)’ before (just to be sure, in
case some code -- perhaps added later, or hidden in the
initialization of some unit -- does initialize CRT). }

procedure CRTInit; external name ’crt_Init’;

{

Changes the input and output file and the terminal description CRT
uses. Only effective with ncurses, and only if called before CRT
is initialized (automatically or explicitly; see the comments for
CRTInit). If TerminalType is nil, the default will be used. If
InputFile and/or OutputFile are Null, they remain unchanged. }

procedure CRTSetTerminal (TerminalType: CString; var InputFile,

{

OutputFile: AnyFile); attribute (name = ’crt_SetTerminal’);

If called with an argument True, it causes CRT to save the
previous screen contents if possible (see the comments at the
beginning of the unit), and restore them when calling
RestoreTerminal (True). After RestoreTerminal (False), they’re
saved again, and at the end of the program, they’re restored. If
called with an argument False, it will prohibit this behaviour.
The default, if this procedure is not called, depends on the
terminal (generally it is active on most xterms and similar and
not active on most other terminals).

This procedure should be called before initializing CRT (using
CRTInit or automatically), otherwise the previous screen contents
may already have been overwritten. It has no effect under XCurses,
because the program uses its own window, anyway. }

procedure CRTSavePreviousScreen (On: Boolean); external

name ’crt_SavePreviousScreen’;

{ Returns True if CRTSavePreviousScreen was called with argument

154

The GNU Pascal Manual

True and the functionality is really available. Note that the
result is not reliable until CRT is initialized, while
CRTSavePreviousScreen should be called before CRT is initialized.
That’s why they are two separate routines. }

function CRTSavePreviousScreenWorks: Boolean; external
name ’crt_SavePreviousScreenWorks’;

{ If CRT is initialized automatically, not via CRTInit, and
CRTAutoInitProc is not nil, it will be called before actually
initializing CRT. }

var
CRTAutoInitProc: procedure = nil; attribute (name
= Jcrt_AutoInitProc’);

{ Aborts with a runtime error saying that CRT was not initialized.
If you set CRTAutoInitProc to this procedure, you can effectively
disable CRT’s automatic initialization. }

procedure CRTNotInitialized; attribute (name
= ’crt_NotInitialized’);

{ Set terminal to shell or curses mode. An internal procedure
registered by CRT via RegisterRestoreTerminal does this as well,
so CRTSetCursesMode has to be called only in unusual situations,
e.g. after executing a process that changes terminal modes, but
does not restore them (e.g. because it crashed or was killed), and
the process was not executed with the Execute routine, and
RestoreTerminal was not called otherwise. If you set it to False
temporarily, be sure to set it back to True before doing any
further CRT operations, otherwise the result may be strange. }

procedure CRTSetCursesMode (On: Boolean); external
name ’crt_SetCursesMode’;

{ Do the same as ‘RestoreTerminal (True)’, but also clear the screen
after restoring the terminal (except for XCurses, because the
program uses its own window, anyway). Does not restore and save
again the previous screen contents if CRTSavePreviousScreen was
called. }

procedure RestoreTerminalClearCRT; attribute (name
= ’crt_RestoreTerminalClearCRT’);

{ Keyboard and character graphics constants -- BP compatible! =:-}
{$i crt.inc}

var
{ Tells whether the XCurses version of CRT is used }
XCRT: Boolean = {$ifdef XCURSES} True {$else} False {$endif};
attribute (name = ’crt_XCRT’);

{ If True (default: False), the Beep procedure and writing #7 do a
Flash instead }
VisualBell: Boolean = False; attribute (name = ’crt_VisualBell’);

Chapter 6: The Programmer’s Guide to GPC 155

{ Cursor shape codes. Only to be used in very special cases. }
CursorShapeHidden: Integer = 0; attribute (name

= ’crt_CursorShapeHidden’);
CursorShapeNormal: Integer
= ’crt_CursorShapeNormal’) ;
CursorShapeFull: Integer = 2; attribute (name
= ’crt_CursorShapeFull’);

1; attribute (name

type
TKey = Word;

TCursorShape = (CursorIgnored, CursorHidden, CursorNormal,
CursorFat, CursorBlock);

TCRTUpdate = (UpdateNever, UpdateWaitInput, Updatelnput,
UpdateRegularly, UpdateAlways);

TPoint = record
X, y: Integer

end;
PCharAttr = "“TCharAttr;
TCharAttr = record
ch : Char;
Attr : TTextAttr;
PCCharSet: Boolean
end;
PCharAttrs = “TCharAttrs;
TCharAttrs = array [1 .. MaxVarSize div Size0f (TCharAttr)] of
TCharAttr;

TWindowXYInternalCard8 = Cardinal attribute (Size = 8);
TWindowXYInternalFill = Integer attribute (Size = BitSizeOf (Word)
- 16);
TWindowXY = packed record

{$ifdef __BYTES_BIG_ENDIAN__}

Fill: TWindowXYInternalFill;

y, x: TWindowXYInternalCard8

{$elif defined (__BYTES_LITTLE_ENDIAN__)}

x, y: TWindowXYInternalCardS8;

Fill: TWindowXYInternalFill

{$else}

{$error Endianness is not defined!}

{$endif}
end;

{ Make sure TWindowXY really has the same size as WindMin and
WindMax. If not, compilation will abort here with ‘division by
zero’. Otherwise, the value of the constant will always be 1, and

156 The GNU Pascal Manual

is of no further interest. }
const

AssertTWindowXYSize = 1 / Ord ((SizeOf (TWindowXY) = SizeOf
(WindMin)) and
(SizeO0f (TWindowXY) = SizeOf
(WindMax)));
var

{ Window upper and left coordinates. More comfortable to access
than WindMin, but also *obsolete*. WindMin and WindowMin still
work, but have the problem that they implicitly limit the window
size to 255x255 characters. Though that’s not really small for a
text window, it’s easily possible to create bigger ones (e.g. in
an xterm with a small font, on a high resolution screen and/or
extending over several virutal desktops). When using coordinates
greater than 254, the corresponding bytes in WindowMin/WindowMax
will be set to 254, so, e.g., programs which do
‘Inc (WindowMin.x)’ will not fail quite as badly (but probably
still fail). The routines Window and GetWindow use Integer
coordinates, and don’t suffer from any of these problems, so
they should be used instead. }

WindowMin: TWindowXY absolute WindMin;

{ Window lower right coordinates. More comfortable to access than
WindMax, but also *obsolete*x (see the comments for WindowMin).
Use Window and GetWindow instead. }

WindowMax: TWindowXY absolute WindMax;

{ The attribute set by NormVideo }
NormAttr: TTextAttr = 7; attribute (name = ’crt_NormAttr’);

{ Tells whether the current mode is monochrome }
IsMonochrome: Boolean = False; attribute (name
= ’crt_IsMonochrome’);

{ This value can be set to a combination of the shFoo constants
and will be ORed to the actual shift state returned by
GetShiftState. This can be used to easily simulate shift keys on
systems where they can’t be accessed. }

VirtualShiftState: Integer = 0; attribute (name

= ’crt_VirtualShiftState’);

{ Returns the size of the screen. Note: In BP’s WinCRT unit,
ScreenSize is a variable. But since writing to it from a program
is pointless, anyway, providing a function here should not cause
any incompatibility. }

function ScreenSize: TPoint; attribute (name
= 2crt_GetScreenSize’);

{ Change the screen size if possible. }
procedure SetScreenSize (x, y: Integer); external

Chapter 6: The Programmer’s Guide to GPC

{

name ’crt_SetScreenSize’;

Turns colors off or on. }

procedure SetMonochrome (Monochrome: Boolean); external

name ’crt_SetMonochrome’;

Tell which modifier keys are currently pressed. The result is a
combination of the shFoo constants defined in crt.inc, or O on
systems where this function is not supported -- but note
VirtualShiftState. If supported, ReadKey automatically converts
kbIns and kbDel keys to kbShIns and kbShDel, resp., if shift is
pressed. }

function GetShiftState: Integer; external name ’crt_GetShiftState’;

{

Get the extent of the current window. Use this procedure rather
than reading WindMin and WindMax or WindowMin and WindowMax, since
this routine allows for window sizes larger than 255. The
resulting coordinates are l1-based (like in Window, unlike WindMin,
WindMax, WindowMin and WindowMax). Any of the parameters may be
Null in case you’re interested in only some of the coordinates. }

procedure GetWindow (var x1, yl, x2, y2: Integer); external

{

name ’crt_GetWindow’;

Determine when to update the screen. The possible values are the
following. The given conditions *guaranteex updates. However,
updates may occur more frequently (even if the update level is set
to UpdateNever). About the default value, see the comments for
CRTInit.

UpdateNever : never (unless explicitly requested with
CRTUpdate)

UpdateWaitInput: before Delay and CRT input, unless typeahead is
detected

Updatelnput : before Delay and CRT input

UpdateRegularly: before Delay and CRT input and otherwise in
regular intervals without causing too much
refresh. This uses a timer on some systems
(currently, Unix with ncurses). This was created
for BP compatibility, but for many applications,
a lower value causes less flickering in the
output, and additionally, timer signals won’t
disturb other operations. Under DJGPP, this
always updates immediately, but this fact should
not mislead DJGPP users into thinking this is
always so.

UpdateAlways : after each output. This can be very slow. (Not so
under DJGPP, but this fact should not mislead
DJGPP users ...) }

procedure SetCRTUpdate (UpdateLevel: TCRTUpdate); external

name ’crt_SetUpdatelevel’;

157

158

The GNU Pascal Manual

{ Do an update now, independently of the update level }
procedure CRTUpdate; external name ’crt_Update’;

{ Do an update now and completely redraw the screen }
procedure CRTRedraw; external name ’crt_Redraw’;

{ Return Ord (key) for normal keys and $100 * Ord (fkey) for
function keys }
function ReadKeyWord: TKey; external name ’crt_ReadKeyWord’;

{ Extract the character and scan code from a TKey value }
function Key2Char (k: TKey): Char;
function Key2Scan (k: TKey): Char;

{ Convert a key to upper/lower case if it is a letter, leave it
unchanged otherwise }

function UpCaseKey (k: TKey): TKey;

function LoCaseKey (k: TKey): TKey;

{ Return key codes for the combination of the given key with Ctrl,
Alt, AltGr or Extra, resp. Returns O if the combination is
unknown. }

function CtrlKey (ch: Char): TKey; attribute (name
= ’crt_CtrlKey’);

function AltKey (ch: Char): TKey; external name ’crt_AltKey’;

function AltGrKey (ch: Char): TKey; external name ’crt_AltGrKey’;

function ExtraKey (ch: Char): TKey; external name ’crt_ExtraKey’;

{ Check if k is a pseudo key generated by a deadly signal trapped }
function IsDeadlySignal (k: TKey): Boolean;

{ Produce a beep or a screen flash }
procedure Beep; external name ’crt_Beep’;
procedure Flash; external name ’crt_Flash’;

{ Get size of current window (calculated using GetWindow) }
function GetXMax: Integer;
function GetYMax: Integer;

{ Get/goto an absolute position }
function WhereXAbs: Integer;
function WhereYAbs: Integer;
procedure GotoXYAbs (x, y: Integer);

{ Turn scrolling on or off }
procedure SetScroll (State: Boolean); external name ’crt_SetScroll’;

{ Read back whether scrolling is enabled }
function GetScroll: Boolean; external name ’crt_GetScroll’;

{ Determine whether to interpret non-ASCII characters as PC ROM

Chapter 6: The Programmer’s Guide to GPC 159

characters (True), or in a system dependent way (False). About the
default, see the comments for CRTInit. }

procedure SetPCCharSet (PCCharSet: Boolean); external
name ’crt_SetPCCharSet’;

{ Read back the value set by SetPCCharSet }
function GetPCCharSet: Boolean; external name ’crt_GetPCCharSet’;

{ Determine whether to interpret #7, #8, #10, #13 as control
characters (True, default), or as graphics characters (False) }

procedure SetControlChars (UseControlChars: Boolean); external
name ’crt_SetControlChars’;

{ Read back the value set by SetControlChars }
function GetControlChars: Boolean; external
name ’crt_GetControlChars’;

procedure SetCursorShape (Shape: TCursorShape); external
name ’crt_SetCursorShape’;

function GetCursorShape: TCursorShape; external
name ’crt_GetCursorShape’;

procedure HideCursor;
procedure HiddenCursor;
procedure NormalCursor;
procedure FatCursor;
procedure BlockCursor;
procedure IgnoreCursor;

{ Simulates a block cursor by writing a block character onto the
cursor position. The procedure automatically finds the topmost
visible panel whose shape is not CursorlIgnored and places the
simulated cursor there (just like the hardware cursor), with
matching attributes, if the cursor shape is CursorFat or
CursorBlock (otherwise, no simulated cursor is shown).

Calling this procedure again makes the simulated cursor disappear.
In particular, to get the effect of a blinking cursor, you have to
call the procedure repeatedly (say, 8 times a second). CRT will
not do this for you, since it does not intend to be your main
event loop. }

procedure SimulateBlockCursor; external
name ’crt_SimulateBlockCursor’;

{ Makes the cursor simulated by SimulateBlockCursor disappear if it
is active. Does nothing otherwise. You should call this procedure
after using SimulateBlockCursor before doing any further CRT
output (though failing to do so should not hurt except for
possibly leaving the simulated cursor in its old position longer
than it should). }

procedure SimulateBlockCursor0ff; external

160 The GNU Pascal Manual

name ’crt_SimulateBlockCursor0ff’;

function GetTextColor: Integer;
function GetTextBackground: Integer;

{ Write string at the given position without moving the cursor.
Truncated at the right margin. }

procedure WriteStrAt (x, y: Integer; const s: String; Attr:
TTextAttr) ;

{ Write (several copies of) a char at then given position without
moving the cursor. Truncated at the right margin. 7

procedure WriteCharAt (x, y, Count: Integer; ch: Char; Attr:
TTextAttr) ;

{ Write characters with specified attributes at the given position
without moving the cursor. Truncated at the right margin. }

procedure WriteCharAttrAt (x, y, Count: Integer; CharAttr:
PCharAttrs); external name ’crt_WriteCharAttrAt’;

{ Write a char while moving the cursor }
procedure WriteChar (ch: Char);

{ Read a character from a screen position }
procedure ReadChar (x, y: Integer; var ch: Char; var Attr:
TTextAttr); external name ’crt_ReadChar’;

{ Change only text attributes, leave characters. Truncated at the
right margin. }
procedure ChangeTextAttr (x, y, Count: Integer; NewAttr: TTextAttr);

{ Fill current window }
procedure FillWin (ch: Char; Attr: TTextAttr); external
name ’crt_FillWin’;

{ Calculate size of memory required for ReadWin in current window. }
function WinSize: SizeType; external name ’crt_WinSize’;

{ Save window contents. Buf must be WinSize bytes large. }
procedure ReadWin (var Buf); external name ’crt_ReadWin’;

{ Restore window contents saved by ReadWin. The size of the current
window must match the size of the window from which ReadWin was
used, but the position may be different. }

procedure WriteWin (const Buf); external name ’crt_WriteWin’;

type
WinState = record
x1, y1, x2, y2, WhereX, WhereY, NewXl, NewYl, NewX2, NewY2:
Integer;
TextAttr: TTextAttr;

Chapter 6: The Programmer’s Guide to GPC 161

CursorShape: TCursorShape;
ScreenSize: TPoint;
Buffer: “Byte

end;

{ Save window position and size, cursor position, text attribute and
cursor shape -- *not* the window contents. }
procedure SaveWin (var State: WinState);

{ Make a new window (like Window), and save the contents of the
screen below the window as well as the position and size, cursor
position, text attribute and cursor shape of the old window. }

procedure MakeWin (var State: WinState; x1, yl1, x2, y2: Integer);

{ Create window in full size, save previous text mode and all values
that MakeWin does. }

procedure SaveScreen (var State: WinState);

{ Restore the data saved by SaveWin, MakeWin or SaveScreen. }
procedure RestoreWin (var State: WinState);

{ Panels }

type
TPanel = Pointer;

function GetActivePanel: TPanel; external
name ’crt_GetActivePanel’;

procedure PanelNew (x1, y1, x2, y2: Integer;
BindToBackground: Boolean); external name ’crt_PanelNew’;
procedure PanelDelete (Panel: TPanel); external

name ’crt_PanelDelete’;

procedure PanelBindToBackground (Panel: TPanel; BindToBackground:
Boolean); external name ’crt_PanelBindToBackground’;

function PanelIsBoundToBackground (Panel: TPanel): Boolean;
external name ’crt_PanelIsBoundToBackground’;

procedure PanelActivate (Panel: TPanel); external
name ’crt_PanelActivate’;

procedure PanelHide (Panel: TPanel); external
name ’crt_PanelHide’;

procedure PanelShow (Panel: TPanel); external
name ’crt_PanelShow’;

function PanelHidden (Panel: TPanel): Boolean;
external name ’crt_PanelHidden’;

procedure PanelTop (Panel: TPanel); external
name ’crt_PanelTop’;

procedure PanelBottom (Panel: TPanel); external
name ’crt_PanelBottom’;

procedure PanelMoveAbove (Panel, Above: TPanel); external

name ’crt_PanelMoveAbove’;
procedure PanelMoveBelow (Panel, Below: TPanel); external

162

The GNU Pascal Manual

name ’crt_PanelMoveBelow’;

function PanelAbove (Panel: TPanel): TPanel; external
name ’crt_PanelAbove’;
function PanelBelow (Panel: TPanel): TPanel; external

name ’crt_PanelBelow’;
{ TPCRT compatibility 2

{ Write a string at the given position without moving the cursor.
Truncated at the right margin. }
procedure WriteString (const s: String; y, x: Integer);

{ Write a string at the given position with the given attribute
without moving the cursor. Truncated at the right margin. }
procedure FastWriteWindow (const s: String; y, x: Integer; Attr:

TTextAttr);

{ Write a string at the given absolute position with the given
attribute without moving the cursor. Truncated at the right
margin. }

procedure FastWrite (const s: String; y, x: Integer; Attr:
TTextAttr) ;

{ WinCRT compatibility }

const
cw_UseDefault = Integer ($8000);

var
WindowOrg : TPoint
WindowSize: TPoint

(cw_UseDefault, cw_UseDefault); { Ignored }
(cw_UseDefault, cw_UseDefault); { Ignored }

Cursor : TPoint = (0, 0); attribute (name = ’crt_Cursor’);
{ Cursor location, O-based }

Origin : TPoint = (0, 0); { Ignored }

InactiveTitle: PChar = ’(Inactive %s)’; { Ignored }

AutoTracking: Boolean = True; { Ignored }
WindowTitle: {$ifdef __BP_TYPE_SIZES__}

array [0 .. 79] of Char

{$elset

TStringBuf

{$endif}; { CRT window title, ignored }

procedure InitWinCRT; attribute (name = ’crt_InitWinCRT’);

{ Halts the program }
procedure DoneWinCRT; attribute (noreturn, name = ’crt_DoneWinCRT’);

procedure WriteBuf (Buffer: PChar; Count: SizeType); attribute (name
= Jcrt_WriteBuf’);

function ReadBuf (Buffer: PChar; Count: SizeType): SizeType;

Chapter 6: The Programmer’s Guide to GPC

attribute (name = ’crt_ReadBuf’);

{ o-

based coordinates! }

procedure CursorTo (x, y: Integer); attribute (name

’crt_CursorTo’);

{ Dummy }
procedure ScrollTo (x, y: Integer); attribute (name

’crt_ScrollTo’);

{ Dummy }
procedure TrackCursor; attribute (name = ’crt_TrackCursor’);

6.14.2 BP compatibility: Dos

The following listing contains the interface of the Dos unit.

163

This is a portable implementation of most routines from BP’s ‘Dos’ unit. A few routines that
are Dos — or even [A32 real mode — specific, are only available if ‘__BP_UNPORTABLE_ROUTINES__’

is defined,

Section 7.2 [BP Incompatibilities], page 235.

The same functionality and much more is available in the Run Time System, Section 6.13
[Run Time System], page 100. In some cases, the RTS routines have the same interface as the
routines in this unit (e.g. ‘GetEnv’, ‘FSplit’, ‘FExpand’, ‘FSearch’), in other cases, they have
different names and/or easier and less limiting interfaces (e.g. ‘ReadDir’ etc. vs. ‘FindFirst’
etc.), and are often more efficient.

Therefore, using this unit is not recommended in newly written programs.

{ Portable BP compatible Dos unit

This unit supports most of the routines and declarations of BP’s
Dos unit.

Notes:

The procedures Keep, GetIntVec, SetIntVec are not supported
since they make only sense for Dos real-mode programs (and GPC
compiled programs do not run in real-mode, even on IA32 under
Dos). The procedures Intr and MsDos are only supported under
DJGPP if ¢__BP_UNPORTABLE_ROUTINES__’ is defined (with the
¢-D__BP_UNPORTABLE_ROUTINES__’ option). A few other routines are
also only supported with this define, but on all platforms (but
they are crude hacks, that’s why they are not supported without
this define).

The internal structure of file variables (FileRec and TextRec)
is different in GPC. However, as far as TFDDs are concerned,
there are other ways to achieve the same in GPC, see the GPC
unit.

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Authors: Frank Heckenbach <frank@pascal.gnu.de>

164

The GNU Pascal Manual

Prof. Abimbola A. Olowofoyeku <African_Chief@bigfoot.com>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030412}

{$error This unit requires GPC release 20030412 or newer.}
{$endif}

module Dos;

{ GPC and this unit use ‘AnyFile’ for different meanings. Export
renaming helps us to avoid a conflict here. If you use both units,
the meaning of the latter one will be effective, but you always
get the built-in meaning by using ‘GPC_AnyFile’. }

export Dos = all (DosAnyFile => AnyFile, FSearch, FExpand, FSplit,
GetEnv) ;

import GPC; System;

type
GPC_AnyFile = AnyFile;
Byte8 = Cardinal attribute (Size = 8);
Word16 = Cardinal attribute (Size = 16);
Word32 = Cardinal attribute (Size = 32);
TDosAttr = Word;

const
{ File attribute constants }

Chapter 6: The Programmer’s Guide to GPC

ReadOnly = $01;

Hidden = $02; { set for dot files except ’.’ and ’..° }
SysFile = $04; { not supported }

VolumeID = $08; { not supported }

Directory = $10;

Archive = $20; { means: not executable }

DosAnyFile = $3f;

{ Flag bit masks -- only used by the unportable Dos routines }
FCarry =1;

FParity = 4;

FAuxiliary = $10;

FZero = $40;

FSign = $80;

FOverflow = $800;

{ DosError codes }

DosError_FileNotFound
DosError_PathNotFound
DosError_AccessDenied =
DosError_InvalidMem
DosErorr_InvalidEnv
DosError_NoMoreFiles
DosError_IOError =
DosError_ReadFault =

type

{ String types. Not used in this unit, but declared for

compatibility. }
ComStr = String [127];

PathStr = String [79];
DirStr = String [67];
NameStr = String [8];
ExtStr = String [4];
TextBuf =

{ Search record used by

{ Command line string }

{ File pathname string }

{ Drive and directory string }
{ File name string }

{ File extension string }

array [0 .. 127] of Char;

FindFirst and FindNext }

SearchRecFill = packed array [1 .. 21] of ByteS8;

SearchRec = record
Fill: SearchRecFill;
Attr: ByteS8;

Time,
Size: LongInt;

Name: {$ifdef __BP_TYPE_SIZES__}

String [12]

{$else}

TString

{$endif}
end;

165

166 The GNU Pascal Manual

{ Date and time record used by PackTime and UnpackTime }
DateTime = record

Year, Month, Day, Hour, Min, Sec: Word
end;

{ 8086 CPU registers -- only used by the unportable Dos routines }
Registers = record
case Boolean of
False: (ax, bx, cx, dx, bp, si, di, ds, es, Flags: Wordl6);
True : (al, ah, bl, bh, cl, ch, dl, dh: Byte8)
end;

var
{ Error status variable }

DosError: Integer = O;

procedure GetDate (var Year, Month, Day, DayOfWeek: Word); attribute

(name = ’_p_GetDate’);
procedure GetTime (var Hour, Minute, Second, Sec100: Word);
attribute (name = ’_p_GetTime’);

procedure GetCBreak (var BreakOn: Boolean); attribute (name
= ’_p_GetCBreak’);

procedure SetCBreak (BreakOn: Boolean); attribute (name
= ’_p_SetCBreak’);

{ GetVerify and SetVerify are dummies except for DJGPP (in the
assumption that any real 0S knows by itself when and how to verify
its disks). }

procedure GetVerify (var VerifyOn: Boolean); attribute (name
= ’_p_GetVerify’);

procedure SetVerify (VerifyOn: Boolean); attribute (name
= ’_p_SetVerify’);

function DiskFree (Drive: Byte): LongInt; attribute (name
= ’_p_DiskFree’);

function DiskSize (Drive: Byte): LongInt; attribute (name
= ’_p_DiskSize’);

procedure GetFAttr (var f: GPC_AnyFile; var Attr: TDosAttr);

attribute (name = ’_p_GetFAttr’);

procedure SetFAttr (var f: GPC_AnyFile; Attr: TDosAttr); attribute
(name = ’_p_SetFAttr’);

procedure GetFTime (var f: GPC_AnyFile; var MTime: LongInt);
attribute (name = ’_p_GetFTime’);

procedure SetFTime (var f: GPC_AnyFile; MTime: LongInt); attribute
(name = ’_p_SetFTime’);

{ FindFirst and FindNext are quite inefficient since they emulate
all the brain-dead Dos stuff. If at all possible, the standard
routines OpenDir, ReadDir and CloseDir (in the GPC unit) should be
used instead. }

procedure FindFirst (const Path: String; Attr: TDosAttr; var SR:
SearchRec); attribute (name = ’_p_FindFirst’);

procedure FindNext (var SR: SearchRec); attribute (name

Chapter 6: The Programmer’s Guide to GPC 167

= ’_p_FindNext’);

procedure FindClose (var SR: SearchRec); attribute (name
= ’_p_FindClose’);

procedure UnpackTime (p: LongInt; var t: DateTime); attribute (name
= ’_p_UnpackTime’);

procedure PackTime (const t: DateTime; var p: LongInt); attribute
(name = ’_p_PackTime’);

function EnvCount: Integer;

function EnvStr (EnvIndex: Integer): TString;

procedure SwapVectors;

{ Exec executes a process via Execute, so RestoreTerminal is called
with the argument True before and False after executing the
process. }

procedure Exec (const Path, Params: String);

function DosExitCode: Word;

{ Unportable Dos-only routines and declarations }

{$ifdef __BP_UNPORTABLE_ROUTINES__}

{$ifdef __GO32__}

{ These are unportable Dos-only declarations and routines, since
interrupts are Dos and CPU specific (and have no place in a
high-level program, anyway). }

procedure Intr (IntNo: Byte; var Regs: Registers); attribute (name
=’ _p_Intr’);

procedure MsDos (var Regs: Registers); attribute (name
= ’_p_MsDos’);

{$endif}

{ Though probably all non-Dos systems have versions numbers as well,
returning them here would usually not do what is expected, e.g.
testing if certain Dos features are present by comparing the
version number. Therefore, this routine always returns 7 (i.e.,
version 7.0) on non-Dos systems, in the assumption that any real
0S has at least the features of Dos 7. }

function DosVersion: Word; attribute (name = ’_p_DosVersion’);

{ Changing the system date and time is a system administration task,
not allowed to a normal process. On non-Dos systems, these
routines emulate the changed date/time, but only for GetTime and
GetDate (not the RTS date/time routines), and only for this
process, not for child processes or even the parent process or
system-wide. }

procedure SetDate (Year, Month, Day: Word); attribute (name
= ’_p_SetDate’);

procedure SetTime (Hour, Minute, Second, Secl100: Word); attribute
(name = ’_p_SetTime’);

{$endif}

168 The GNU Pascal Manual

6.14.3 Overcome some differences between Dos and Unix

The following listing contains the interface of the DosUnix unit.

This unit is there to overcome some of those differences between Dos and Unix systems that
are not automatically hidden by GPC and the Run Time System. Currently features translation
of bash style input/output redirections (‘foo 2>&1’) into ‘redir’ calls for DJGPP (‘redir -eo
foo’) and a way to read files with Dos CR/LF pairs on any system.

When necessary, new features will be added to the unit in future releases.

{ Some routines to support writing programs portable between Dos and
Unix. Perhaps it would be a good idea not to put features to make
Dos programs Unix-compatible (shell redirections) and vice versa
(reading Dos files from Unix) together into one unit, but rather
into two units, DosCompat and UnixCompat or so -- let’s wait and
see, perhaps when more routines suited for this/these unit(s) will
be found, the design will become clearer ...

Copyright (C) 1998-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030412}

{$error This unit requires GPC release 20030412 or newer.}
{$endif}

unit DosUnix;

Chapter 6: The Programmer’s Guide to GPC 169

interface
uses GPC;

{ This function is meant to be used when you want to invoke a system
shell command (e.g. via Execute or Exec from the Dos unit) and
want to specify input/output redirections for the command invoked.
It caters for the different syntax between DJGPP (with the ‘redir’
utility) and other systems.

To use it, code your redirections in bash style (see the table
below) in your command line string, pass this string to this
function, and the function’s result to Execute or the other
routines.

The function translates the following bash style redirections
(characters in brackets are optional) into a redir call under Dos
systems except EMX, and leave them unchanged under other systems.
Note: ‘redir’ comes with DJGPP, but it should be possible to
install it on other Dos systems as well. 0S/2’s shell, however,
supports bash style redirections, I was told, so we don’t
translate on EMX.

[0]< file redirect standard input from file

[11>[1] file redirect standard output to file

[1]>> file append standard output to file

[1]1>&2 redirect standard output to standard error
2>[|] file redirect standard error to file

2>> file append standard error to file

2>&1 redirect standard error to standard output
&> file redirect both standard output and standard

error to file }
function TranslateRedirections (const Command: String): TString;
attribute (name = ’_p_TranslateRedirections’);

{ Under Unix, translates CR/LF pairs to single LF characters when
reading from f, and back when writing to f. Under Dos, does
nothing because the run time system alrady does this job. In the
result, you can read both Dos and Unix files, and files written
will be Dos. }

procedure AssignDos (var f: AnyFile; const FileName: String);
attribute (name = ’_p_AssignDos’);

{ Translates a character from the "OEM" charset used under Dos to
the IS0-8859-1 (AKA Latinl) character set. }

function O0EM2Latinl (ch: Char): Char; attribute (name
= ’_p_0OEM2Latinl’);

{ Translates a character from the IS0-8859-1 (AKA Latinl) character
set to the "OEM" charset used under Dos. }
function Latinl20EM (ch: Char): Char; attribute (name

170 The GNU Pascal Manual

= ’_p_Latinl120EM’);

6.14.4 Higher level file and directory handling

The following listing contains the interface of the FileUtils unit.

This unit provides some routines for file and directory handling on a higher level than those
provided by the RTS.

{ Some routines for file and directory handling on a higher level
than those provided by the RTS.

Copyright (C) 2000-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030412}

{$error This unit requires GPC release 20030412 or newer.}
{$endif}

unit FileUtils;

interface

uses GPC;

type

Chapter 6: The Programmer’s Guide to GPC 171

TStringProc = procedure (const s: String);

{ Finds all files matching the given Mask in the given Directory and
all subdirectories of it. The matching is done using all wildcards
and brace expansion, like MultiFileNameMatch does. For each file
found, FileAction is executed. For each directory found (including
.7 and ‘..’ if they match the Mask!), DirAction is executed. If
MainDirFirst is True, this happens before processing the files in
the directory and below, otherwise afterwards. (The former is
useful, e.g., if this is used to copy a directory tree and
DirAction does a MkDir, while the latter behaviour is required
when removing a directory tree and DirAction does a RmDir.) Both
FileAction and DirAction can be nil in which case nothing is done
for files or directories found, respectively. (If DirAction is
nil, the value of DirsFirst does not matter.) 0Of course,
FileAction and DirAction may also be identical. The procedure
leaves InOutRes set in case of any error. If FileAction or
DirAction return with InOutRes set, FindFiles recognizes this and
returns immediately. }

procedure FindFiles (const Directory, Mask: String; MainDirFirst:
Boolean;

FileAction, DirAction: TStringProc); attribute
(iocritical, name = ’_p_FindFiles’);

{ Creates the directory given by Path and all directories in between
that are necessary. Does not report an error if Path already
exists and is a directory, but, of course, if it cannot be created
because of missing permissions or because Path already exists as a
file. }

procedure MkDirs (const Path: String); attribute (iocritical, name
= ’_p_MkDirs’);

{ Removes Path if empty as well as any empty parent directories.
Does not report an error if Path is not empty. }

procedure RmDirs (const Path: String); attribute (iocritical, name
= ’_p_RmDirs’);

{ Copies the file Source to Dest, overwriting Dest if it exists and
can be written to. Returns any errors in IOResult. If Mode >= O,
it will change the permissions of Dest to Mode immediately after
creating it and before writing any data to it. That’s useful,
e.g., if Dest is not meant to be world-readable, because if you’d
do a ChMod after FileCopy, you would leave the data readable
(depending on the umask) during the copying. If Mode < 0, Dest
will be set to the same permissions Source has. In any case, Dest
will be set to the modification time of Source after copying. On
any error, the destination file is erased. This is to avoid
leaving partial files in case of full file systems (one of the
most common reasons for errors). }

procedure FileCopy (const Source, Dest: String; Mode: Integer);
attribute (iocritical, name = ’_p_FileCopy’);

172 The GNU Pascal Manual

{ Creates a backup of FileName in the directory BackupDirectory or,
if BackupDirectory is empty, in the directory of FileName. Errors
are returned in IOResult (and on any error, no partial backup file
is left), but if FileName does not exist, this does *not* count as
an error (i.e., BackupFile will just return without setting
I0Result then). If OnlyUserReadable is True, the backup file will
be given only user-read permissions, nothing else.

The name chosen for the backup depends on the Simple and Short
parameters. The short names will fit into 8+3 characters (whenever
possible), while the long ones conform to the conventions used by
most GNU tools. If Simple is True, a simple backup file name will
be used, and previous backups under the same name will be
overwritten (if possible). Otherwise, backups will be numbered,
where the number is chosen to be larger than all existing backups,
so it will be unique and increasing in chronological order. In
particular:

Simple Short Backup name

True True Base name of FileName plus ’.bak’

False True Base name of FileName plus ’.b’ plus a number

True False Base name plus extension of FileName plus ’7’

False False Base name plus extension of FileName plus ’.7’, a
number and 7’ }

procedure BackupFile (const FileName, BackupDirectory: String;
Simple, Short, OnlyUserReadable: Boolean); attribute (iocritical,
name = ’_p_BackupFile’);

6.14.5 Arithmetic with unlimited size and precision

The following listing contains the interface of the GMP unit.

This unit provides an interface to the GNU Multiprecision Library to perform arithmetic on

integer, rational and real numbers of unlimited size and precision.

To wuse this unit, you will need the ‘gmp’ library which can be found

http://www.gnu-pascal.de/libs/.

{ Definitions for GNU multiple precision functions: arithmetic with
integer, rational and real numbers of arbitrary size and
precision.

Translation of the C header (gmp.h) of the GMP library. Tested
with GMP 2.0.2 and 3.0.1.

To use the GMP unit, you will need the GMP library which can be
found in http://www.gnu-pascal.de/libs/

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

in

http://www.gnu-pascal.de/libs/

Chapter 6: The Programmer’s Guide to GPC 173

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License.

Please also note the license of the GMP library. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030303}

{$error This unit requires GPC release 20030303 or newer.}
{$endif}

{$nested-comments}

{

If HAVE_GMP3 is set, routines new in GMP 3.x will be made
available. The define will have no effect on the other interface
changes between GMP 2.x and 3.x, i.e. the other routines will work
correctly even if this define is set incorrectly, except on 64 bit
machines, Crays and other systems where the types are different
between the GMP versions. Otherwise, the only possible problem if
setting the define while using GMP 2.x are linking errors if you
actually use any of the new routines.

If HAVE_GMP4 is set (the default unless HAVE_GMP2 or HAVE_GMP3 are
set, some interface changes made in GMP 4 are taken into account.
I.e., if this is set wrong, programs might fail. However, this
only affects a few routines related to random numbers. }

{$if not defined (HAVE_GMP2) and not defined (HAVE_GMP3)}
{$define HAVE_GMP4}
{$endif}

{$undef GMP} { in case it’s set by the user }
unit GMP;

174 The GNU Pascal Manual

interface
uses GPC;

{$if defined (__mips) and defined (_ABIN32) and defined (HAVE_GMP3)}

{ Force the use of 64-bit limbs for all 64-bit MIPS CPUs if ABI
permits. }

{$define _LONG_LONG_LIMB}

{$endif}

type
{$ifdef _SHORT_LIMB}
mp_limb_t = Cardinal;

mp_limb_signed_t = Integer;
{$elif defined (_LONG_LONG_LIMB)}

mp_limb_t = LongCard;
mp_limb_signed_t = LongInt;
{$else’

mp_limb_t = MedCard;
mp_limb_signed_t = MedInt;
{$endif}

mp_ptr = "mp_limb_t;

{$if defined (_CRAY) and not defined (_CRAYMPP) and defined
(HAVE_GMP3)}

mp_size_t = Integer;
mp_exp_t = Integer;
{$elsel
mp_size_t = MedInt;
mp_exp_t = MedInt;
{$endif}

mpz_t = record
mp_alloc,
mp_size: {$if defined (__MP_SMALL__) and defined (HAVE_GMP3)}
ShortInt
{$else}
Integer
{$endif};
mp_d: mp_ptr
end;

mpz_array_ptr = “mpz_array;
mpz_array = array [0 .. MaxVarSize div SizeOf (mpz_t) - 1] of
mpz_t;

mpgq_t = record
mp_num,
mp_den: mpz_t

Chapter 6: The Programmer’s Guide to GPC 175

end;

mpf_t = record
mp_prec,
mp_size: Integer;
mp_exp: mp_exp_t;

mp_d: mp_ptr
end;
TAllocFunction = function (Size: SizeType): Pointer;
TReAllocFunction = function (var Dest: Pointer; 01dSize, NewSize:

SizeType): Pointer;
TDeAllocProcedure = procedure (Src: Pointer; Size: SizeType);

procedure mp_set_memory_functions (AllocFunction: TAllocFunction;

ReAllocFunction:
TReAllocFunction;

DeAllocProcedure:
TDeAllocProcedure); external name ’__gmp_set_memory_functions’;

function mp_bits_per_limb: Integer; external
name ’_p_mp_bits_per_limb’;

{rsrrnrkxkkrkxkkx Integer (i.e. Z) routines. sxkkskkskkskkkkkkok}

procedure mpz_init (var Dest: mpz_t); extermal
name ’__gmpz_init’;

procedure mpz_clear (var Dest: mpz_t); external
name ’__gmpz_clear’;

function mpz_realloc (var Dest: mpz_t; NewAlloc:
mp_size_t): Pointer; external name ’__gmpz_realloc’;

procedure mpz_array_init (Dest: mpz_array_ptr; ArraySize,
FixedNumBits: mp_size_t); external name ’__gmpz_array_init’;

procedure mpz_set (var Dest: mpz_t; protected var Src:
mpz_t); external name ’__gmpz_set’;

procedure mpz_set_ui (var Dest: mpz_t; Src: MedCard);
external name ’__gmpz_set_ui’;

procedure mpz_set_si (var Dest: mpz_t; Src: MedInt);
external name ’__gmpz_set_si’;

procedure mpz_set_d (var Dest: mpz_t; Src: Real);
external name ’__gmpz_set_d’;

procedure mpz_set_q (var Dest: mpz_t; Src: mpqg_t);
external name ’__gmpz_set_q’;

procedure mpz_set_f (var Dest: mpz_t; Src: mpf_t);
external name ’__gmpz_set_f’;

function mpz_set_str (var Dest: mpz_t; Src: CString; Base:
Integer): Integer; external name ’__gmpz_set_str’;

procedure mpz_init_set (var Dest: mpz_t; protected var Src:

mpz_t); external name ’__gmpz_init_set’;

176

The GNU Pascal Manual

procedure mpz_init_set_ui (var Dest: mpz_t; Src: MedCard);
external name ’__gmpz_init_set_ui’;

procedure mpz_init_set_si (var Dest: mpz_t; Src: MedInt);
external name ’__gmpz_init_set_si’;

procedure mpz_init_set_d (var Dest: mpz_t; Src: Real);
external name ’__gmpz_init_set_d’;

function mpz_init_set_str (var Dest: mpz_t; Src: CString; Base:
Integer): Integer; external name ’__gmpz_init_set_str’;

function mpz_get_ui (protected var Src: mpz_t): MedCard;
external name ’__gmpz_get_ui’;

function mpz_get_si (protected var Src: mpz_t): MedInt;
external name ’__gmpz_get_si’;

function mpz_get_d (protected var Src: mpz_t): Real;
external name ’__gmpz_get_d’;

{ Pass nil for Dest to let the function allocate memory for it }

function mpz_get_str (Dest: CString; Base: Integer;
protected var Src: mpz_t): CString; external
name ’__gmpz_get_str’;

procedure mpz_add (var Dest: mpz_t; protected var Srcl,
Src2: mpz_t); external name °’__gmpz_add’;

procedure mpz_add_ui (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard); external name °’__gmpz_add_ui’;

procedure mpz_sub (var Dest: mpz_t; protected var Srcl,
Src2: mpz_t); external name ’__gmpz_sub’;

procedure mpz_sub_ui (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard); external name ’__gmpz_sub_ui’;

procedure mpz_mul (var Dest: mpz_t; protected var Srcil,
Src2: mpz_t); external name ’__gmpz_mul’;

procedure mpz_mul_ui (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard); external name ’__gmpz_mul_ui’;

procedure mpz_mul_2exp (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard); external name ’__gmpz_mul_2exp’;

procedure mpz_neg (var Dest: mpz_t; protected var Src:
mpz_t); external name ’__gmpz_neg’;

procedure mpz_abs (var Dest: mpz_t; protected var Src:
mpz_t); external name ’__gmpz_abs’;

procedure mpz_fac_ui (var Dest: mpz_t; Src: MedCard);
external name ’__gmpz_fac_ui’;

procedure mpz_tdiv_q (var Dest: mpz_t; protected var Srcl,
Src2: mpz_t); external name ’__gmpz_tdiv_q’;

procedure mpz_tdiv_q_ui (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard); external name ’__gmpz_tdiv_q_ui’;

procedure mpz_tdiv_r (var Dest: mpz_t; protected var Srcil,
Src2: mpz_t); external name ’__gmpz_tdiv_r’;

procedure mpz_tdiv_r_ui (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard); external name ’__gmpz_tdiv_r_ui’;

procedure mpz_tdiv_qr (var DestQ, DestR: mpz_t; protected

var Srcl, Src2: mpz_t); external name ’__gmpz_tdiv_qr’;

Chapter 6: The Programmer’s Guide to GPC 177

procedure mpz_tdiv_qr_ui (var DestQ, DestR: mpz_t; protected
var Srcl: mpz_t; Src2: MedCard); external
name ’__gmpz_tdiv_qr_ui’;

procedure mpz_fdiv_q (var Dest: mpz_t; protected var Srcl,
Src2: mpz_t); external name °’__gmpz_fdiv_q’;

function mpz_fdiv_q_ui (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard): MedCard; external name ’__gmpz_fdiv_q_ui’;

procedure mpz_fdiv_r (var Dest: mpz_t; protected var Srcil,
Src2: mpz_t); external name ’__gmpz_fdiv_r’;

function mpz_fdiv_r_ui (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard): MedCard; external name ’__gmpz_fdiv_r_ui’;

procedure mpz_fdiv_qr (var DestQ, DestR: mpz_t; protected
var Srcl, Src2: mpz_t); external name ’__gmpz_fdiv_qr’;

function mpz_fdiv_qr_ui (var DestQ, DestR: mpz_t; protected
var Srcl: mpz_t; Src2: MedCard): MedCard; external
name ’__gmpz_fdiv_qr_ui’;

function mpz_fdiv_ui (protected var Srcl: mpz_t; Src2:
MedCard): MedCard; external name ’__gmpz_fdiv_ui’;

procedure mpz_cdiv_q (var Dest: mpz_t; protected var Srcil,
Src2: mpz_t); external name ’__gmpz_cdiv_q’;

function mpz_cdiv_q_ui (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard): MedCard; external name ’__gmpz_cdiv_q_ui’;

procedure mpz_cdiv_r (var Dest: mpz_t; protected var Srcl,
Src2: mpz_t); external name ’__gmpz_cdiv_r’;

function mpz_cdiv_r_ui (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard): MedCard; external name ’__gmpz_cdiv_r_ui’;

procedure mpz_cdiv_qr (var DestQ, DestR: mpz_t; protected
var Srcl,Src2: mpz_t); external name ’__gmpz_cdiv_qr’;

function mpz_cdiv_qr_ui (var DestQ, DestR: mpz_t; protected
var Srcl: mpz_t; Src2: MedCard): MedCard; external
name ’__gmpz_cdiv_qr_ui’;

function mpz_cdiv_ui (protected var Srcl: mpz_t;
Src2:MedCard): MedCard; external name ’__gmpz_cdiv_ui’;

procedure mpz_mod (var Dest: mpz_t; protected var
Src1l,Src2: mpz_t); external name ’__gmpz_mod’;

procedure mpz_divexact (var Dest: mpz_t; protected var
Srcl,Src2: mpz_t); external name ’__gmpz_divexact’;

procedure mpz_tdiv_q_2exp (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard); external name ’__gmpz_tdiv_q_2exp’;

procedure mpz_tdiv_r_2exp (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard); external name ’__gmpz_tdiv_r_2exp’;

procedure mpz_fdiv_q_2exp (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard); external name ’__gmpz_fdiv_q_2exp’;

procedure mpz_fdiv_r_2exp (var Dest: mpz_t; protected var Srcl:

mpz_t; Src2: MedCard); external name °’__gmpz_fdiv_r_2exp’;

procedure mpz_pown (var Dest: mpz_t; protected var Base,

178

The GNU Pascal Manual

Exponent, Modulus: mpz_t); external name ’__gmpz_powm’;

procedure mpz_powm_ui (var Dest: mpz_t; protected var Base:
mpz_t; Exponent: MedCard; protected var Modulus: mpz_t); external
name ’__gmpz_powm_ui’;

procedure mpz_pow_ui (var Dest: mpz_t; protected var Base:
mpz_t; Exponent: MedCard); external name ’__gmpz_pow_ui’;

procedure mpz_ui_pow_ui (var Dest: mpz_t; Base, Exponent:
MedCard) ; external name ’__gmpz_ui_pow_ui’;

procedure mpz_sqrt (var Dest: mpz_t; protected var Src:
mpz_t); external name ’__gmpz_sqrt’;

procedure mpz_sqrtrem (var Dest, DestR: mpz_t; protected
var Src: mpz_t); external name ’__gmpz_sqrtrem’;

function mpz_perfect_square_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_perfect_square_p’;

function mpz_probab_prime_p (protected var Src: mpz_t;
Repetitions: Integer): Integer; external

name ’__gmpz_probab_prime_p’;

procedure mpz_gcd (var Dest: mpz_t; protected var Srcil,
Src2: mpz_t); external name ’__gmpz_gcd’;

function mpz_gcd_ui (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard): MedCard; external name ’__gmpz_gcd_ui’;

procedure mpz_gcdext (var Dest, DestA, DestB: mpz_t;
protected var SrcA, SrcB: mpz_t); external name ’__gmpz_gcdext’;

function mpz_invert (var Dest: mpz_t; protected var Src,
Modulus: mpz_t): Integer; external name ’__gmpz_invert’;

function mpz_jacobi (protected var Srcl, Src2: mpz_t):
Integer; external name ’__gmpz_jacobi’;

function mpz_cmp (protected var Srcl, Src2: mpz_t):
Integer; external name ’__gmpz_cmp’;

function mpz_cmp_ui (protected var Srcl: mpz_t; Src2:
MedCard): Integer; external name ’__gmpz_cmp_ui’;

function mpz_cmp_si (protected var Srcl: mpz_t; Src2:
MedInt): Integer; external name ’__gmpz_cmp_si’;

function mpz_sgn (protected var Src: mpz_t): Integer;

procedure mpz_and (var Dest: mpz_t; protected var Srcl,
Src2: mpz_t); external name ’__gmpz_and’;

procedure mpz_ior (var Dest: mpz_t; protected var Srcl,
Src2: mpz_t); external name ’__gmpz_ior’;

procedure mpz_com (var Dest: mpz_t; protected var Src:
mpz_t); external name ’__gmpz_com’;

function mpz_popcount (protected var Src: mpz_t): MedCard;
external name ’__gmpz_popcount’;

function mpz_hamdist (protected var Srcl, Src2: mpz_t):
MedCard; external name ’__gmpz_hamdist’;

function mpz_scanO (protected var Src: mpz_t;

StartingBit: MedCard): MedCard; external name ’__gmpz_scan0’;
function mpz_scanl (protected var Src: mpz_t;

Chapter 6: The Programmer’s Guide to GPC

StartingBit: MedCard): MedCard; external name ’__gmpz_scanl’;

procedure mpz_setbit (var Dest: mpz_t; BitIndex: MedCard) ;
external name ’__gmpz_setbit’;

procedure mpz_clrbit (var Dest: mpz_t; BitIndex: MedCard);
external name ’__gmpz_clrbit’;

procedure mpz_random (var Dest: mpz_t; MaxSize:
mp_size_t); external name ’__gmpz_random’;

procedure mpz_random2 (var Dest: mpz_t; MaxSize:
mp_size_t); external name ’__gmpz_random2’;

function mpz_sizeinbase (protected var Src: mpz_t; Base:
Integer): SizeType; external name ’__gmpz_sizeinbase’;

{Rkxsokokkkkokkkdkokkx Rational (i.e. Q) routines. kkskokkkskskokkkskokkkk

procedure mpq_canonicalize (var Dest: mpq_t); external
name ’__gmpq_canonicalize’;

procedure mpq_init (var Dest: mpq_t); external
name ’__gmpq_init’;

procedure mpq_clear (var Dest: mpq_t); external
name ’__gmpq_clear’;

procedure mpq_set (var Dest: mpq_t; protected var Src:
mpg_t); external name ’__gmpq_set’;

procedure mpq_set_z (var Dest: mpq_t; protected var Src:
mpz_t); external name ’__gmpq_set_z’;

procedure mpq_set_ui (var Dest: mpq_t; Nom, Den: MedCard);
external name ’__gmpq_set_ui’;

procedure mpq_set_si (var Dest: mpq_t; Nom: MedInt; Den:
MedCard); external name ’__gmpq_set_si’;

procedure mpq_add (var Dest: mpq_t; protected var Srcl,
Src2: mpq_t); external name ’__gmpq_add’;

procedure mpq_sub (var Dest: mpq_t; protected var Srcil,
Src2: mpq_t); external name ’__gmpq_sub’;

procedure mpq_mul (var Dest: mpq_t; protected var Srcil,
Src2: mpq_t); external name ’__gmpq_mul’;

procedure mpq_div (var Dest: mpq_t; protected var Srcil,
Src2: mpq_t); external name ’__gmpq_div’;

procedure mpqg_neg (var Dest: mpq_t; protected var Src:
mpg_t); external name ’__gmpqg_neg’;

procedure mpq_inv (var Dest: mpq_t; protected var Src:

mpg_t); external name ’__gmpq_inv’;

function mpq_cmp (protected var Srcl, Src2: mpq_t):
Integer; external name ’__gmpq_cmp’;

function mpq_cmp_ui (protected var Srcl: mpq_t; Nom2,
Den2: MedCard): Integer; external name ’__gmpq_cmp_ui’;

function mpq_sgn (protected var Src: mpq_t): Integer;

function mpq_equal (protected var Srcl, Src2: mpq_t):

Integer; external name ’__gmpq_equal’;

179

180

The GNU Pascal Manual

function mpq_get_d (protected var Src: mpq_t): Real;
external name ’__gmpq_get_d’;

procedure mpq_set_num (var Dest: mpq_t; protected var Src:
mpz_t); external name ’__gmpq_set_num’;

procedure mpq_set_den (var Dest: mpq_t; protected var Src:
mpz_t); external name ’__gmpq_set_den’;

procedure mpq_get_num (var Dest: mpz_t; protected var Src:
mpgq_t); external name ’__gmpq_get_num’;

procedure mpq_get_den (var Dest: mpz_t; protected var Src:

mpq_t); external name ’__gmpq_get_den’;
{rxrokskxrtrokkkkxkk Float (i.e. R) routines. skxskkokskxskkokkkkk}

procedure mpf_set_default_prec (Precision: MedCard); external

name ’__gmpf_set_default_prec’;

procedure mpf_init (var Dest: mpf_t); extermal
name ’__gmpf_init’;

procedure mpf_init2 (var Dest: mpf_t; Precision:
MedCard); external name ’__gmpf_init2’;

procedure mpf_clear (var Dest: mpf_t); external
name ’__gmpf_clear’;

procedure mpf_set_prec (var Dest: mpf_t; Precision:
MedCard) ; external name ’__gmpf_set_prec’;

function mpf_get_prec (protected var Src: mpf_t): MedCard;
external name ’__gmpf_get_prec’;

procedure mpf_set_prec_raw (var Dest: mpf_t; Precision:
MedCard); external name ’__gmpf_set_prec_raw’;

procedure mpf_set (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_set’;

procedure mpf_set_ui (var Dest: mpf_t; Src: MedCard);
external name ’__gmpf_set_ui’;

procedure mpf_set_si (var Dest: mpf_t; Src: MedInt);
external name ’__gmpf_set_si’;

procedure mpf_set_d (var Dest: mpf_t; Src: Real);
external name ’__gmpf_set_d’;

procedure mpf_set_z (var Dest: mpf_t; protected var Src:
mpz_t); external name ’__gmpf_set_z’;

procedure mpf_set_q (var Dest: mpf_t; protected var Src:
mpg_t); external name ’__gmpf_set_q’;

function mpf_set_str (var Dest: mpf_t; Src: CString; Base:
Integer): Integer; external name °’__gmpf_set_str’;

procedure mpf_init_set (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_init_set’;

procedure mpf_init_set_ui (var Dest: mpf_t; Src: MedCard);
external name ’__gmpf_init_set_ui’;

procedure mpf_init_set_si (var Dest: mpf_t; Src: MedInt);

external name ’__gmpf_init_set_si’;
procedure mpf_init_set_d (var Dest: mpf_t; Src: Real);

Chapter 6: The Programmer’s Guide to GPC 181

external name ’__gmpf_init_set_d’;

function mpf_init_set_str (var Dest: mpf_t; Src: CString; Base:
Integer): Integer; external name ’__gmpf_init_set_str’;

function mpf_get_d (protected var Src: mpf_t): Real;

external name ’__gmpf_get_d’;
{ Pass nil for Dest to let the function allocate memory for it }
function mpf_get_str (Dest: CString; var Exponent:
mp_exp_t; Base: Integer;
NumberOfDigits: SizeType; protected
var Src: mpf_t): CString; external name ’__gmpf_get_str’;

procedure mpf_add (var Dest: mpf_t; protected var Srcil,
Src2: mpf_t); external name ’__gmpf_add’;

procedure mpf_add_ui (var Dest: mpf_t; protected var Srcl:
mpf_t; Src2: MedCard); external name ’__gmpf_add_ui’;

procedure mpf_sub (var Dest: mpf_t; protected var Srcl,
Src2: mpf_t); external name ’__gmpf_sub’;

procedure mpf_ui_sub (var Dest: mpf_t; Srcl: MedCard;
protected var Src2: mpf_t); external name ’__gmpf_ui_sub’;

procedure mpf_sub_ui (var Dest: mpf_t; protected var Srcl:
mpf_t; Src2: MedCard); external name ’__gmpf_sub_ui’;

procedure mpf_mul (var Dest: mpf_t; protected var Srcl,
Src2: mpf_t); external name °’__gmpf_mul’;

procedure mpf_mul_ui (var Dest: mpf_t; protected var Srcl:
mpf_t; Src2: MedCard); external name ’__gmpf_mul_ui’;

procedure mpf_div (var Dest: mpf_t; protected var Srcil,
Src2: mpf_t); external name ’__gmpf_div’;

procedure mpf_ui_div (var Dest: mpf_t; Srcl: MedCard;
protected var Src2: mpf_t); external name ’__gmpf_ui_div’;

procedure mpf_div_ui (var Dest: mpf_t; protected var Srcl:
mpf_t; Src2: MedCard); external name ’__gmpf_div_ui’;

procedure mpf_sqrt (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_sqrt’;

procedure mpf_sqrt_ui (var Dest: mpf_t; Src: MedCard);
external name ’__gmpf_sqrt_ui’;

procedure mpf_neg (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_neg’;

procedure mpf_abs (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_abs’;

procedure mpf_mul_2exp (var Dest: mpf_t; protected var Srcl:
mpf_t; Src2: MedCard); external name ’__gmpf_mul_2exp’;

procedure mpf_div_2exp (var Dest: mpf_t; protected var Srcl:

mpf_t; Src2: MedCard); external name ’__gmpf_div_2exp’;

function mpf_cmp (protected var Srcl, Src2: mpf_t):
Integer; external name ’__gmpf_cmp’;

function mpf_cmp_si (protected var Srcl: mpf_t; Src2:
MedInt): Integer;

function mpf_cmp_ui (protected var Srcl: mpf_t; Src2:

MedCard): Integer;

182

The GNU Pascal Manual

function mpf_eq (protected var Srcl, Src2: mpf_t;
Number0fBits: MedCard): Integer; external name ’__gmpf_eq’;

procedure mpf_reldiff (var Dest: mpf_t; protected var Srcil,
Src2: mpf_t); external name ’__gmpf_reldiff’;

function mpf_sgn (protected var Src: mpf_t): Integer;

procedure mpf_random2 (var Dest: mpf_t; MaxSize: mp_size_t;
MaxExp: mp_exp_t); external name ’__gmpf_random2’;

{$if False} { @@ commented out because they use C file pointers }

function mpz_inp_str (var Dest: mpz_t; Src: CFilePtr;
Base: Integer): SizeType; external name ’__gmpz_inp_str’;

function mpz_inp_raw (var Dest: mpz_t; Src: CFilePtr):
SizeType ; external name ’__gmpz_inp_raw’;

function mpz_out_str (Dest: CFilePtr; Base: Integer;
protected var Src: mpz_t): SizeType; external
name ’__gmpz_out_str’;

function mpz_out_raw (Dest: CFilePtr; protected var Src:
mpz_t): SizeType ; external name ’__gmpz_out_raw’;

{ @@ mpf_out_str has a bug in GMP 2.0.2: it writes a spurious #O0
before the exponent for negative numbers }

function mpf_out_str (Dest: CFilePtr; Base: Integer;
NumberOfDigits: SizeType; protected var Src: mpf_t): SizeType;
external name ’__gmpf_out_str’;

function mpf_inp_str (var Dest: mpf_t; Src: CFilePtr;
Base: Integer): SizeType; external name ’__gmpf_inp_str’;

{$endif}

{ New declarations in GMP 3.x. @@ Mostly untested! }
{$ifdef HAVE_GMP3}

{ Available random number generation algorithms. }

type
gmp_randalg_t = (GMPRandAlgLC { Linear congruential. });

const
GMPRandAlgDefault = GMPRandAlgLC;

{ Linear congruential data struct. }
type
gmp_randata_lc = record
a: mpz_t; { Multiplier. }
c: MedCard; { Adder. }
m: mpz_t; { Modulus (valid only if M2Exp = 0). }
M2Exp: MedCard; { If <> O, modulus is 2 ~ M2Exp. }
end;

type
gmp_randstate_t = record
Seed: mpz_t; { Current seed. }
Alg: gmp_randalg t; { Algorithm used. }

Chapter 6: The Programmer’s Guide to GPC 183

AlgData: record { Algorithm specific data. }
case gmp_randalg_t of
GMPRandAlgLC: (lc: “gmp_randata_lc) { Linear congruential. }

end
end;
procedure gmp_randinit (var State: gmp_randstate_t; Alg:
gmp_randalg t; ...); external name ’__gmp_randinit’;
procedure gmp_randinit_lc (var State: gmp_randstate_t; a:

{$ifdef HAVE_GMP4} protected var {$endif} mpz_t; c: MedCard; m:
{$ifdef HAVE_GMP4} protected var {$endif} mpz_t); external
name ’__gmp_randinit_1lc’;

procedure gmp_randinit_lc_2exp (var State: gmp_randstate_t; a:
{$ifdef HAVE_GMP4} protected var {$endif} mpz_t; c: MedCard;
M2Exp: MedCard); external name ’__gmp_randinit_lc_2exp’;

procedure gmp_randseed (var State: gmp_randstate_t; Seed:
mpz_t); external name ’__gmp_randseed’;

procedure gmp_randseed_ui (var State: gmp_randstate_t; Seed:
MedCard); external name ’__gmp_randseed_ui’;

procedure gmp_randclear (var State: gmp_randstate_t);
external name ’__gmp_randclear’;

procedure mpz_addmul_ui (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard); external name ’__gmpz_addmul_ui’;

procedure mpz_bin_ui (var Dest: mpz_t; protected var Srcl:
mpz_t; Src2: MedCard); external name ’__gmpz_bin_ui’;

procedure mpz_bin_uiui (var Dest: mpz_t; Srcl, Src2:
MedCard); external name ’__gmpz_bin_uiui’;

function mpz_cmpabs (protected var Srcl, Src2: mpz_t):
Integer; external name ’__gmpz_cmpabs’;

function mpz_cmpabs_ui (protected var Srcl: mpz_t; Src2:
MedCard): Integer; external name ’__gmpz_cmpabs_ui’;

procedure mpz_dump (protected var Src: mpz_t); external
name ’__gmpz_dump’;

procedure mpz_fib_ui (var Dest: mpz_t; Src: MedCard);
external name ’__gmpz_fib_ui’;

function mpz_fits_sint_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_fits_sint_p’;

function mpz_fits_slong_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_fits_slong_p’;

function mpz_fits_sshort_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_fits_sshort_p’;

function mpz_fits_uint_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_fits_uint_p’;

function mpz_fits_ulong_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_fits_ulong_p’;

function mpz_fits_ushort_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_fits_ushort_p’;

procedure mpz_lcm (var Dest: mpz_t; protected var Srcl,
Src2: mpz_t); external name ’__gmpz_lcm’;

procedure mpz_nextprime (var Dest: mpz_t; protected var Src:

184 The GNU Pascal Manual

mpz_t); external name ’__gmpz_nextprime’;

function mpz_perfect_power_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_perfect_power_p’;

function mpz_remove (var Dest: mpz_t; protected var Srcil,
Src2: mpz_t): MedCard; external name ’__gmpz_remove’;

function mpz_root (var Dest: mpz_t; protected var Src:
mpz_t; n: MedCard): Integer; external name ’__gmpz_root’;

procedure mpz_rrandomb (var ROP: mpz_t; var State:
gmp_randstate_t; n: MedCard); external name ’__gmpz_rrandomb’;

procedure mpz_swap (var v1, v2: mpz_t); external
name ’__gmpz_swap’;

function mpz_tdiv_ui (protected var Srcl: mpz_t; Src2:
MedCard): MedCard; external name ’__gmpz_tdiv_ui’;

function mpz_tstbit (protected var Srcl: mpz_t; Src2:
MedCard): Integer; external name ’__gmpz_tstbit’;

procedure mpz_urandomb ({$ifdef HAVE_GMP4} var {$endif} ROP:
mpz_t; var State: gmp_randstate_t; n: MedCard); external
name ’__gmpz_urandomb’;

procedure mpz_urandomm ({$ifdef HAVE_GMP4} var {$endif} ROP:
mpz_t; var State: gmp_randstate_t; {$ifdef HAVE_GMP4} protected
var {$endif} n: mpz_t); external name ’__gmpz_urandomm’;

procedure mpz_xor (var Dest: mpz_t; protected var Srcl,
Src2: mpz_t); external name ’__gmpz_xor’;

procedure mpq_set_d (var Dest: mpq_t; Src: Real);
external name ’__gmpq_set_d’;

procedure mpf_ceil (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_ceil’;

procedure mpf_floor (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_floor’;

procedure mpf_pow_ui (var Dest: mpf_t; protected var Srcl:
mpf_t; Src2: MedCard); external name ’__gmpf_pow_ui’;

procedure mpf_trunc (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_trunc’;

procedure mpf_urandomb (ROP: mpf_t; var State:
gmp_randstate_t; n: MedCard); external name ’__gmpf_urandomb’;

const

GMPErrorNone = O;
GMPErrorUnsupportedArgument = 1;
GMPErrorDivisionByZero = 2;
GMPErrorSqrt0fNegative = 4;
GMPErrorInvalidArgument = 8;
GMPErrorAllocate = 16;

var
gmp_errno: Integer; external name ’__gmp_errno’;

{$endif}

Chapter 6: The Programmer’s Guide to GPC 185

{ Extensions to the GMP library, implemented in this unit }

procedure mpf_exp (var Dest: mpf_t; protected var Src: mpf_t);

procedure mpf_1ln (var Dest: mpf_t; protected var Src: mpf_t);

procedure mpf_pow (var Dest: mpf_t; protected var Srcl, Src2:
mpf_t);

procedure mpf_arctan (var c: mpf_t; protected var x: mpf_t);

procedure mpf_pi (var c: mpf_t);

6.14.6 Turbo Power compatibility, etc.

The following listing contains the interface of the GPCUtil unit.

This unit provides some utility routines for compatibility to some units available for BP, like
some Turbo Power units.

{ Some utility routines for compatibility to some units available
for BP, like some ‘Turbo Power’ units.

Q@ONOTE - SOME OF THE ROUTINES IN THIS UNIT MAY NOT WORK CORRECTLY.
TEST CAREFULLY AND USE WITH CARE!

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Authors: Prof. Abimbola A. Olowofoyeku <African_Chief@bigfoot.com>
Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

186

The GNU Pascal Manual

{$if __GPC_RELEASE__ < 20030412}

{$error This unit requires GPC release 20030412 or newer.}
{$endif}

module GPCUtil;

export GPCUtil = all

(
{ Return the current working directory }
GetCurrentDirectory => ThisDirectory,

{ Does a directory exist? }
DirectoryExists => IsDirectory,

{ Does file name s exist? }
FileExists => ExistFile,

{ Return just the directory path of Path. Returns
DirSelf + DirSeparator if Path contains no directory. }
DirFromPath => JustPathName,

{ Return just the file name part without extension of Path.
Empty if Path contains no file name. }
NameFromPath => JustFileName,

{ Return just the extension of Path. Empty if Path contains
no extension. }
ExtFromPath => JustExtension,

{ Return the full pathname of Path }
FExpand => FullPathName,

{ Add a DirSeparator to the end of s if there is not
already one. }
ForceAddDirSeparator => AddBackSlash,

{ Return a string stripped of leading spaces }
TrimLeftStr => TrimLead,

{ Return a string stripped of trailing spaces }
TrimRightStr => TrimTrail,

{ Return a string stripped of leading and trailing spaces }
TrimBothStr => Trim,

{ Convert a string to lowercase }
LoCaseStr => StLoCase,

{ Convert a string to uppercase }
UpCaseStr => StUpCase
);

Chapter 6: The Programmer’s Guide to GPC 187

import GPC;

{ Replace all occurences of 01dC with NewC in s and return the
result }
function ReplaceChar (const s: String; 01dC, NewC: Char): TString;

{ Break a string into 2 parts, using Ch as a marker }
function BreakStr (const Src: String; var Destl, Dest2: String; ch:
Char): Boolean;

{ Convert a CString to an Integer }
function PChar2Int (s: CString): Integer;

{ Convert a CString to a LongInt }
function PChar2Long (s: CString): LongInt;

{ Convert a CString to a Double }
function PChar2Double (s: CString): Double;

{ Search for s as an executable in the path and return its location
(full pathname) }
function PathLocate (const s: String): TString;

{ Copy file Src to Dest and return the number of bytes written }
function CopyFile (const Src, Dest: String; BufSize: Integer):
LongInt;

{ Copy file Src to Dest and return the number of bytes written;
report the number of bytes written versus total size of the source
file }

function CopyFileEx (const Src, Dest: String; BufSize: Integer;
function Report (Reached, Total: LonglInt): LongInt): LongInt;

{ Turbo Power compatibility }

{ Execute the program prog. Dummyl and Dummy2 are for compatibility
only; they are ignored. }

function ExecDos (const Prog: String; Dummyl: Boolean; Dummy2:
Pointer): Integer;

{ Return whether Src exists in the path as an executable -- if so
return its full location in Dest }

function ExistOnPath (const Src: String; var Dest: String):
Boolean;

{ Change the extension of s to Ext (do not include the dot!) }
function ForceExtension (const s, Ext: String): TString;

{ Convert Integer to PChar; uses NewCString to allocate memory for
the result, so you must call StrDispose to free the memory later 7}

188

The GNU Pascal Manual

function Int2PChar (i: Integer): PChar;

{ Convert Integer to string }
function Int2Str (i: Integer): TString;

{ Convert string to Integer }
function Str2Int (const s: String; var i: Integer): Boolean;

{ Convert string to LongInt }
function Str2Long (const s: String; var i: LongInt): Boolean;

{ Convert string to Double }
function Str2Real (const s: String; var i: Double): Boolean;

{ Return a string right-padded to length Len with ch }
function PadCh (const s: String; ch: Char; Len: Integer): TString;

{ Return a string right-padded to length Len with spaces }
function Pad (const s: String; Len: Integer): TString;

{ Return a string left-padded to length Len with ch }
function LeftPadCh (const s: String; ch: Char; Len: Byte): TString;

{ Return a string left-padded to length Len with blanks }
function LeftPad (const s: String; Len: Integer): TString;

{ Uniform access to big memory blocks for GPC and BP. 0f course, for
programs that are meant only for GPC, you can use the usual
New/Dispose routines. But for programs that should compile with
GPC and BP, you can use the following routines for GPC. In the GPC
unit for BP (gpc-bp.pas), you can find emulations for BP that try
to provide access to as much memory as possible, despite the
limitations of BP. The drawback is that this memory cannot be used
freely, but only with the following moving routines. }

type
PBigMem = "TBigMem;
TBigMem (MaxNumber: Integer) = record
{ Public fields }
Number, BlockSize: SizeType;
Mappable: Boolean;
{ Private fields }
Pointers: array [1 .. MaxNumber] of ~Byte
end;

{ Note: the number of blocks actually allocated may be smaller than
WantedNumber. Check the Number field of the result. 7

function AllocateBigMem (WantedNumber, aBlockSize: SizeType;
WantMappable: Boolean): PBigMem;

procedure DisposeBigMem (p: PBigMem);

procedure MoveToBigMem (var Source; p: PBigMem; BlockNumber:

Chapter 6: The Programmer’s Guide to GPC 189

SizeType) ;

procedure MoveFromBigMem (p: PBigMem; BlockNumber: SizeType; var
Dest) ;

{ Maps a big memory block into normal addressable memory and returns
its address. The memory must have been allocated with
WantMappable = True. The mapping is only valid until the next
MapBigMem call. }

function MapBigMem (p: PBigMem; BlockNumber: SizeType): Pointer;

6.14.7 Primitive heap checking

The following listing contains the interface of the HeapMon unit.

This unit provide a rather primitive means to watch the heap, i.e. check if all pointers that
were allocated are released again. This is meant as a debugging help for avoiding memory leaks.

More extensive heap checking is provided by libraries like ‘efence’ which can be used in GPC
programs without special provisions.

{ A unit to watch the heap, i.e. check if all pointers that were
allocated are released again. It is meant as a debugging help to
detect memory leaks.

Use it in the main program before all other units. When, at the
end of the program, some pointers that were allocated, have not
been released, the unit writes a report to StdErr or another file
(see below). Only pointers allocated via the Pascal mechanisms
(New, GetMem) are tracked, not pointers allocated with direct libc
calls or from C code. After a runtime error, pointers are not
checked.

Note that many units and libraries allocate memory for their own
purposes and don’t always release it at the end. Therefore, the
usefulness of this unit is rather limited.

Copyright (C) 1998-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the

190 The GNU Pascal Manual

Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030303}

{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit HeapMon;

interface

uses GPC;

{ This unit is automatically activated when used. The following
declarations are only needed for special purposes. }

{ The report generated at the end can be redirected to a certain
file by pointing HeapMonOutput to it. If not set, the report will

be printed to the error messages file given with ‘--gpc-rts’
options if given, and StdErr otherwise. }
var

HeapMonOutput: "Text = nil;

{ HeapMonReport can be used to print a report on non-released memory
blocks at an arbitrary point during a program run to the file f.
It is invoked automatically at the end, so usually you don’t have
to call it. Returns True if any non-released blocks were found,
False otherwise. }

function HeapMonReport (var f: Text; DoRestoreTerminal: Boolean):
Boolean; attribute (name = ’_p_HeapMonReport’);

6.14.8 Internationalization

The following listing contains the interface of the Intl unit.
This unit provides national language support via locales and ‘.mo’ files.

{ Welcome to the wonderful world of
INTERNATIONALIZATION (i18n).

This unit provides the powerful mechanism of national language
support by accessing ‘.mo’ files and locale information.

It includes:

Chapter 6: The Programmer’s Guide to GPC 191

locales (not xlocales) and libintl.
See documentation for gettext (‘info gettext’) for details.

Because GPC can deal with both CStrings and Pascal Strings, there
is an interface for both types of arguments and function results
with slightly different names.

E.g. for Pascal strings:
function GetText (const MsgId: String): TString;
And the same as above, but with a C interface:
function GetTextC (MsgIld: CString): CString;

‘PLConv’ in Pascal is very different from ‘struct lconv *’ in C.
Element names do not have underscores and have sometimes different
sizes. The conversion is done automatically and has correct
results.

Furthermore, we have a tool similar to ‘xgettext’ to extract all
strings out of a Pascal source. It extracts the strings and writes
a complete ‘.po’ file to a file. See
http://www.gnu-pascal.de/contrib/eike/

The filename is pas2po-VERSION.tar.gz.

Copyright (C) 2001-2003 Free Software Foundation, Inc.
Author: Eike Lange <eike.lange@uni-essen.de>

This unit is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as
published by the Free Software Foundation, version 2.

This unit is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place -
Suite 330, Boston, MA 02111-1307, USA. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030303}

{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit Intl;

192 The GNU Pascal Manual

interface

uses GPC;

type
IntlString = String (16);

{ Pascal translation from OriglLConv in intlc.c }
PLConv = “TLConv;
TLConv = record

{ Numeric (non-monetary) information. }

{ Decimal point character. }
DecimalPoint: IntlString;

{ Thousands separator. }
ThousandsSep: IntlString;

{ Each element is the number of digits in each group;
elements with higher indices are farther left.
An element with value CharMax means that no further grouping
is done.
An element with value Chr (0) means that the previous element
is used for all groups farther left. }

Grouping: IntlString;

{ Monetary information. }

{ First three chars are a currency symbol from ISO 4217.
Fourth char is the separator. Fifth char is Chr (0). }

IntCurrSymbol: IntlString;

{ Local currency symbol. }
CurrencySymbol: IntlString;

{ Decimal point character. }
MonDecimalPoint: IntlString;

{ Thousands separator. }
MonThousandsSep: IntlString;

{ Like ‘Grouping’ element (above). }
MonGrouping: IntlString;

{ Sign for positive values. }
PositiveSign: IntlString;

{ Sign for negative values. }
NegativeSign: IntlString;

Chapter 6: The Programmer’s Guide to GPC 193

{ Int’l fractional digits. }
IntFracDigits: Bytelnt;

{ Local fractional digits. }
FracDigits: Bytelnt;

{ 1 if CurrencySymbol precedes a positive value, 0 if it
succeeds. }
PCSPrecedes: Bytelnt;

{ 1 iff a space separates CurrencySymbol from a positive
value. }
PSepBySpace: Bytelnt;

{ 1 if CurrencySymbol precedes a negative value, 0 if it
succeeds. }
NCSPrecedes: Bytelnt;

{ 1 iff a space separates CurrencySymbol from a negative
value. }
NSepBySpace: Bytelnt;

{ Positive and negative sign positions:
0 Parentheses surround the quantity and CurrencySymbol.
1 The sign string precedes the quantity and CurrencySymbol.
2 The sign string follows the quantity and CurrencySymbol.
3 The sign string immediately precedes the CurrencySymbol.
4 The sign string immediately follows the CurrencySymbol. }

PSignPosn,

NSignPosn: Bytelnt;

end;

{ Please do not assign anything to these identifiers! }

var
LC_CTYPE: Integer; external name ’_p_LC_CTYPE’;
LC_NUMERIC: Integer; external name ’_p_LC_NUMERIC’;
LC_TIME: Integer; external name ’_p_LC_TIME’;
LC_COLLATE: Integer; external name ’_p_LC_COLLATE’;
LC_MONETARY: Integer; external name ’_p_LC_MONETARY’;

LC_MESSAGES: Integer; external name ’_p_LC_MESSAGES’;
LC_ALL: Integer; external name ’_p_LC_ALL’;
CharMax: Char; external name ’_p_CHAR_MAX’;

{@section Locales }
{ Set and/or return the current locale. }
function SetLocale (Category: Integer; const Locale: String):

TString;

{ Set and/or return the current locale. Same as above, but returns
a CString. }

194

The GNU Pascal Manual

function SetLocaleC (Category: Integer; const Locale: String):
CString;

{ Return the numeric/monetary information for the current locale.
The result is allocated from the heap. You can Dispose it when
you don’t need it anymore. }

function LocaleConv: PLConv;

{@section GetText }

{ Look up Msgld in the current default message catalog for the
current LC_MESSAGES locale. If not found, returns Msgld itself
(the default text). }

function GetText (const Msgld: String): TString;

{ Same as above, but with a C interface }
function GetTextC (MsgId: CString): CString;

{ Look up Msgld in the DomainName message catalog for the current
LC_MESSAGES locale. }
function DGetText (const DomainName, Msgld: String): TString;

{ Same as above, but with a C interface }
function DGetTextC (DomainName, Msgld: CString): CString;

{ Look up MsgId in the DomainName message catalog for the current
Category locale. }

function DCGetText (const DomainName, MsgId: String; Category:
Integer): TString;

{ Same as above, but with a C interface }
function DCGetTextC (DomainName, MsgId: CString; Category: Integer):
CString;

{ Set the current default message catalog to DomainName.
If DomainName is empty, reset to the default of ‘messages’. }
function TextDomain (const DomainName: String): TString;

{ Same as above, but with a C interface.
If DomainName is nil, return the current default. }
function TextDomainC (DomainName: CString): CString;

{ Specify that the DomainName message catalog will be found
in DirName rather than in the system locale data base. }
function BindTextDomain (const DomainName, DirName: String):

TString;

{ Same as above, but with a C interface }
function BindTextDomainC (DomainName, DirName: CString): CString;

Chapter 6: The Programmer’s Guide to GPC

6.14.9 ‘MD5’ Message Digests

The following listing contains the interface of the MD5 unit.

195

This unit provides functions to compute ‘MD5’ message digest of files or memory blocks,

according to the definition of ‘MD5’ in RF'C 1321 from April 1992.

{ Functions to compute MD5 message digest of files or memory blocks,
according to the definition of MD5 in RFC 1321 from April 1992.

IMPORTANT NOTE: This unit is distributed under the GNU GPL, NOT
under the GNU LGPL under which most of the other GPC units are
distributed. This means that you must distribute any code that
uses this unit under the GPL as well, which means that you have to
make the source code available whenever you distribute a binary of
the code, and that you must allow recipients to modify the code
and redistribute it under the GPL.

Copyright (C) 1995, 1996, 2000-2003 Free Software Foundation, Inc.

Based on the C code written by Ulrich Drepper
<drepper@gnu.ai.mit.edu>, 1995 as part of the GNU C Library.

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030303}

{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit MD5;

interface

uses GPC;

{ Representation of a MD5 value. It is always in little endian byte
order and therefore portable. }

196 The GNU Pascal Manual

type
Card8 = Cardinal attribute (Size = 8);
TMD5 = array [1 .. 16] of Card8;

const
MD5StrLength = 2 * High (TMD5);

{ Computes MD5 message digest for Length bytes in Buffer. }
procedure MD5Buffer (const Buffer; Length: SizeType; var MD5: TMD5);
attribute (name = ’_p_MD5Buffer’);

{ Computes MD5 message digest for the contents of the file f. }
procedure MD5File (var f: File; var MD5: TMD5); attribute
(iocritical, name = ’_p_MD5File’);

{ Initializes a MD5 value with zeros. }
procedure MD5Clear (var MD5: TMD5); attribute (name
= ’_p_MD5Clear’);

{ Compares two MD5 values for equality. }
function MD5Compare (const Valuel, Value2: TMD5): Boolean; attribute
(name = ’_p_MD5Compare’) ;

{ Converts an MD5 value to a string. }
function MD5Str (const MD5: TMD5) = s: TString; attribute (name
= ’_p_MD5Str’);

{ Converts a string to an MD5 value. Returns True if successful. }

function MD5Val (const s: String; var MD5: TMD5): Boolean; attribute
(name = ’_p_MD5Val’);

{ Composes two MD5 values to a single one. }

function MD5Compose (const Valuel, Value2: TMD5) = Dest: TMD5;
attribute (name = ’_p_MD5Compose’) ;

6.14.10 BP compatibility: Overlay

The following listing contains the interface of the Overlay unit.
This is just a dummy replacement for BP’s ‘Overlay’ unit, since GPC doesn’t need overlays.

{ Dummy BP compatible overlay unit for GPC
Copyright (C) 1998-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.
GNU Pascal is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your

Chapter 6: The Programmer’s Guide to GPC

option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030412}

{$error This unit requires GPC release 20030412 or newer.}
{$endif}

unit Overlay;
interface

const
OvrOK = 0;
OvrError = -1;
OvrNotFound
OvrNoMemory
OvrIOError = -4;
OvrNoEMSDriver = -5;
OvrNoEMSMemory

non
| |
w N

Il
|
(@}

const
OvrEmsPages: Word = 0;
OvrTrapCount: Word = 0;
OvrLoadCount: Word = O;
OvrFileMode: Byte = 0;

type
OvrReadFunc = function (OvrSeg: Word): Integer;

var
OvrReadBuf: OvrReadFunc;

OvrResult: Integer = 0;

procedure OvrInit (aFileName: String); attribute (name

197

198 The GNU Pascal Manual

=’ _p_OvrInit’);
procedure OvrInitEMS; attribute (name = ’_p_OvrInitEMS’);
procedure OvrSetBuf (Size: LonglInt); attribute (name

= ’_p_0OvrSetBuf’);
function OvrGetBuf: LongInt; attribute (name = ’_p_0OvrGetBuf’);
procedure OvrSetRetry (Size: LongInt); attribute (name

= ’_p_0OvrSetRetry’);
function OvrGetRetry: LongInt; attribute (name = ’_p_0vrGetRetry’);
procedure OvrClearBuf; attribute (name = ’_p_OvrClearBuf’);

6.14.11 Start a child process, connected with pipes, also on Dos

The following listing contains the interface of the Pipe unit.

This unit provides routines to start a child process and write to/read from its
Input/Output/StdErr via pipes. All of this is emulated transparently under Dos as far as
possible.

{ Piping data from and to processes
Copyright (C) 1998-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030303}

{$error This unit requires GPC release 20030303 or newer.}
{$endif}

Chapter 6: The Programmer’s Guide to GPC

199

{ Keep this consistent with the one in pipec.c }

{$if defined (MSDOS) or defined (_

{$define NOFORK}
{$endif}

unit Pipe;
interface
uses GPC;

const

_MINGW32__)}

PipeForking = {$ifdef NOFORK} False {$else} True {$endif};

(PIDNothing, PIDExited, PIDSignaled, PIDStopped,

Process ID of process forked }
Process ID to send the signal to.
Equals PID by default }

Number of pipes to/from the
process, for internal use }

Send this signal (if not 0) to the
process after all pipes have been
closed after some time }

Wait so many seconds before
sending the signal if the process
has not terminated by itself }

type

TProcedure = procedure;

PWaitPIDResult = “TWaitPIDResult;

TWaitPIDResult =

PIDUnknown) ;

PPipeProcess = "TPipeProcess;

TPipeProcess = record
PID Integer; {
SignalPID: Integer; {
OpenPipes: Integer; {
Signal Integer; {
Seconds Integer; {
Wait : Boolean; {

Result : PWaitPIDResult; {

Status “Integer; {

Wait for the process, even longer
than Seconds seconds, after
sending the signal (if any) }
Default nil. If a pointer to a
variable is stored here, its
destination will contain the
information whether the process
terminated by itself, or was
terminated or stopped by a signal,
when waiting after closing the
pipes }

Default nil. If a pointer to a
variable is stored here, its
destination will contain the exit
status if the process terminated
by itself, or the number of the

200 The GNU Pascal Manual

signal otherwise, when waiting
after closing the pipes }
end;

var
{ Default values for TPipeProcess records created by Pipe }
DefaultPipeSignal : Integer = O;
DefaultPipeSeconds: Integer = O;
DefaultPipeWait : Boolean = True;

{ The procedure Pipe starts a process whose name is given by
ProcessName, with the given parameters (can be Null if no
parameters) and environment, and create pipes from and/or to the
process’ standard input/output/error. ProcessName is searched for
in the PATH with FSearchExecutable. Any of TolInputFile,
FromOutputFile and FromStdErrFile can be Null if the corresponding
pipe is not wanted. FromOutputFile and FromStdErrFile may be
identical, in which case standard output and standard error are
redirected to the same pipe. The behaviour of other pairs of files
being identical is undefined, and useless, anyway. The files are
Assigned and Reset or Rewritten as appropriate. Errors are
returned in IOResult. If Process is not Null, a pointer to a
record is stored there, from which the PID of the process created
can be read, and by writing to which the action after all pipes
have been closed can be changed. (The record is automatically
Dispose’d of after all pipes have been closed.) If automatic
waiting is turned off, the caller should get the PID from the
record before it’s Dispose’d of, and wait for the process sometime
in order to avoid zombies. If no redirections are performed (i.e.,
all 3 files are Null), the caller should wait for the process with
WaitPipeProcess. When an error occurs, Process is not assigned to,
and the state of the files is undefined, so be sure to check
IOResult before going on.

ChildProc, if not nil, is called in the child process after
forking and redirecting I/0, but before executing the new process.
It can even be called instead of executing a new process
(ProcessName can be empty then).

The procedure even works under Dos, but, of course, in a limited
sense: if TolnputFile is used, the process will not actually be
started until ToInputFile is closed. Signal, Seconds and Wait of
TPipeProcess are ignored, and PID and SignalPID do not contain a
Process ID, but an internal value without any meaning to the
caller. Result will always be PIDExited. So, Status is the only
interesting field (but Result should also be checked). Since there
is no forking under Dos, ChildProc, if not nil, is called in the
main process before spawning the program. So, to be portable, it
should not do any things that would influence the process after
the return of the Pipe function.

Chapter 6: The Programmer’s Guide to GPC

The only portable way to use "pipes" in both directions is to call
‘Pipe’, write all the Input data to ToInputFile, close
ToInputFile, and then read the Output and StdErr data from
FromOutputFile and FromStdErrFile. However, since the capacity of
pipes is limited, one should also check for Data from
FromOutputFile and FromStdErrFile (using CanRead, IOSelect or
I0SelectRead) while writing the Input data (under Dos, there
simply won’t be any data then, but checking for data doesn’t do
any harm). Please see pipedemo.pas for an example.

procedure Pipe (var TolInputFile, FromOutputFile, FromStdErrFile:
AnyFile; const ProcessName: String; protected var Parameters:
TPStrings; ProcessEnvironment: PCStrings; var Process:
PPipeProcess; ChildProc: TProcedure); attribute (iocritical);

{ Waits for a process created by Pipe as determined in the Process
record. (Process is Dispose’d of afterwards.) Returns True if
successful. }

function WaitPipeProcess (Process: PPipeProcess): Boolean;

{ Alternative interface from PExecute }

const
PExecute_First =1;
PExecute_Last = 2;
PExecute_0One = PExecute_First or PExecute_Last;
PExecute_Search = 4;
PExecute_Verbose = 8;

{ PExecute: execute a chain of processes.
Program and Arguments are the arguments to execv/execvp.

Flags and PExecute_Search is non-zero if $PATH should be searched.
Flags and PExecute_First is nonzero for the first process in
chain. Flags and PExecute_Last is nonzero for the last process in
chain.

The result is the pid on systems like Unix where we fork/exec and
on systems like MS-Windows and 0S2 where we use spawn. It is up to

the caller to wait for the child.

The result is the exit code on systems like MSDOS where we spawn
and wait for the child here.

Upon failure, ErrMsg is set to the text of the error message,
and -1 is returned. ‘errno’ is available to the caller to use.

PWait: cover function for wait.

PID is the process id of the task to wait for. Status is the
‘status’ argument to wait. Flags is currently unused (allows

201

202 The GNU Pascal Manual

future enhancement without breaking upward compatibility). Pass 0
for now.

The result is the process ID of the child reaped, or -1 for
failure.

On systems that don’t support waiting for a particular child, PID
is ignored. On systems like MSDOS that don’t really multitask
PWait is just a mechanism to provide a consistent interface for
the caller. }

function PExecute (ProgramName: CString; Arguments: PCStrings; var
ErrMsg: String; Flags: Integer): Integer; attribute (name
= ’_p_PExecute’);

function PWait (PID: Integer; var Status: Integer; Flags: Integer):
Integer; attribute (name = ’_p_PWait’);

6.14.12 BP compatibility (partly): ‘Port’, ‘PortW’ arrays

The following listing contains the interface of the Ports unit.

This unit provides access routines for the hardware ports on the IA32, as a partial replacement
for BP’s ‘Port’ and ‘PortW pseudo arrays.

Since port access is platform-specific, this unit cannot be used in code intended to be portable.
Even on the TA32, its use can often be avoided — e.g. Linux provides a number of ‘ioctl’
functions, and DJGPP provides some routines to achieve things that would require port access
under BP. Therefore, it is recommended to avoid using this unit whenever possible.

{ Access functions for I/0 ports for GPC on an IA32 platform. This
unit is #*not* portable. It works only on IA32 platforms (tested
under Linux and DJGPP). It is provided here only to serve as a
replacement for BP’s Port and PortW pseudo arrays.

Copyright (C) 1998-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Chapter 6: The Programmer’s Guide to GPC 203

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}

{$endif}

{$ifndef __i386__}

{$error The Ports unit is only for the IA32 platform}
{$endif}

unit Ports;
interface

{ Port access functions }

function InPortB (PortNumber: ShortWord): Byte;
function InPortW (PortNumber: ShortWord): ShortWord;
procedure OutPortB (PortNumber: ShortWord; aValue: Byte);
procedure OutPortW (PortNumber, aValue: ShortWord);

{ libc functions for getting access to the ports -- only for root
processes, of course -- and to give up root privileges after
getting access to the ports for setuid root programs. Dummies
under DJGPP. }

{$ifdef MSDOS}

function I0OPerm (From, Num: MedCard; On: Integer): Integer;
attribute (name = ’ioperm’);

function IOPL (Level: Integer): Integer; attribute (name = ’iopl’);

function SetEUID (EUID: Integer): Integer; attribute (name
= ’geteuid’);

{$else}

function I0Perm (From, Num: MedCard; On: Integer): Integer;
external name ’ioperm’;

function IOPL (Level: Integer): Integer; external name ’iopl’;

function SetEUID (EUID: Integer): Integer; external name ’seteuid’;

{$endif}

6.14.13 BP compatibility: Printer, portable

The following listing contains the interface of the Printer unit.

This unit provides printer access, compatible to BP’s ‘Printer’ unit, for Dos (using printer
devices) and Unix systems (using printer utilities).

For BP compatibility, the variable ‘Lst’ is provided, but for newly written programs, it is
recommended to use the ‘AssignPrinter’ procedure on a text file, and close the file when done

204 The GNU Pascal Manual

(thereby committing the printer job). This method allows for sending multiple printer jobs in
the same program.

{ BP compatible printer unit with extensions
Copyright (C) 1998-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030303}

{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit Printer;
interface

uses GPC {$ifndef __0S_DOS__}, Pipe {$endif};

var
{ Dos-like systems: writing to a printer device }

{ The file name to write printer output into }
PrinterDeviceName: PString = @’prn’;

{ Unix-like systems: printing via a printer program }

Chapter 6: The Programmer’s Guide to GPC 205

{ The file name of the printer program. If it contains a ’/’, it
will be taken as a complete path, otherwise the file name will
be searched for in the PATH with FSearchExecutable. }

PrinterCommand: PString = @’lpr’;

{ Optional command line parameters for the printer program.
Ignored when nil. }
PrinterArguments: PPStrings = nil;

{ How to deal with the printer spooler after the printer pipe is
closed, cf. the Pipe unit. }

PrinterPipeSignal : Integer = O;

PrinterPipeSeconds: Integer = O;

PrinterPipeWait : Boolean = True;

{ Text file opened to default printer }
var
Lst: Text;

{ Assign a file to the printer. Lst will be assigned to the default
printer at program start, but other files can be assigned to the
same or other printers (possibly after changing the variables
above) . SpoolerOutput, if not Null, will be redirected from the
printer spooler’s standard output and error. If you use this, note
that a deadlock might arise when trying to write data to the
spooler while its output is not being read, though this seems
quite unlikely, since most printer spoolers don’t write so much
output that could fill a pipe. Under Dos, where no spooler is
involved, SpoolerQutput, if not Null, will be reset to an empty
file for compatibility. }

procedure AssignPrinter (var f: AnyFile; var SpoolerQOutput:
AnyFile);

6.14.14 Regular Expression matching and substituting

The following listing contains the interface of the RegEx unit.

This unit provides routines to match strings against regular expressions and perform sub-
stitutions using matched subexpressions. Regular expressions are strings with some characters
having special meanings. They describe (match) a class of strings. They are similar to wild
cards used in file name matching, but much more powerful.

9y

To wuse this wunit, you will need the ‘rx’ library which can be found in
http://www.gnu-pascal.de/libs/.

{$nested-comments}
{ Regular expression matching and replacement
The RegEx unit provides routines to match strings against regular

expressions and perform substitutions using matched
subexpressions.

http://www.gnu-pascal.de/libs/

206 The GNU Pascal Manual

To use the RegEx unit, you will need the rx library which can be
found in http://www.gnu-pascal.de/libs/

Regular expressions are strings with some characters having
special meanings. They describe (match) a class of strings. They
are similar to wild cards used in file name matching, but much
more powerful.

There are two kinds of regular expressions supported by this unit,
basic and extended regular expressions. The difference between
them is not functionality, but only syntax. The following is a
short overview of regular expressions. For a more thorough
explanation see the literature, or the documentation of the rx
library, or man pages of programs like grep(1l) and sed(1).

Basic Extended Meaning
€. €. matches any single character
‘[aei-z]’ ‘[aei-z]’ matches either ‘a’, ‘e’, or any
character from ‘i’ to ‘z’
‘[~aei-z]’ ‘[~aei-z]’ matches any character but ‘a’,
‘e’, or ‘i’ .. ‘z’
To include in such a list the the
characters ‘]’, ‘"7, or ‘-’, put

them first, anywhere but first, or
first or last, resp.

‘[[:alnum:]]° ‘[[:alnum:]]°> matches any alphanumeric character
‘["[:digit:1]° ‘[~ [:digit:]]’ matches anything but a digit
‘[al:space:1]° ‘[al:space:]]’ matches the letter ‘a’ or a space

character (space, tab)
e (there are more classes available)
‘Aw’ ‘Aw’

= [[:alnum:]]

AW’ AW’ = ["[:alnum:]]

€ € matches the empty string at the
beginning of a line

‘¢ ‘$’ matches the empty string at the
end of a line

% % matches zero or more occurences of
the preceding expression

A+’ 4 matches one or more occurences of
the preceding expression

‘7’ ‘7o matches zero or one occurence of
the preceding expression

NN} N} matches exactly N occurences of

the preceding expression (N is an
integer number)

“\{M,N\}’ ‘{M,N}’ matches M to N occurences of the
preceding expression (M and N are
integer numbers, M <= N)

‘AB’ ‘AB’ matches A followed by B (A and B
are regular expressions)

‘A\|B’ ‘AlB’ matches A or B (A and B are

Chapter 6: The Programmer’s Guide to GPC 207

regular expressions)

ANC\)? ‘)’ forms a subexpression, to override
precedence, and for subexpression
references

A7 A7’ matches the 7’th parenthesized

subexpression (counted by their
start in the regex), where 7 is a
number from 1 to 9 ;-).

Please note: using this feature
can be *very* slow or take very
much memory (exponential time and
space in the worst case, if you

know what that means ...).
“\’ “\’ quotes the following character if
it’s special (i.e. listed above)
rest rest any other character matches itself

Precedence, from highest to lowest:
parentheses (()’)

* repetition (‘x’, ‘+’, ‘77, {}’)
* concatenation

* alternation (‘|’)

*

When performing substitutions using matched subexpressions of a
regular expression (see ‘ReplaceSubExpressionReferences’), the
replacement string can reference the whole matched expression with
‘&> or ‘\0’, the 7th subexpression with ‘\7’ (just like in the
regex itself, but using it in replacements is not slow), and the
7th subexpression converted to upper/lower case with ‘\u7’ or
‘\17’, resp. (which also works for the whole matched expression
with ‘\u0’ or ‘\10’). A verbatim ‘&’ or ‘\’ can be specified with
‘A&’ or ‘\\’, resp.

Copyright (C) 1998-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the

208

The GNU Pascal Manual

Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License.

Please also note the license of the rx library. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030303}

{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit RegEx;
interface
uses GPC;

const
{ ‘BasicRegExSpecialChars’ contains all characters that have
special meanings in basic regular expressions.
‘ExtRegExSpecialChars’ contains those that have special meanings
in extended regular expressions. }

BasicRegExSpecialChars = [>.’, > [’, ’1’, >~’, ’§’>, ’*>, ’\’];

ExtRegExSpecialChars =

[1.7’)I:J’ 7])’ 1*7’ 7$J’ 7*), J+7’ 7?1’ 7{7, 7}7’ b 1’ 7(7, 7)7’ ;\7];
type

{ The type used by the routines of the ‘RegEx’ unit to store
regular expressions in an internal format. The fields RegEx,
RegMatch, ErrorInternal, From and Length are only used
internally. SubExpressions can be read after ‘NewRegEx’ and will
contain the number of parenthesized subexpressions. Error should
be checked after ‘NewRegEx’. It will be ‘nil’ when it succeeded,
and contain an error message otherwise. 7

RegExType = record
RegEx, RegMatch: Pointer; { Intermal }
ErrorInternal: CString; { Internal }
From, Length: Integer; { Internal }
SubExpressions: Integer;
Error: PString

end;

{ Simple interface to regular expression matching. Matches a regular
expression against a string starting from a specified position.
Returns the position of the first match, or O if it does not

Chapter 6: The Programmer’s Guide to GPC 209

match, or the regular expression is invalid. }

function RegExPosFrom (const Expression: String; ExtendedRegEx,
CaseInsensitive: Boolean; const s: String; From: Integer):
Integer; attribute (name = ’_p_RegExPosFrom’);

{ Creates the internal format of a regular expression. If
ExtendedRegEx is True, Expression is assumed to denote an extended
regular expression, otherwise a basic regular expression.
CaseInsensitive determines if the case of letters will be ignored
when matching the expression. If NewLines is True, ‘NewLine’
characters in a string matched against the expression will be
treated as dividing the string in multiple lines, so that ‘$’ can
match before the NewLine and ‘"’ can match after. Also, ‘.’ and
‘[*...]1” will not match a NewLine then. }

procedure NewRegEx (var RegEx: RegExType; const Expression: String;
ExtendedRegEx, Caselnsensitive, NewLines: Boolean); attribute
(name = ’_p_NewRegEx’);

{ Disposes of a regular expression created with ‘NewRegEx’. *Mustx*
be used after ‘NewRegEx’ before the RegEx variable becomes invalid
(i.e., goes out of scope or a pointer pointing to it is Dispose’d
of). }

procedure DisposeRegEx (var RegEx: RegExType); external
name ’_p_DisposeRegEx’;

{ Matches a regular expression created with ‘NewRegEx’ against a
string. }

function MatchRegEx (var RegEx: RegExType; const s: String;
NotBeginningOfLine, NotEndOfLine: Boolean): Boolean; attribute
(name = °’_p_MatchRegEx’);

{ Matches a regular expression created with ‘NewRegEx’ against a
string, starting from a specified position. }

function MatchRegExFrom (var RegEx: RegExType; const s: String;
NotBeginningOfLine, NotEndOfLine: Boolean; From: Integer):
Boolean; attribute (name = ’_p_MatchRegExFrom’);

{ Finds out where the regular expression matched, if ‘MatchRegEx’ or
‘MatchRegExFrom’ were successful. If n = 0, it returns the
position of the whole match, otherwise the position of the n’th
parenthesized subexpression. MatchPosition and MatchLength will
contain the position (counted from 1) and length of the match, or
0 if it didn’t match. (Note: MatchLength can also be O for a
successful empty match, so check whether MatchPosition is 0 to
find out if it matched at all.) MatchPosition or MatchLength may
be Null and is ignored then. }

procedure GetMatchRegEx (var RegEx: RegExType; n: Integer; var
MatchPosition, MatchLength: Integer); external
name ’_p_GetMatchRegEx’;

{ Checks if the string s contains any quoted characters or

210

The GNU Pascal Manual

(sub)expression references to the regular expression RegEx created
with ‘NewRegEx’. These are ‘&’ or ‘\0’ for the whole matched
expression (if OnlySub is not set) and ‘\1’ .. ‘\9’ for the n’th
parenthesized subexpression. Returns O if it does not contain any,
and the number of references and quoted characters if it does. If
an invalid reference (i.e. a number bigger than the number of
subexpressions in RegEx) is found, it returns the negative value
of the (first) invalid reference. }

function FindSubExpressionReferences (var RegEx: RegExType; const
s: String; OnlySub: Boolean): Integer; attribute (name
= ’_p_FindSubExpressionReferences’);

{ Replaces (sub)expression references in ReplaceStr by the actual
(sub)expressions and unquotes quoted characters. To be used after
the regular expression RegEx created with ‘NewRegEx’ was matched
against s successfully with ‘MatchRegEx’ or ‘MatchRegExFrom’. }

function ReplaceSubExpressionReferences (var RegEx: RegExType;
const s, ReplaceStr: String): TString; attribute (name
= ’_p_ReplaceSubExpressionReferences’) ;

{ Returns the string for a regular expression that matches exactly
one character out of the given set. It can be combined with the
usual operators to form more complex expressions. }

function CharSet2RegEx (const Characters: CharSet): TString;
attribute (name = ’_p_CharSet2RegEx’) ;

6.14.15 BP compatibility: Strings

The following listing contains the interface of the Strings unit.
This is a compatibility unit to BP’s ‘Strings’ unit to handle C style ‘#0’-terminated strings.
The same functionality and much more is available in the Run Time System, Section 6.13

[Run Time System], page 100, under clearer names (starting with a ‘CString’ prefix),

Moreover, the use of ‘#0’-terminated C-style strings (‘PChar’ or ‘CString’) is generally not

recommended in GPC, since GPC provides ways to deal with Pascal-style strings of arbitrary
and dynamic size in a comfortable way, as well as automatic conversion to C-style strings in
order to call external C functions.

Therefore, using this unit is not recommended in newly written programs.

{ BP compatible Strings unit
Copyright (C) 1999-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.
GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published

by the Free Software Foundation; either version 2, or (at your
option) any later version.

Chapter 6: The Programmer’s Guide to GPC 211

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030303}

{$error This unit requires GPC release 20030303 or newer.}
{$endif}

module Strings;

export Strings = all (CStringlLength => StrLen, CStringEnd => StrEnd,
CStringMove => StrMove, CStringCopy =>

StrCopy. CStringCopyEnd => StrECopy, CStringLCopy =>
SerLeopy CStringCopyString => StrPCopy, CStringCat =>
strcat, CStringlCat => StrLCat, CStringComp =>
StrComp, CStringCaseComp => StrIComp, CStringLComp =>
Serlcomp, CStringlCaseComp => StrLIComp, CStringChPos =>
Strscan, CStringLastChPos => StrRScan, CStringPos =>
StrPos, CStringlLastPos => StrRPos, CStringUpCase =>
Strupper, CStringloCase => StrLower, CStringIsEmpty =>
StrEmpty, CStringNew => StrNew);

import GPC;

function StrPas (aString: CString): TString; attribute (name
= ’_p_StrPas’);
procedure StrDispose (s: CString); external name ’_p_Dispose’;

212 The GNU Pascal Manual

6.14.16 Higher level string handling

The following listing contains the interface of the StringUtils unit.

This unit provides some routines for string handling on a higher level than those provided
by the RTS.

{ Some routines for string handling on a higher level than those
provided by the RTS.

Copyright (C) 1999-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030303}

{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit StringUtils;

interface

uses GPC;

{ Various routines }

{ Appends Source to s, truncating the result if necessary. }
procedure AppendStr (var s: String; const Source: String);

Chapter 6: The Programmer’s Guide to GPC 213

{ Cuts s to MaxLength characters. If s is already MaxLength
characters or shorter, it doesn’t change anything. }
procedure StrCut (var s: String; MaxLength: Integer);

{ Returns the number of disjoint occurences of SubStr in s. Returns
0 if SubStr is empty. }
function StrCount (const SubStr: String; s: String): Integer;

{ Returns s, with all disjoint occurences of Source replaced by
Dest. }
function StrReplace (const s, Source, Dest: String): TString;

{ Sets of characters accepted for ‘True’ and ‘False’ by
Char2Boolean and StrReadBoolean. }

var
CharactersTrue : CharSet
CharactersFalse: CharSet

LY, oyl
[)N; s ’Il’];

{ If ch is an element of CharactersTrue, Dest is set to True,
otherwise if it is an element of CharactersFalse, Dest is set to
False. In both cases True is returned. If ch is not an element of
either set, Dest is set to False and False is returned. }

function Char2Boolean (ch: Char; var Dest: Boolean): Boolean;

{ Converts a digit character to its numeric value. Handles every
base up to 36 (0 .. 9, a .. z, upper and lower case recognized).
Returns -1 if the character is not a digit at all. If you want to
use it for a base < 36, you have to check if the result is smaller
than the base and not equal to -1. }

function Char2Digit (ch: Char): Integer;

{ Encode a string in a printable format (quoted printable and
surrounded with ¢"’). All occurences of ‘"’ within the string are
encoded, so the result string contains exactly two ‘"’ characters
(at the beginning and ending). This is useful to store arbitrary
strings in text files while keeping them as readable as possible
(which is the goal of the quoted printable encoding in general,
see RFC 1521, section 5.1) and being able to read them back
losslessly (with UnQuoteString). }

function QuoteString (const s: String): TString;

{ Encode a string in a printable format suitable for StrReadEnum.
A1l occurences of ‘,’ within the string are encoded. }
function QuoteEnum (const s: String): TString;

{ Decode a string encoded by QuoteString (removing the ‘"’ and
expanding quoted printable encoded characters). Returns True if
successful and False if the string has an invalid form. A string
returned by QuoteString is always valid. }

function UnQuoteString (var s: String): Boolean;

214

The GNU Pascal Manual

{ Decode a quoted-printable string (not enclosed in ‘"’, unlike for
UnQuoteString). Returns True if successful and False if the string
has an invalid form. In the latter case, it still decodes as much
as is valid, even after the error position. }

function UnQPString (var s: String): Boolean;

{ Quotes a string as done in shells, i.e. all special characters are
enclosed in either ‘"’ or ‘’’, where ‘"’, ‘$’ and ‘‘’ are always
enclosed in ¢’’ and ¢’’ is always enclosed in ¢"’. }

function ShellQuoteString (const s: String): TString;

{ Replaces all tab characters in s with the appropriate amount of
spaces, assuming tab stops at every TabSize columns. Returns True
if successful and False if the expanded string would exceed the
capacity of s. In the latter case, some, but not all of the tabs
in s may have been expanded. }

function ExpandTabs (var s: String; TabSize: Integer): Boolean;

{ Returns s, with all occurences of C style escape sequences (e.g.
‘\n’) replaced by the characters they mean. If AllowOctal is True,
also octal character specifications (e.g. ‘\007’) are replaced. If
RemoveQuoteChars is True, any other backslashes are removed (e.g.
AA*? => ‘%2 and ‘\\’ -> ‘\’), otherwise they are kept, and also
‘A\’ is left as two backslashes then. }

function ExpandCEscapeSequences (const s: String; RemoveQuoteChars,
AllowOctal: Boolean): TString;

{ Routines for TPStrings }

{ Initialise a TPStrings variable, allocate Size characters for each
element. This procedure does not dispose of any previously
allocated storage, so if you use it on a previously used variable
without freeing the storage yourself, this might cause memory
leaks. }

procedure AllocateTPStrings (var Strings: TPStrings; Size: Integer);

{ Clears all elements (set them to empty strings), does not free any
storage. }
procedure ClearTPStrings (var Strings: TPStrings);

{ Divide a string into substrings, using Separators as separator. A
single trailing separator is ignored. Further trailing separators
as well as any leading separators and multiple separators in a row
produce empty substrings. }

function TokenizeString (const Source: String; Separators: CharSet):
PPStrings;

{ Divide a string into substrings, using SpaceCharacters as
separators. The splitting is done according the usual rules of
shells, using (and removing) single and double quotes and

Chapter 6: The Programmer’s Guide to GPC 215

QuotingCharacter. Multiple, leading and trailing separators are
ignored. If there is an error, a message will be stored in ErrMsg,
and nil will be returned. Nil will also be returned (without an
error message) if s in empty. }

function ShellTokenizeString (const s: String; var ErrMsg: String):
PPStrings;

{ String parsing routines }

{ A1l the following StrReadFoo functions behave similarly. They read
items from a string s, starting at index i, to a variable Dest.
They skip any space characters (spaces and tabs) by incrementing i
first. They return True if successful, False otherwise. i is
incremented accordingly if successful, otherwise i is left
unchanged, apart from the skipping of space characters, and Dest
is undefined. This behaviour makes it easy to use the functions in
a row like this:

i:=1;
if StrReadInt (s, i, Size) and StrReadComma (s, i) and
StrReadQuoted (s, i, Name) and StrReadComma (s, i) and

StrReadReal (s, i, Angle) and (i > Length (s)) then ...

(The check ‘i > Length (s)’ is in case you don’t want to accept
trailing "garbage".) }

{ Just skip any space characters as described above. }
procedure StrSkipSpaces (const s: String; var i: Integer);

{ Read a quoted string (as produced by QuoteString) from a string
and unquote the result using UnQuoteString. It is considered
failure if the result (unquoted) would be longer than the capacity
of Dest. }

function StrReadQuoted (const s: String; var i: Integer; var Dest:
String): Boolean;

{ Read a string delimited with Delimiter from a string and return
the result with the delimiters removed. It is considered failure
if the result (without delimiters) would be longer than the
capacity of Dest. }

function StrReadDelimited (const s: String; var i: Integer; var
Dest: String; Delimiter: Char): Boolean;

{ Read a word (consisting of anything but space characters and
commas) from a string. It is considered failure if the result
would be longer than the capacity of Dest. }

function StrReadWord (const s: String; var i: Integer; var Dest:
String): Boolean;

{ Check that a certain string is contained in s (after possible

216

space characters). }

The GNU Pascal Manual

function StrReadConst (const s: String; var i: Integer; const

Expected: String): Boolean;

{ A simpler to use version of StrReadConst that expects a

0.}

function StrReadComma (const s: String; var i: Integer): Boolean;

{ Read an integer number from a string.

}

function StrReadInt (const s: String; var i: Integer; var Dest:

Integer): Boolean;

{ Read a real number from a string. }
function StrReadReal (const s: String;
Real): Boolean;

var i: Integer; var Dest:

{ Read a Boolean value, represented by a single character
from CharactersTrue or CharactersFalse (cf. Char2Boolean), from a

string. }

function StrReadBoolean (const s: String; var i: Integer; var Dest:

Boolean): Boolean;

{ Read an
string,
(always

function

enumerated value,
and stores the ordinal value,
zero-based) in Dest. }

StrReadEnum (const s: String;

Integer; const IDs: array of PString):

{ String hash table }

const

DefaultHashSize = 1403;

type
THash = Cardinal;

PStrHashList “TStrHashList;
TStrHashList record

Next: PStrHashList;

s: PString;

i: Integer;

p: Pointer
end;

PStrHashTable = “TStrHashTable;
TStrHashTable (Size: Cardinal) =
CaseSensitive: Boolean;
Table: array [0
end;
function HashString (const s:
function NewStrHashTable

i.e., one of the entries of IDs, from a

i.e., the index in IDs

var i: Integer; var Dest:
Boolean;

record

. Size - 1] of PStrHashList

String): THash;

(Size: Cardinal; CaseSensitive:

Chapter 6: The Programmer’s Guide to GPC 217

Boolean): PStrHashTable;

procedure AddStrHashTable (HashTable: PStrHashTable; s: String;
i: Integer; p: Pointer);

procedure DeleteStrHashTable (HashTable: PStrHashTable; s: String);

function SearchStrHashTable (HashTable: PStrHashTable; const s:
String; var p: Pointer): Integer; { p may be Null }

procedure StrHashTableUsage (HashTable: PStrHashTable; var
Entries, Slots: Integer);

procedure DisposeStrHashTable (HashTable: PStrHashTable);

6.14.17 BP compatibility: System

The following listing contains the interface of the System unit.

This unit contains only BP’s more exotic routines which are not recommended to be used in
new programs. Most of their functionality can be achieved by more standard means already.

Note: ‘MemAvail’ and ‘MaxAvail’, provided in this unit, cannot easily be achieved by other
means. However, it is not recommended to use them on any multi-tasking system at all, where
memory is a shared resource. The notes in the unit give some hints about how to avoid using
them.

On special request, i.e., by defining the conditionals ‘__BP_TYPE_SIZES__’, ‘__BP_RANDOM__’
and/or ‘__BP_PARAMSTR_O__’, the unit also provides BP compatible integer type sizes, a 100%
BP compatible pseudo random number generator and/or BP compatible ‘ParamStr (0)’ be-

haviour (the latter, however, only on some systems).

{ BP and partly Delphi compatible System unit for GPC

This unit is released as part of the GNU Pascal project. It
implements some rather exotic BP and Delphi compatibility
features. Even many BP and Delphi programs don’t need them, but
they’re here for maximum compatibility. Most of BP’s and Delphi’s
System units’ features are built into the compiler or the RTS.

Note: The things in this unit are really exotic. If you haven’t
used BP or Delphi before, you don’t want to look at this unit. :-)

This unit depends on the conditional defines ‘__BP_TYPE_SIZES__’,
‘__BP_RANDOM__’ and ‘__BP_PARAMSTR_O__’.

If ‘__BP_TYPE_SIZES__’ is defined (with the ‘-D__BP_TYPE_SIZES__’
option), the integer data types will be redefined to the sizes
they have in BP or Delphi. Note that this might cause problems,
e.g. when passing var parameters of integer types between units
that do and don’t use System. However, of the BP compatibility
units, only Dos and WinDos use such parameters, and they have been
taken care of so they work.

If ‘__BP_RANDOM__’ is defined (‘-D__BP_RANDOM__’), this unit will
provide an exactly BP compatible pseudo random number generator.
In particular, the range for integer randoms will be truncated to
16 bits like in BP. The RandSeed variable is provided, and if it’s
set to the same value as BP’s RandSeed, it produces exactly the

218

The GNU Pascal Manual

same sequence of pseudo random numbers that BP’s pseudo random
number generator does (whoever might need this ... ;-). Even the
Randomize function will behave exactly like in BP. However, this
will not be noted unless one explicitly tests for it.

If ‘__BP_PARAMSTR_O__’ is defined (‘-D__BP_PARAMSTR_O__’), this
unit will change the value of ‘ParamStr (0)’ to that of
‘ExecutablePath’, overwriting the value actually passed by the
caller, to imitate BP’s/Dos’s behaviour. However *note*: On most
systems, ‘ExecutablePath’ is *not* guaranteed to return the full
path, so defining this symbol doesn’t change anything. In general,
you *cannot* expect to find the full executable path, so better
don’t even try it, or your program will (at best) run on some
systems. For most cases where BP programs access their own
executable, there are cleaner alternatives available.

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Authors: Peter Gerwinski <peter@gerwinski.de>
Prof. Abimbola A. Olowofoyeku <African_Chief@bigfoot.com>
Frank Heckenbach <frank@pascal.gnu.de>
Dominik Freche <dominik.freche@gmx.net>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ < 20030303}

{$error This unit requires GPC release 20030303 or newer.}
{$endif}

Chapter 6: The Programmer’s Guide to GPC

module System;

export System =

all (FileMode {$ifdef __BP_TYPE_SIZES__},
SystemInteger => Integer {$endifl});

import GPC (MaxLongInt => GPC_MaxLongInt);

var

{ Chain of procedures to be executed at the end of the program }

ExitProc: “procedure = nil;

{ Contains all the command line arguments passed to the program,

concatenated, with spaces between them }
CmdLine: CString;

{$ifdef __BP_RANDOM__}

{ Random seed, initialized by Randomize, but can also be set

explicitly }

RandSeed: Integer attribute (Size

{$endif}

type

OrigInt = Integer;

OrigWord

{ Delphi
Smalllnt
DWord

(-

Word;

Integer attribute (Size
Cardinal attribute (Size = 32)

= 32) =

= 16);

b

0;

{ Short BP compatible type sizes if wanted }
{$ifdef __BP_TYPE_SIZES__}

ByteBool
WordBool
LongBool
ShortInt
SystemInteger
LongInt

Comp

Byte

Word
LongWord
{$else’
SystemInteger
{$endif}

{$if False} { 0@ doesn’t work well (dialec3.pas) -- when GPC gets

short

Boolean
Boolean

= Boolean
= Integer

Integer
Integer

= Integer
= Cardinal attribute (Size =
Cardinal attribute (Size
Cardinal attribute (Size

Integer;

attribute
attribute
attribute
attribute
attribute
attribute
attribute

(Size =
(Size =
(Size =
(Size =
(Size =
(Size =
(Size =

8);
16);
32);
8);
16);
32);
64) ;
8);
16);
32);

{ Delphi }

strings, it will be unnecessary 7}
{$ifopt borland-pascal}
String = String [255];

219

220 The GNU Pascal Manual

{$endif}
{$endif}

const
MaxInt High (SystemInteger);
MaxLongInt = High (LongInt);

{ Return the lowest-order byte of x }
function Lo (x: LongestInt): Byte; attribute (name = ’_p_Lo’);

{ Return the second-lowest-order byte of x }
function Hi (x: LongestInt): Byte; attribute (name = ’_p_Hi’);

{ Swap the lowest-order and second-lowest-order bytes, mask out the
higher-order ones }
function Swap (x: LongestInt): Word; attribute (name = ’_p_Swap’);

{ Store the current directory name (on the given drive number if
drive <> 0) in s }

procedure GetDir (Drive: Byte; var s: String); attribute (name
= ’_p_GetDir’);

{ Dummy routine for compatibility. ©@QUse two overloaded versions
rather than varargs when possible. }

procedure SetTextBuf (var f: Text; var Buf; ...); attribute (name
= ’_p_SetTextBuf’);

{ Mostly useless BP compatible variables }
var
SelectorInc: Word = $1000;
Seg0040: Word = $40;
SeghA000: Word = $a000;
SegB000: Word = $b000;
SegB800: Word = $b800;
Test8086: Byte = 2;
Test8087: Byte = 3; { floating-point arithmetic is emulated
transparently by the 0S if not present
in hardware 7}

OvrCodeList: Word = 0;

OvrHeapSize: Word = 0;

OvrDebugPtr: Pointer = nil;
OvrHeapOrg: Word = O;

OvrHeapPtr: Word = 0;

OvrHeapEnd: Word = O;

OvrLoadList: Word = 0;
OvrDosHandle: Word = O;
OvrEmsHandle: Word = $ffff;
HeapOrg: Pointer absolute HeapLow;
HeapPtr: Pointer absolute HeapHigh;
HeapEnd: Pointer = Pointer (High (PtrCard));
FreeList: Pointer = nil;

FreeZero:

Pointer
StackLimit: Word = O;

HeapList: Word = 0;
HeapLimit: Word = 1024;
HeapBlock: Word = 8192;
HeapAllocFlags: Word = 2;
CmdShow: SystemInteger = O;

Chapter 6: The Programmer’s Guide to GPC

nil;

SaveIntO00: Pointer = nil;
SaveInt02: Pointer = nil;
SaveIntOC: Pointer = nil;
SaveIntOD: Pointer = nil;
SaveInt1B: Pointer = nil;
SaveInt21: Pointer = nil;
SaveInt23: Pointer = nil,;
SaveInt24: Pointer = nil;
SaveInt34: Pointer = nil;
SaveInt35: Pointer = nil;
SaveInt36: Pointer = nil;
SaveInt37: Pointer = nil;
SaveInt38: Pointer = nil;
SaveInt39: Pointer = nil;
SaveInt3A: Pointer = nil;
SaveInt3B: Pointer = nil,;
SaveInt3C: Pointer = nil;
SaveInt3D: Pointer = nil;
SaveInt3E: Pointer = nil;
SaveInt3F: Pointer = nil;
SaveInt75: Pointer = nil;
RealModeRegs: array [0 .. 49] of Byte =
(o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O,
o, o, o, o, o0, 0, 0, 0, 0, O, O, O, O, O, O, O, O,
o, 0, 0, 0, 0, 0, 0, 0);
{ Mostly useless BP compatible pointer functions }
function O0fs (const x): PtrWord; attribute (name = ’_p_0fs’);
function Seg (const x): PtrWord; attribute (name = ’_p_Seg’);
function Ptr (Seg, Ofs: PtrWord): Pointer; attribute (name
=’ _p_Ptr’);
function CSeg: PtrWord; attribute (name = ’_p_CSeg’);
function DSeg: PtrWord; attribute (name = ’_p_DSeg’);
function SSeg: PtrWord; attribute (name = ’_p_SSeg’);
function SPtr: PtrWord; attribute (name = ’_p_SPtr’);

{ Routines to handle BP’s 6 byte ‘Real’ type which is formatted like

this:

47 Sign

Bit |

8..46 Mantissa

| 0..7 Biased Exponent

221

222

The GNU Pascal Manual

This format does not support infinities, NaNs and denormalized
numbers. The first digit after the binary point is not stored and
assumed to be 1. (This is called the normalized representation of
a binary floating point number.)

In GPC, this type is represented by the type ‘BPReal’ which is
binary compatible to BP’s type, and can therefore be used in
connection with binary files used by BP programs.

The functions ‘RealToBPReal’ and ‘BPRealToReal’ convert between
this type and GPC’s ‘Real’ type. Apart from that, ‘BPReal’ should
be treated as opaque.

The variables ‘BPReallgnoreOverflow’ and ‘BPReallgnoreUnderflow’
determine what to do in the case of overflows and underflows. The
default values are BP compatible. }

var
{ Ignore overflows, and use the highest possible value instead. }
BPReallgnoreOverflow: Boolean = False;

{ Ignore underflows, and use O instead. This is BP’s behaviour,
but has the disadvantage of diminishing computation precision. }
BPRealIgnoreUnderflow: Boolean = True;

type
BPReallInteral = Cardinal attribute (Size = 8);
BPReal = record
Format: array [1 .. 6] of BPReallnteral
end;

function RealToBPReal (R: Real): BPReal; attribute (name
= ’_p_RealToBPReal’);

function BPRealToReal (const BR: BPReal): Real; attribute (name
= ’_p_BPRealToReal’);

{ Heap management stuff }
const

{ Possible results for HeapError }
HeapErrorRunError = O;

HeapErrorNil =1;
HeapErrorRetry = 2;
var

{ If assigned to a function, it will be called when memory
allocations do not find enough free memory. Its result
determines if a run time error should be raised (the default),
or nil should be returned, or the allocation should be retried
(causing the routine to be called again if the allocation still

Chapter 6: The Programmer’s Guide to GPC

doesn’t succeed).
Notes:

- Returning nil can cause some routines of the RTS and units
(shipped with GPC or third-party) to crash when they don’t
expect nil, so better don’t use this mechanism, but rather
CGetMem where needed.

- Letting the allocation be retried, of course, only makes sense
if the routine freed some memory before -- otherwise it will
cause an infinite loop! So, a meaningful HeapError routine
should dispose of some temporary objects, if available, and
return HeapErrorRetry, and return HeapErrorRunError when no
(more) of them are available. }

HeapError: “function (Size: Word): SystemInteger = nil;

{ Just returns HeapErrorNil. When this function is assigned to
HeapError, GetMem and New will return a nil pointer instead of
causing a runtime error when the allocation fails. See the comment
for HeapError above. }

function HeapErrorNilReturn (Size: Word): SystemInteger; attribute
(name = ’_p_HeapErrorNilReturn’);

{ Return the total free memory/biggest free memory block. Except
under Win32 and DJGPP, these are expensive routines -- try to
avoid them. Under Win32, MaxAvail returns the same as MemAvail, so
don’t rely on being able to allocate a block of memory as big as
MaxAvail indicates. Generally it’s preferable to not use these
functions at all in order to do a safe allocation, but just try to
allocate the memory needed using CGetMem, and check for a nil
result. What makes these routines unrealiable is, e.g., that on
multi-tasking systems, another process may allocate memory after
you’ve called MemAvail/MaxAvail and before you get to do the next
allocation. Also, please note that some systems over-commit
virtual memory which may cause MemAvail to return a value larger
than the actual (physical plus swap) memory available. Therefore,
if you want to be "sure" (modulo the above restrictions) that the
memory is actually available, use MaxAvail. }

function MemAvail: Cardinal; attribute (name = ’_p_MemAvail’);

function MaxAvail: Cardinal; attribute (name = ’_p_MaxAvail’);

{ Delphi compatibility }

function CompToDouble (x: Comp): Double; attribute (name
= ’_p_CompToDouble’);

function DoubleToComp (x: Double): Comp; attribute (name
= ’_p_DoubleToComp’) ;

function AllocMemCount: SystemInteger; attribute (name
= ’_p_AllocMemCount’);

function AllocMemSize: SizeType; attribute (name

223

224 The GNU Pascal Manual

= ’_p_AllocMemSize’);

procedure Assert (Condition: Boolean); attribute (name
= ’_p_System_Assert’);

procedure DefaultAssertErrorProc (const Message, FileName: String;
LineNumber: SystemInteger; ErrorAddr: Pointer); attribute (name
= ’_p_DefaultAssertErrorProc’);

var
AssertErrorProc: ~“procedure (const Message, FileName: String;
LineNumber: SystemInteger; ErrorAddr: Pointer) =
@DefaultAssertErrorProc;
NoErrMsg: Boolean = False;

6.14.18 Some text file tricks

The following listing contains the interface of the TFDD unit.

This unit provides some tricks with text files, e.g. a “tee” file which causes everything written
to it to be written to two other files.

{ Some text file tricks.
Copyright (C) 2002-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030412}

Chapter 6: The Programmer’s Guide to GPC 225

{$error This unit requires GPC release 20030412 or newer.}
{$endif}

unit TFDD;
interface
uses GPC;

{ Write to multiple files. Everything written to Dest after calling
this procedure will be written to both Filel and File2. Can be
chained. }

procedure MultiFileWrite (var Dest, Filel, File2: AnyFile);
attribute (name = ’_p_MultiFileWrite’);

6.14.19 Trap runtime errors

The following listing contains the interface of the Trap unit.

This unit allows you to trap runtime errors, so a runtime error will not abort the program,
but pass the control back to a point within the program. Use with care, and read the notes in
the interface, please.

{ Trapping runtime errors

The Trap unit allows you to trap runtime errors, so a runtime
error will not abort the program, but pass the control back to a
point within the program.

The usage is simple. The TrapExec procedure can be called with a
function (p) as an argument. p must take a Boolean argument. p
will immediately be called with False given as its argument. When
a runtime error would otherwise be caused while p is active, p
will instead be called again with True as its argument. After p
returns, runtime error trapping ends.

When the program terminates (e.g. by reaching its end or by a Halt
statement) and a runtime error was trapped during the run, Trap
will set the ExitCode and ErrorAddr variables to indicate the
trapped error.

Notes:

- After trapping a runtime error, your program might not be in a
stable state. If the runtime error was a "minor" one (such as a
range checking or arithmetic error), it should not be a problem.
But if you, e.g., write a larger application and use Trap to
prevent a sudden abort caused by an unexpected runtime error,
you should make the program terminate regularly as soon as
possible after a trapped error (perhaps by telling the user to
save the data, then terminate the program and report the bug to
you) .

226 The GNU Pascal Manual

- Since the trapping mechanism *jumps* back, it has all the
negative effects that a (non-local!) ‘goto’ can have! You should
be aware of the consequences of all active procedures being
terminated at an arbitrary point!

- Nested traps are supported, i.e. you can call TrapExec again
within a routine called by another TrapExec instance. Runtime
errors trapped within the inner TrapExec invocation will be
trapped by the inner TrapExec, while runtime errors trapped
after its termination will be trapped by the outer TrapExec
again.

Copyright (C) 1996-2003 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GN