
GNU gettext tools, version 0.18.3
Native Language Support Library and Tools

Edition 0.18.3, 20 December 2013

Ulrich Drepper
Jim Meyering
François Pinard
Bruno Haible

Copyright (C) 1995-1998, 2001-2012 Free Software Foundation, Inc.

This manual is free documentation. It is dually licensed under the GNU FDL and the GNU
GPL. This means that you can redistribute this manual under either of these two licenses,
at your choice.

This manual is covered by the GNU FDL. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License (FDL),
either version 1.2 of the License, or (at your option) any later version published by the Free
Software Foundation (FSF); with no Invariant Sections, with no Front-Cover Text, and
with no Back-Cover Texts. A copy of the license is included in Section C.3 [GNU FDL],
page 231.

This manual is covered by the GNU GPL. You can redistribute it and/or modify it under
the terms of the GNU General Public License (GPL), either version 2 of the License, or (at
your option) any later version published by the Free Software Foundation (FSF). A copy of
the license is included in Section C.1 [GNU GPL], page 216.

i

Table of Contents

1 Introduction . 1
1.1 The Purpose of GNU gettext . 1
1.2 I18n, L10n, and Such . 2
1.3 Aspects in Native Language Support . 3
1.4 Files Conveying Translations . 5
1.5 Overview of GNU gettext . 5

2 The User’s View . 9
2.1 Operating System Installation . 9
2.2 Setting the Locale Used by GUI Programs . 9
2.3 Setting the Locale through Environment Variables 10

2.3.1 Locale Names . 10
2.3.2 Locale Environment Variables . 10
2.3.3 Specifying a Priority List of Languages 11

2.4 Installing Translations for Particular Programs 12

3 The Format of PO Files . 13

4 Preparing Program Sources 19
4.1 Importing the gettext declaration . 19
4.2 Triggering gettext Operations . 19
4.3 Preparing Translatable Strings . 20
4.4 How Marks Appear in Sources . 23
4.5 Marking Translatable Strings . 24
4.6 Special Comments preceding Keywords . 27
4.7 Special Cases of Translatable Strings . 28
4.8 Letting Users Report Translation Bugs . 29
4.9 Marking Proper Names for Translation . 30
4.10 Preparing Library Sources . 31

5 Making the PO Template File 33
5.1 Invoking the xgettext Program . 33

5.1.1 Input file location . 33
5.1.2 Output file location . 33
5.1.3 Choice of input file language . 34
5.1.4 Input file interpretation . 34
5.1.5 Operation mode . 34
5.1.6 Language specific options . 34
5.1.7 Output details . 37
5.1.8 Informative output . 39

ii

6 Creating a New PO File . 40
6.1 Invoking the msginit Program . 40

6.1.1 Input file location . 40
6.1.2 Output file location . 40
6.1.3 Input file syntax . 40
6.1.4 Output details . 41
6.1.5 Informative output . 41

6.2 Filling in the Header Entry . 42

7 Updating Existing PO Files 46
7.1 Invoking the msgmerge Program . 46

7.1.1 Input file location . 46
7.1.2 Operation mode . 46
7.1.3 Output file location . 46
7.1.4 Output file location in update mode . 46
7.1.5 Operation modifiers . 47
7.1.6 Input file syntax . 47
7.1.7 Output details . 47
7.1.8 Informative output . 49

8 Editing PO Files . 50
8.1 KDE’s PO File Editor . 50
8.2 GNOME’s PO File Editor . 50
8.3 Emacs’s PO File Editor . 50

8.3.1 Completing GNU gettext Installation 50
8.3.2 Main PO mode Commands . 51
8.3.3 Entry Positioning . 52
8.3.4 Normalizing Strings in Entries . 54
8.3.5 Translated Entries . 55
8.3.6 Fuzzy Entries . 56
8.3.7 Untranslated Entries . 56
8.3.8 Obsolete Entries . 57
8.3.9 Modifying Translations . 58
8.3.10 Modifying Comments . 60
8.3.11 Details of Sub Edition . 62
8.3.12 C Sources Context . 63
8.3.13 Consulting Auxiliary PO Files . 64

8.4 Using Translation Compendia . 65
8.4.1 Creating Compendia . 65

8.4.1.1 Concatenate PO Files . 65
8.4.1.2 Extract a Message Subset from a PO File 66

8.4.2 Using Compendia . 66
8.4.2.1 Initialize a New Translation File . 66
8.4.2.2 Update an Existing Translation File 66

iii

9 Manipulating PO Files . 67
9.1 Invoking the msgcat Program . 68

9.1.1 Input file location . 68
9.1.2 Output file location . 68
9.1.3 Message selection . 68
9.1.4 Input file syntax . 69
9.1.5 Output details . 69
9.1.6 Informative output . 70

9.2 Invoking the msgconv Program . 70
9.2.1 Input file location . 70
9.2.2 Output file location . 71
9.2.3 Conversion target . 71
9.2.4 Input file syntax . 71
9.2.5 Output details . 71
9.2.6 Informative output . 72

9.3 Invoking the msggrep Program . 72
9.3.1 Input file location . 72
9.3.2 Output file location . 73
9.3.3 Message selection . 73
9.3.4 Input file syntax . 74
9.3.5 Output details . 74
9.3.6 Informative output . 75
9.3.7 Examples . 76

9.4 Invoking the msgfilter Program . 76
9.4.1 Input file location . 76
9.4.2 Output file location . 76
9.4.3 The filter . 76
9.4.4 Useful filter-options when the filter is ‘sed’ 77
9.4.5 Built-in filters . 77
9.4.6 Input file syntax . 77
9.4.7 Output details . 78
9.4.8 Informative output . 79
9.4.9 Examples . 79

9.5 Invoking the msguniq Program . 79
9.5.1 Input file location . 79
9.5.2 Output file location . 80
9.5.3 Message selection . 80
9.5.4 Input file syntax . 80
9.5.5 Output details . 80
9.5.6 Informative output . 81

9.6 Invoking the msgcomm Program . 81
9.6.1 Input file location . 82
9.6.2 Output file location . 82
9.6.3 Message selection . 82
9.6.4 Input file syntax . 82
9.6.5 Output details . 83
9.6.6 Informative output . 84

9.7 Invoking the msgcmp Program . 84

iv

9.7.1 Input file location . 84
9.7.2 Operation modifiers . 84
9.7.3 Input file syntax . 85
9.7.4 Informative output . 85

9.8 Invoking the msgattrib Program . 85
9.8.1 Input file location . 85
9.8.2 Output file location . 85
9.8.3 Message selection . 86
9.8.4 Attribute manipulation . 86
9.8.5 Input file syntax . 87
9.8.6 Output details . 87
9.8.7 Informative output . 88

9.9 Invoking the msgen Program . 88
9.9.1 Input file location . 88
9.9.2 Output file location . 89
9.9.3 Input file syntax . 89
9.9.4 Output details . 89
9.9.5 Informative output . 90

9.10 Invoking the msgexec Program . 90
9.10.1 Input file location . 91
9.10.2 Input file syntax . 91
9.10.3 Informative output . 91

9.11 Highlighting parts of PO files . 91
9.11.1 The --color option . 91
9.11.2 The environment variable TERM . 92
9.11.3 The --style option . 93
9.11.4 Style rules for PO files . 93
9.11.5 Customizing less for viewing PO files 96

9.12 Writing your own programs that process PO files 96

10 Producing Binary MO Files 99
10.1 Invoking the msgfmt Program . 99

10.1.1 Input file location . 99
10.1.2 Operation mode . 99
10.1.3 Output file location . 99
10.1.4 Output file location in Java mode . 100
10.1.5 Output file location in C# mode . 100
10.1.6 Output file location in Tcl mode . 100
10.1.7 Input file syntax . 100
10.1.8 Input file interpretation . 101
10.1.9 Output details . 102
10.1.10 Informative output . 102

10.2 Invoking the msgunfmt Program . 102
10.2.1 Operation mode . 103
10.2.2 Input file location . 103
10.2.3 Input file location in Java mode . 103
10.2.4 Input file location in C# mode . 103
10.2.5 Input file location in Tcl mode . 103

v

10.2.6 Output file location . 104
10.2.7 Output details . 104
10.2.8 Informative output . 105

10.3 The Format of GNU MO Files . 105

11 The Programmer’s View 108
11.1 About catgets . 108

11.1.1 The Interface . 108
11.1.2 Problems with the catgets Interface?! 109

11.2 About gettext . 109
11.2.1 The Interface . 109
11.2.2 Solving Ambiguities . 110
11.2.3 Locating Message Catalog Files . 111
11.2.4 How to specify the output character set gettext uses . . . 111
11.2.5 Using contexts for solving ambiguities 112
11.2.6 Additional functions for plural forms 114
11.2.7 Optimization of the *gettext functions 120

11.3 Comparing the Two Interfaces . 121
11.4 Using libintl.a in own programs . 122
11.5 Being a gettext grok . 122
11.6 Temporary Notes for the Programmers Chapter 123

11.6.1 Temporary - Two Possible Implementations 123
11.6.2 Temporary - About catgets . 124
11.6.3 Temporary - Why a single implementation 124
11.6.4 Temporary - Notes . 125

12 The Translator’s View . 126
12.1 Introduction 0 . 126
12.2 Introduction 1 . 126
12.3 Discussions . 127
12.4 Organization . 128

12.4.1 Central Coordination . 129
12.4.2 National Teams . 129

12.4.2.1 Sub-Cultures . 130
12.4.2.2 Organizational Ideas . 130

12.4.3 Mailing Lists . 130
12.5 Information Flow . 131
12.6 Translating plural forms . 131
12.7 Prioritizing messages: How to determine which messages to

translate first . 133

vi

13 The Maintainer’s View . 135
13.1 Flat or Non-Flat Directory Structures . 135
13.2 Prerequisite Works . 135
13.3 Invoking the gettextize Program . 136
13.4 Files You Must Create or Alter . 139

13.4.1 POTFILES.in in po/ . 139
13.4.2 LINGUAS in po/ . 140
13.4.3 Makevars in po/ . 140
13.4.4 Extending Makefile in po/ . 140
13.4.5 configure.ac at top level . 141
13.4.6 config.guess, config.sub at top level 142
13.4.7 mkinstalldirs at top level . 142
13.4.8 aclocal.m4 at top level . 142
13.4.9 acconfig.h at top level . 143
13.4.10 config.h.in at top level . 143
13.4.11 Makefile.in at top level . 144
13.4.12 Makefile.in in src/ . 145
13.4.13 gettext.h in lib/ . 146

13.5 Autoconf macros for use in configure.ac 147
13.5.1 AM GNU GETTEXT in gettext.m4 147
13.5.2 AM GNU GETTEXT VERSION in gettext.m4 148
13.5.3 AM GNU GETTEXT NEED in gettext.m4 148
13.5.4 AM GNU GETTEXT INTL SUBDIR in intldir.m4 . . 149
13.5.5 AM PO SUBDIRS in po.m4 . 149
13.5.6 AM XGETTEXT OPTION in po.m4 149
13.5.7 AM ICONV in iconv.m4 . 149

13.6 Integrating with CVS . 150
13.6.1 Avoiding version mismatch in distributed development . . 150
13.6.2 Files to put under CVS version control 151
13.6.3 Invoking the autopoint Program . 151

13.6.3.1 Options . 152
13.6.3.2 Informative output . 152

13.7 Creating a Distribution Tarball . 152

14 The Installer’s and Distributor’s View 153

15 Other Programming Languages 154
15.1 The Language Implementor’s View . 154
15.2 The Programmer’s View . 155
15.3 The Translator’s View . 155

15.3.1 C Format Strings . 155
15.3.2 Objective C Format Strings . 156
15.3.3 Shell Format Strings . 156
15.3.4 Python Format Strings . 156
15.3.5 Lisp Format Strings . 156
15.3.6 Emacs Lisp Format Strings . 156
15.3.7 librep Format Strings . 157

vii

15.3.8 Scheme Format Strings . 157
15.3.9 Smalltalk Format Strings . 157
15.3.10 Java Format Strings . 157
15.3.11 C# Format Strings . 157
15.3.12 awk Format Strings . 157
15.3.13 Object Pascal Format Strings . 157
15.3.14 YCP Format Strings . 157
15.3.15 Tcl Format Strings . 157
15.3.16 Perl Format Strings . 158
15.3.17 PHP Format Strings . 158
15.3.18 GCC internal Format Strings . 158
15.3.19 GFC internal Format Strings . 158
15.3.20 Qt Format Strings . 158
15.3.21 Qt Format Strings . 158
15.3.22 KDE Format Strings . 159
15.3.23 Boost Format Strings . 159
15.3.24 Lua Format Strings . 159
15.3.25 JavaScript Format Strings . 159

15.4 The Maintainer’s View . 159
15.5 Individual Programming Languages . 159

15.5.1 C, C++, Objective C . 159
15.5.2 sh - Shell Script . 160

15.5.2.1 Preparing Shell Scripts for Internationalization 161
15.5.2.2 Contents of gettext.sh . 162
15.5.2.3 Invoking the gettext program . 163
15.5.2.4 Invoking the ngettext program 163
15.5.2.5 Invoking the envsubst program 164
15.5.2.6 Invoking the eval_gettext function 165
15.5.2.7 Invoking the eval_ngettext function 165

15.5.3 bash - Bourne-Again Shell Script . 165
15.5.4 Python . 165
15.5.5 GNU clisp - Common Lisp . 167
15.5.6 GNU clisp C sources . 167
15.5.7 Emacs Lisp . 168
15.5.8 librep . 169
15.5.9 GNU guile - Scheme . 170
15.5.10 GNU Smalltalk . 170
15.5.11 Java . 171
15.5.12 C# . 173
15.5.13 GNU awk . 177
15.5.14 Pascal - Free Pascal Compiler . 178
15.5.15 wxWidgets library . 178
15.5.16 YCP - YaST2 scripting language . 179
15.5.17 Tcl - Tk’s scripting language . 180
15.5.18 Perl . 181

15.5.18.1 General Problems Parsing Perl Code 182
15.5.18.2 Which keywords will xgettext look for? 184
15.5.18.3 How to Extract Hash Keys . 185

viii

15.5.18.4 What are Strings And Quote-like Expressions? . . . 185
15.5.18.5 Invalid Uses Of String Interpolation 186
15.5.18.6 Valid Uses Of String Interpolation 188
15.5.18.7 When To Use Parentheses . 189
15.5.18.8 How To Grok with Long Lines 189
15.5.18.9 Bugs, Pitfalls, And Things That Do Not Work . . . 190

15.5.19 PHP Hypertext Preprocessor . 192
15.5.20 Pike . 192
15.5.21 GNU Compiler Collection sources . 193
15.5.22 Lua . 194
15.5.23 JavaScript . 195

15.6 Internationalizable Data . 195
15.6.1 POT - Portable Object Template . 195
15.6.2 Resource String Table . 196
15.6.3 Glade - GNOME user interface description 196

16 Concluding Remarks . 197
16.1 History of GNU gettext . 197
16.2 Related Readings . 198

Appendix A Language Codes 199
A.1 Usual Language Codes . 199
A.2 Rare Language Codes . 205

Appendix B Country Codes 207

Appendix C Licenses . 215
C.1 GNU GENERAL PUBLIC LICENSE . 216

Preamble . 216
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 216
Appendix: How to Apply These Terms to Your New Programs . . 221

C.2 GNU LESSER GENERAL PUBLIC LICENSE 222
Preamble . 222
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 223
How to Apply These Terms to Your New Libraries 230

C.3 GNU Free Documentation License . 231
ADDENDUM: How to use this License for your documents 237

Program Index . 238

Option Index . 239

Variable Index . 240

ix

PO Mode Index . 241

Autoconf Macro Index . 242

General Index . 243

Chapter 1: Introduction 1

1 Introduction

This chapter explains the goals sought in the creation of GNU gettext and the free
Translation Project. Then, it explains a few broad concepts around Native Language Sup-
port, and positions message translation with regard to other aspects of national and cultural
variance, as they apply to programs. It also surveys those files used to convey the transla-
tions. It explains how the various tools interact in the initial generation of these files, and
later, how the maintenance cycle should usually operate.

In this manual, we use he when speaking of the programmer or maintainer, she when
speaking of the translator, and they when speaking of the installers or end users of the
translated program. This is only a convenience for clarifying the documentation. It is
absolutely not meant to imply that some roles are more appropriate to males or females.
Besides, as you might guess, GNU gettext is meant to be useful for people using computers,
whatever their sex, race, religion or nationality!

Please send suggestions and corrections to:

Internet address:
bug-gnu-gettext@gnu.org

Please include the manual’s edition number and update date in your messages.

1.1 The Purpose of GNU gettext

Usually, programs are written and documented in English, and use English at execution
time to interact with users. This is true not only of GNU software, but also of a great deal of
proprietary and free software. Using a common language is quite handy for communication
between developers, maintainers and users from all countries. On the other hand, most
people are less comfortable with English than with their own native language, and would
prefer to use their mother tongue for day to day’s work, as far as possible. Many would
simply love to see their computer screen showing a lot less of English, and far more of their
own language.

However, to many people, this dream might appear so far fetched that they may believe
it is not even worth spending time thinking about it. They have no confidence at all that the
dream might ever become true. Yet some have not lost hope, and have organized themselves.
The Translation Project is a formalization of this hope into a workable structure, which has
a good chance to get all of us nearer the achievement of a truly multi-lingual set of programs.

GNU gettext is an important step for the Translation Project, as it is an asset on which
we may build many other steps. This package offers to programmers, translators and even
users, a well integrated set of tools and documentation. Specifically, the GNU gettext

utilities are a set of tools that provides a framework within which other free packages may
produce multi-lingual messages. These tools include

• A set of conventions about how programs should be written to support message cata-
logs.

• A directory and file naming organization for the message catalogs themselves.

• A runtime library supporting the retrieval of translated messages.

• A few stand-alone programs to massage in various ways the sets of translatable strings,
or already translated strings.

Chapter 1: Introduction 2

• A library supporting the parsing and creation of files containing translated messages.

• A special mode for Emacs1 which helps preparing these sets and bringing them up to
date.

GNU gettext is designed to minimize the impact of internationalization on program
sources, keeping this impact as small and hardly noticeable as possible. Internationalization
has better chances of succeeding if it is very light weighted, or at least, appear to be so,
when looking at program sources.

The Translation Project also uses the GNU gettext distribution as a vehicle for doc-
umenting its structure and methods. This goes beyond the strict technicalities of docu-
menting the GNU gettext proper. By so doing, translators will find in a single place,
as far as possible, all they need to know for properly doing their translating work. Also,
this supplemental documentation might also help programmers, and even curious users, in
understanding how GNU gettext is related to the remainder of the Translation Project,
and consequently, have a glimpse at the big picture.

1.2 I18n, L10n, and Such

Two long words appear all the time when we discuss support of native language in
programs, and these words have a precise meaning, worth being explained here, once and
for all in this document. The words are internationalization and localization. Many people,
tired of writing these long words over and over again, took the habit of writing i18n and l10n
instead, quoting the first and last letter of each word, and replacing the run of intermediate
letters by a number merely telling how many such letters there are. But in this manual, in
the sake of clarity, we will patiently write the names in full, each time. . .

By internationalization, one refers to the operation by which a program, or a set of
programs turned into a package, is made aware of and able to support multiple languages.
This is a generalization process, by which the programs are untied from calling only English
strings or other English specific habits, and connected to generic ways of doing the same,
instead. Program developers may use various techniques to internationalize their programs.
Some of these have been standardized. GNU gettext offers one of these standards. See
Chapter 11 [Programmers], page 108.

By localization, one means the operation by which, in a set of programs already interna-
tionalized, one gives the program all needed information so that it can adapt itself to handle
its input and output in a fashion which is correct for some native language and cultural
habits. This is a particularisation process, by which generic methods already implemented
in an internationalized program are used in specific ways. The programming environment
puts several functions to the programmers disposal which allow this runtime configuration.
The formal description of specific set of cultural habits for some country, together with all
associated translations targeted to the same native language, is called the locale for this
language or country. Users achieve localization of programs by setting proper values to
special environment variables, prior to executing those programs, identifying which locale
should be used.

In fact, locale message support is only one component of the cultural data that makes
up a particular locale. There are a whole host of routines and functions provided to aid

1 In this manual, all mentions of Emacs refers to either GNU Emacs or to XEmacs, which people sometimes
call FSF Emacs and Lucid Emacs, respectively.

Chapter 1: Introduction 3

programmers in developing internationalized software and which allow them to access the
data stored in a particular locale. When someone presently refers to a particular locale,
they are obviously referring to the data stored within that particular locale. Similarly, if a
programmer is referring to “accessing the locale routines”, they are referring to the complete
suite of routines that access all of the locale’s information.

One uses the expression Native Language Support, or merely NLS, for speaking of the
overall activity or feature encompassing both internationalization and localization, allowing
for multi-lingual interactions in a program. In a nutshell, one could say that international-
ization is the operation by which further localizations are made possible.

Also, very roughly said, when it comes to multi-lingual messages, internationalization is
usually taken care of by programmers, and localization is usually taken care of by transla-
tors.

1.3 Aspects in Native Language Support

For a totally multi-lingual distribution, there are many things to translate beyond output
messages.

• As of today, GNU gettext offers a complete toolset for translating messages output
by C programs. Perl scripts and shell scripts will also need to be translated. Even if
there are today some hooks by which this can be done, these hooks are not integrated
as well as they should be.

• Some programs, like autoconf or bison, are able to produce other programs (or
scripts). Even if the generating programs themselves are internationalized, the gen-
erated programs they produce may need internationalization on their own, and this
indirect internationalization could be automated right from the generating program.
In fact, quite usually, generating and generated programs could be internationalized
independently, as the effort needed is fairly orthogonal.

• A few programs include textual tables which might need translation themselves, inde-
pendently of the strings contained in the program itself. For example, RFC 1345 gives
an English description for each character which the recode program is able to recon-
struct at execution. Since these descriptions are extracted from the RFC by mechanical
means, translating them properly would require a prior translation of the RFC itself.

• Almost all programs accept options, which are often worded out so to be descriptive
for the English readers; one might want to consider offering translated versions for
program options as well.

• Many programs read, interpret, compile, or are somewhat driven by input files which
are texts containing keywords, identifiers, or replies which are inherently translatable.
For example, one may want gcc to allow diacriticized characters in identifiers or use
translated keywords; ‘rm -i’ might accept something else than ‘y’ or ‘n’ for replies, etc.
Even if the program will eventually make most of its output in the foreign languages,
one has to decide whether the input syntax, option values, etc., are to be localized or
not.

• The manual accompanying a package, as well as all documentation files in the distri-
bution, could surely be translated, too. Translating a manual, with the intent of later
keeping up with updates, is a major undertaking in itself, generally.

Chapter 1: Introduction 4

As we already stressed, translation is only one aspect of locales. Other internationaliza-
tion aspects are system services and are handled in GNU libc. There are many attributes
that are needed to define a country’s cultural conventions. These attributes include beside
the country’s native language, the formatting of the date and time, the representation of
numbers, the symbols for currency, etc. These local rules are termed the country’s locale.
The locale represents the knowledge needed to support the country’s native attributes.

There are a few major areas which may vary between countries and hence, define what a
locale must describe. The following list helps putting multi-lingual messages into the proper
context of other tasks related to locales. See the GNU libc manual for details.

Characters and Codesets
The codeset most commonly used through out the USA and most English speak-
ing parts of the world is the ASCII codeset. However, there are many char-
acters needed by various locales that are not found within this codeset. The
8-bit ISO 8859-1 code set has most of the special characters needed to handle
the major European languages. However, in many cases, choosing ISO 8859-1
is nevertheless not adequate: it doesn’t even handle the major European cur-
rency. Hence each locale will need to specify which codeset they need to use
and will need to have the appropriate character handling routines to cope with
the codeset.

Currency

The symbols used vary from country to country as does the position used by
the symbol. Software needs to be able to transparently display currency figures
in the native mode for each locale.

Dates

The format of date varies between locales. For example, Christmas day in
1994 is written as 12/25/94 in the USA and as 25/12/94 in Australia. Other
countries might use ISO 8601 dates, etc.

Time of the day may be noted as hh:mm, hh.mm, or otherwise. Some locales
require time to be specified in 24-hour mode rather than as AM or PM. Further,
the nature and yearly extent of the Daylight Saving correction vary widely
between countries.

Numbers

Numbers can be represented differently in different locales. For example, the
following numbers are all written correctly for their respective locales:

12,345.67 English

12.345,67 German

12345,67 French

1,2345.67 Asia

Some programs could go further and use different unit systems, like English
units or Metric units, or even take into account variants about how numbers
are spelled in full.

Messages

Chapter 1: Introduction 5

The most obvious area is the language support within a locale. This is where
GNU gettext provides the means for developers and users to easily change the
language that the software uses to communicate to the user.

These areas of cultural conventions are called locale categories. It is an unfortunate
term; locale aspects or locale feature categories would be a better term, because each “locale
category” describes an area or task that requires localization. The concrete data that
describes the cultural conventions for such an area and for a particular culture is also called
a locale category. In this sense, a locale is composed of several locale categories: the locale
category describing the codeset, the locale category describing the formatting of numbers,
the locale category containing the translated messages, and so on.

Components of locale outside of message handling are standardized in the ISO C standard
and the POSIX:2001 standard (also known as the SUSV3 specification). GNU libc fully
implements this, and most other modern systems provide a more or less reasonable support
for at least some of the missing components.

1.4 Files Conveying Translations

The letters PO in .po files means Portable Object, to distinguish it from .mo files, where
MO stands for Machine Object. This paradigm, as well as the PO file format, is inspired
by the NLS standard developed by Uniforum, and first implemented by Sun in their Solaris
system.

PO files are meant to be read and edited by humans, and associate each original, trans-
latable string of a given package with its translation in a particular target language. A
single PO file is dedicated to a single target language. If a package supports many lan-
guages, there is one such PO file per language supported, and each package has its own set
of PO files. These PO files are best created by the xgettext program, and later updated or
refreshed through the msgmerge program. Program xgettext extracts all marked messages
from a set of C files and initializes a PO file with empty translations. Program msgmerge

takes care of adjusting PO files between releases of the corresponding sources, commenting
obsolete entries, initializing new ones, and updating all source line references. Files ending
with .pot are kind of base translation files found in distributions, in PO file format.

MO files are meant to be read by programs, and are binary in nature. A few systems
already offer tools for creating and handling MO files as part of the Native Language Support
coming with the system, but the format of these MO files is often different from system to
system, and non-portable. The tools already provided with these systems don’t support all
the features of GNU gettext. Therefore GNU gettext uses its own format for MO files.
Files ending with .gmo are really MO files, when it is known that these files use the GNU
format.

1.5 Overview of GNU gettext

The following diagram summarizes the relation between the files handled by GNU
gettext and the tools acting on these files. It is followed by somewhat detailed explanations,
which you should read while keeping an eye on the diagram. Having a clear understanding
of these interrelations will surely help programmers, translators and maintainers.

Chapter 1: Introduction 6

Original C Sources ---> Preparation ---> Marked C Sources ---.

|

.---------<--- GNU gettext Library |

.--- make <---+ |

| ‘---------<--------------------+---------------’

| |

| .-----<--- PACKAGE.pot <--- xgettext <---’ .---<--- PO Compendium

| | | ^

| | ‘---. |

| ‘---. +---> PO editor ---.

| +----> msgmerge ------> LANG.po ---->--------’ |

| .---’ |

| | |

| ‘-------------<---------------. |

| +--- New LANG.po <--------------------’

| .--- LANG.gmo <--- msgfmt <---’

| |

| ‘---> install ---> /.../LANG/PACKAGE.mo ---.

| +---> "Hello world!"

‘-------> install ---> /.../bin/PROGRAM -------’

As a programmer, the first step to bringing GNU gettext into your package is identify-
ing, right in the C sources, those strings which are meant to be translatable, and those which
are untranslatable. This tedious job can be done a little more comfortably using emacs PO
mode, but you can use any means familiar to you for modifying your C sources. Beside
this some other simple, standard changes are needed to properly initialize the translation
library. See Chapter 4 [Sources], page 19, for more information about all this.

For newly written software the strings of course can and should be marked while writing
it. The gettext approach makes this very easy. Simply put the following lines at the
beginning of each file or in a central header file:

#define _(String) (String)

#define N_(String) String

#define textdomain(Domain)

#define bindtextdomain(Package, Directory)

Doing this allows you to prepare the sources for internationalization. Later when you
feel ready for the step to use the gettext library simply replace these definitions by the
following:

#include <libintl.h>

#define _(String) gettext (String)

#define gettext_noop(String) String

#define N_(String) gettext_noop (String)

and link against libintl.a or libintl.so. Note that on GNU systems, you don’t need
to link with libintl because the gettext library functions are already contained in GNU
libc. That is all you have to change.

Once the C sources have been modified, the xgettext program is used to find and extract
all translatable strings, and create a PO template file out of all these. This package.pot file

Chapter 1: Introduction 7

contains all original program strings. It has sets of pointers to exactly where in C sources
each string is used. All translations are set to empty. The letter t in .pot marks this
as a Template PO file, not yet oriented towards any particular language. See Section 5.1
[xgettext Invocation], page 33, for more details about how one calls the xgettext program.
If you are really lazy, you might be interested at working a lot more right away, and preparing
the whole distribution setup (see Chapter 13 [Maintainers], page 135). By doing so, you
spare yourself typing the xgettext command, as make should now generate the proper
things automatically for you!

The first time through, there is no lang.po yet, so the msgmerge step may be skipped
and replaced by a mere copy of package.pot to lang.po, where lang represents the target
language. See Chapter 6 [Creating], page 40 for details.

Then comes the initial translation of messages. Translation in itself is a whole matter,
still exclusively meant for humans, and whose complexity far overwhelms the level of this
manual. Nevertheless, a few hints are given in some other chapter of this manual (see
Chapter 12 [Translators], page 126). You will also find there indications about how to
contact translating teams, or becoming part of them, for sharing your translating concerns
with others who target the same native language.

While adding the translated messages into the lang.po PO file, if you are not using one
of the dedicated PO file editors (see Chapter 8 [Editing], page 50), you are on your own
for ensuring that your efforts fully respect the PO file format, and quoting conventions (see
Chapter 3 [PO Files], page 13). This is surely not an impossible task, as this is the way
many people have handled PO files around 1995. On the other hand, by using a PO file
editor, most details of PO file format are taken care of for you, but you have to acquire
some familiarity with PO file editor itself.

If some common translations have already been saved into a compendium PO file, trans-
lators may use PO mode for initializing untranslated entries from the compendium, and
also save selected translations into the compendium, updating it (see Section 8.4 [Com-
pendium], page 65). Compendium files are meant to be exchanged between members of a
given translation team.

Programs, or packages of programs, are dynamic in nature: users write bug reports and
suggestion for improvements, maintainers react by modifying programs in various ways.
The fact that a package has already been internationalized should not make maintainers
shy of adding new strings, or modifying strings already translated. They just do their job
the best they can. For the Translation Project to work smoothly, it is important that
maintainers do not carry translation concerns on their already loaded shoulders, and that
translators be kept as free as possible of programming concerns.

The only concern maintainers should have is carefully marking new strings as translat-
able, when they should be, and do not otherwise worry about them being translated, as
this will come in proper time. Consequently, when programs and their strings are adjusted
in various ways by maintainers, and for matters usually unrelated to translation, xgettext
would construct package.pot files which are evolving over time, so the translations carried
by lang.po are slowly fading out of date.

It is important for translators (and even maintainers) to understand that package trans-
lation is a continuous process in the lifetime of a package, and not something which is done
once and for all at the start. After an initial burst of translation activity for a given package,

Chapter 1: Introduction 8

interventions are needed once in a while, because here and there, translated entries become
obsolete, and new untranslated entries appear, needing translation.

The msgmerge program has the purpose of refreshing an already existing lang.po file,
by comparing it with a newer package.pot template file, extracted by xgettext out of
recent C sources. The refreshing operation adjusts all references to C source locations for
strings, since these strings move as programs are modified. Also, msgmerge comments out
as obsolete, in lang.po, those already translated entries which are no longer used in the
program sources (see Section 8.3.8 [Obsolete Entries], page 57). It finally discovers new
strings and inserts them in the resulting PO file as untranslated entries (see Section 8.3.7
[Untranslated Entries], page 56). See Section 7.1 [msgmerge Invocation], page 46, for more
information about what msgmerge really does.

Whatever route or means taken, the goal is to obtain an updated lang.po file offering
translations for all strings.

The temporal mobility, or fluidity of PO files, is an integral part of the translation game,
and should be well understood, and accepted. People resisting it will have a hard time
participating in the Translation Project, or will give a hard time to other participants! In
particular, maintainers should relax and include all available official PO files in their dis-
tributions, even if these have not recently been updated, without exerting pressure on the
translator teams to get the job done. The pressure should rather come from the commu-
nity of users speaking a particular language, and maintainers should consider themselves
fairly relieved of any concern about the adequacy of translation files. On the other hand,
translators should reasonably try updating the PO files they are responsible for, while the
package is undergoing pretest, prior to an official distribution.

Once the PO file is complete and dependable, the msgfmt program is used for turning the
PO file into a machine-oriented format, which may yield efficient retrieval of translations
by the programs of the package, whenever needed at runtime (see Section 10.3 [MO Files],
page 105). See Section 10.1 [msgfmt Invocation], page 99, for more information about all
modes of execution for the msgfmt program.

Finally, the modified and marked C sources are compiled and linked with the GNU
gettext library, usually through the operation of make, given a suitable Makefile exists
for the project, and the resulting executable is installed somewhere users will find it. The
MO files themselves should also be properly installed. Given the appropriate environment
variables are set (see Section 2.3 [Setting the POSIX Locale], page 10), the program should
localize itself automatically, whenever it executes.

The remainder of this manual has the purpose of explaining in depth the various steps
outlined above.

Chapter 2: The User’s View 9

2 The User’s View

Nowadays, when users log into a computer, they usually find that all their programs
show messages in their native language – at least for users of languages with an active free
software community, like French or German; to a lesser extent for languages with a smaller
participation in free software and the GNU project, like Hindi and Filipino.

How does this work? How can the user influence the language that is used by the
programs? This chapter will answer it.

2.1 Operating System Installation

The default language is often already specified during operating system installation.
When the operating system is installed, the installer typically asks for the language used
for the installation process and, separately, for the language to use in the installed system.
Some OS installers only ask for the language once.

This determines the system-wide default language for all users. But the installers often
give the possibility to install extra localizations for additional languages. For example, the
localizations of KDE (the K Desktop Environment) and OpenOffice.org are often bundled
separately, as one installable package per language.

At this point it is good to consider the intended use of the machine: If it is a machine
designated for personal use, additional localizations are probably not necessary. If, however,
the machine is in use in an organization or company that has international relationships,
one can consider the needs of guest users. If you have a guest from abroad, for a week,
what could be his preferred locales? It may be worth installing these additional localizations
ahead of time, since they cost only a bit of disk space at this point.

The system-wide default language is the locale configuration that is used when a new
user account is created. But the user can have his own locale configuration that is different
from the one of the other users of the same machine. He can specify it, typically after the
first login, as described in the next section.

2.2 Setting the Locale Used by GUI Programs

The immediately available programs in a user’s desktop come from a group of programs
called a “desktop environment”; it usually includes the window manager, a web browser, a
text editor, and more. The most common free desktop environments are KDE, GNOME,
and Xfce.

The locale used by GUI programs of the desktop environment can be specified in a
configuration screen called “control center”, “language settings” or “country settings”.

Individual GUI programs that are not part of the desktop environment can have their
locale specified either in a settings panel, or through environment variables.

For some programs, it is possible to specify the locale through environment variables,
possibly even to a different locale than the desktop’s locale. This means, instead of starting
a program through a menu or from the file system, you can start it from the command-
line, after having set some environment variables. The environment variables can be those
specified in the next section (Section 2.3 [Setting the POSIX Locale], page 10); for some
versions of KDE, however, the locale is specified through a variable KDE_LANG, rather than
LANG or LC_ALL.

Chapter 2: The User’s View 10

2.3 Setting the Locale through Environment Variables

As a user, if your language has been installed for this package, in the simplest case, you
only have to set the LANG environment variable to the appropriate ‘ll_CC’ combination.
For example, let’s suppose that you speak German and live in Germany. At the shell
prompt, merely execute ‘setenv LANG de_DE’ (in csh), ‘export LANG; LANG=de_DE’ (in sh)
or ‘export LANG=de_DE’ (in bash). This can be done from your .login or .profile file,
once and for all.

2.3.1 Locale Names

A locale name usually has the form ‘ll_CC’. Here ‘ll’ is an ISO 639 two-letter language
code, and ‘CC’ is an ISO 3166 two-letter country code. For example, for German in Germany,
ll is de, and CC is DE. You find a list of the language codes in appendix Appendix A
[Language Codes], page 199 and a list of the country codes in appendix Appendix B [Country
Codes], page 207.

You might think that the country code specification is redundant. But in fact, some
languages have dialects in different countries. For example, ‘de_AT’ is used for Austria, and
‘pt_BR’ for Brazil. The country code serves to distinguish the dialects.

Many locale names have an extended syntax ‘ll_CC.encoding’ that also specifies the
character encoding. These are in use because between 2000 and 2005, most users have
switched to locales in UTF-8 encoding. For example, the German locale on glibc systems
is nowadays ‘de_DE.UTF-8’. The older name ‘de_DE’ still refers to the German locale as
of 2000 that stores characters in ISO-8859-1 encoding – a text encoding that cannot even
accommodate the Euro currency sign.

Some locale names use ‘ll_CC.@variant’ instead of ‘ll_CC’. The ‘@variant’ can denote
any kind of characteristics that is not already implied by the language ll and the country
CC. It can denote a particular monetary unit. For example, on glibc systems, ‘de_DE@euro’
denotes the locale that uses the Euro currency, in contrast to the older locale ‘de_DE’ which
implies the use of the currency before 2002. It can also denote a dialect of the language,
or the script used to write text (for example, ‘sr_RS@latin’ uses the Latin script, whereas
‘sr_RS’ uses the Cyrillic script to write Serbian), or the orthography rules, or similar.

On other systems, some variations of this scheme are used, such as ‘ll’. You can get
the list of locales supported by your system for your language by running the command
‘locale -a | grep ’^ll’’.

There is also a special locale, called ‘C’. When it is used, it disables all localization: in
this locale, all programs standardized by POSIX use English messages and an unspecified
character encoding (often US-ASCII, but sometimes also ISO-8859-1 or UTF-8, depending
on the operating system).

2.3.2 Locale Environment Variables

A locale is composed of several locale categories, see Section 1.3 [Aspects], page 3. When
a program looks up locale dependent values, it does this according to the following environ-
ment variables, in priority order:

1. LANGUAGE

2. LC_ALL

Chapter 2: The User’s View 11

3. LC_xxx, according to selected locale category: LC_CTYPE, LC_NUMERIC, LC_TIME, LC_
COLLATE, LC_MONETARY, LC_MESSAGES, ...

4. LANG

Variables whose value is set but is empty are ignored in this lookup.

LANG is the normal environment variable for specifying a locale. As a user, you normally
set this variable (unless some of the other variables have already been set by the system, in
/etc/profile or similar initialization files).

LC_CTYPE, LC_NUMERIC, LC_TIME, LC_COLLATE, LC_MONETARY, LC_MESSAGES, and so on,
are the environment variables meant to override LANG and affecting a single locale category
only. For example, assume you are a Swedish user in Spain, and you want your programs to
handle numbers and dates according to Spanish conventions, and only the messages should
be in Swedish. Then you could create a locale named ‘sv_ES’ or ‘sv_ES.UTF-8’ by use of
the localedef program. But it is simpler, and achieves the same effect, to set the LANG

variable to es_ES.UTF-8 and the LC_MESSAGES variable to sv_SE.UTF-8; these two locales
come already preinstalled with the operating system.

LC_ALL is an environment variable that overrides all of these. It is typically used in scripts
that run particular programs. For example, configure scripts generated by GNU autoconf
use LC_ALL to make sure that the configuration tests don’t operate in locale dependent
ways.

Some systems, unfortunately, set LC_ALL in /etc/profile or in similar initialization
files. As a user, you therefore have to unset this variable if you want to set LANG and
optionally some of the other LC_xxx variables.

The LANGUAGE variable is described in the next subsection.

2.3.3 Specifying a Priority List of Languages

Not all programs have translations for all languages. By default, an English message is
shown in place of a nonexistent translation. If you understand other languages, you can
set up a priority list of languages. This is done through a different environment variable,
called LANGUAGE. GNU gettext gives preference to LANGUAGE over LC_ALL and LANG for the
purpose of message handling, but you still need to have LANG (or LC_ALL) set to the primary
language; this is required by other parts of the system libraries. For example, some Swedish
users who would rather read translations in German than English for when Swedish is not
available, set LANGUAGE to ‘sv:de’ while leaving LANG to ‘sv_SE’.

Special advice for Norwegian users: The language code for Norwegian bokm̊al changed
from ‘no’ to ‘nb’ recently (in 2003). During the transition period, while some message
catalogs for this language are installed under ‘nb’ and some older ones under ‘no’, it is
recommended for Norwegian users to set LANGUAGE to ‘nb:no’ so that both newer and older
translations are used.

In the LANGUAGE environment variable, but not in the other environment variables,
‘ll_CC’ combinations can be abbreviated as ‘ll’ to denote the language’s main dialect.
For example, ‘de’ is equivalent to ‘de_DE’ (German as spoken in Germany), and ‘pt’ to
‘pt_PT’ (Portuguese as spoken in Portugal) in this context.

Note: The variable LANGUAGE is ignored if the locale is set to ‘C’. In other words, you
have to first enable localization, by setting LANG (or LC_ALL) to a value other than ‘C’,
before you can use a language priority list through the LANGUAGE variable.

Chapter 2: The User’s View 12

2.4 Installing Translations for Particular Programs

Languages are not equally well supported in all packages using GNU gettext, and more
translations are added over time. Usually, you use the translations that are shipped with
the operating system or with particular packages that you install afterwards. But you can
also install newer localizations directly. For doing this, you will need an understanding
where each localization file is stored on the file system.

For programs that participate in the Translation Project, you can start looking for
translations here: http://translationproject.org/team/index.html. A snapshot of
this information is also found in the ABOUT-NLS file that is shipped with GNU gettext.

For programs that are part of the KDE project, the starting point is: http://i18n.

kde.org/.

For programs that are part of the GNOME project, the starting point is: http://www.
gnome.org/i18n/.

For other programs, you may check whether the program’s source code package contains
some ll.po files; often they are kept together in a directory called po/. Each ll.po file
contains the message translations for the language whose abbreviation of ll.

http://translationproject.org/team/index.html
http://i18n.kde.org/
http://i18n.kde.org/
http://www.gnome.org/i18n/
http://www.gnome.org/i18n/

Chapter 3: The Format of PO Files 13

3 The Format of PO Files

The GNU gettext toolset helps programmers and translators at producing, updating
and using translation files, mainly those PO files which are textual, editable files. This
chapter explains the format of PO files.

A PO file is made up of many entries, each entry holding the relation between an original
untranslated string and its corresponding translation. All entries in a given PO file usually
pertain to a single project, and all translations are expressed in a single target language.
One PO file entry has the following schematic structure:

white-space

translator-comments

#. extracted-comments

#: reference...

#, flag...

#| msgid previous-untranslated-string

msgid untranslated-string

msgstr translated-string

The general structure of a PO file should be well understood by the translator. When
using PO mode, very little has to be known about the format details, as PO mode takes
care of them for her.

A simple entry can look like this:

#: lib/error.c:116

msgid "Unknown system error"

msgstr "Error desconegut del sistema"

Entries begin with some optional white space. Usually, when generated through GNU
gettext tools, there is exactly one blank line between entries. Then comments follow, on
lines all starting with the character #. There are two kinds of comments: those which have
some white space immediately following the # - the translator comments -, which comments
are created and maintained exclusively by the translator, and those which have some non-
white character just after the # - the automatic comments -, which comments are created
and maintained automatically by GNU gettext tools. Comment lines starting with #.

contain comments given by the programmer, directed at the translator; these comments are
called extracted comments because the xgettext program extracts them from the program’s
source code. Comment lines starting with #: contain references to the program’s source
code. Comment lines starting with #, contain flags; more about these below. Comment
lines starting with #| contain the previous untranslated string for which the translator gave
a translation.

All comments, of either kind, are optional.

After white space and comments, entries show two strings, namely first the untranslated
string as it appears in the original program sources, and then, the translation of this string.
The original string is introduced by the keyword msgid, and the translation, by msgstr.
The two strings, untranslated and translated, are quoted in various ways in the PO file,
using " delimiters and \ escapes, but the translator does not really have to pay attention
to the precise quoting format, as PO mode fully takes care of quoting for her.

Chapter 3: The Format of PO Files 14

The msgid strings, as well as automatic comments, are produced and managed by other
GNU gettext tools, and PO mode does not provide means for the translator to alter these.
The most she can do is merely deleting them, and only by deleting the whole entry. On
the other hand, the msgstr string, as well as translator comments, are really meant for the
translator, and PO mode gives her the full control she needs.

The comment lines beginning with #, are special because they are not completely ignored
by the programs as comments generally are. The comma separated list of flags is used by
the msgfmt program to give the user some better diagnostic messages. Currently there are
two forms of flags defined:

fuzzy This flag can be generated by the msgmerge program or it can be inserted by
the translator herself. It shows that the msgstr string might not be a correct
translation (anymore). Only the translator can judge if the translation requires
further modification, or is acceptable as is. Once satisfied with the translation,
she then removes this fuzzy attribute. The msgmerge program inserts this
when it combined the msgid and msgstr entries after fuzzy search only. See
Section 8.3.6 [Fuzzy Entries], page 56.

c-format

no-c-format

These flags should not be added by a human. Instead only the xgettext

program adds them. In an automated PO file processing system as proposed
here, the user’s changes would be thrown away again as soon as the xgettext

program generates a new template file.

The c-format flag indicates that the untranslated string and the translation
are supposed to be C format strings. The no-c-format flag indicates that they
are not C format strings, even though the untranslated string happens to look
like a C format string (with ‘%’ directives).

When the c-format flag is given for a string the msgfmt program does some
more tests to check the validity of the translation. See Section 10.1 [msgfmt
Invocation], page 99, Section 4.6 [c-format Flag], page 27 and Section 15.3.1
[c-format], page 155.

objc-format

no-objc-format

Likewise for Objective C, see Section 15.3.2 [objc-format], page 156.

sh-format

no-sh-format

Likewise for Shell, see Section 15.3.3 [sh-format], page 156.

python-format

no-python-format

Likewise for Python, see Section 15.3.4 [python-format], page 156.

python-brace-format

no-python-brace-format

Likewise for Python brace, see Section 15.3.4 [python-format], page 156.

Chapter 3: The Format of PO Files 15

lisp-format

no-lisp-format

Likewise for Lisp, see Section 15.3.5 [lisp-format], page 156.

elisp-format

no-elisp-format

Likewise for Emacs Lisp, see Section 15.3.6 [elisp-format], page 156.

librep-format

no-librep-format

Likewise for librep, see Section 15.3.7 [librep-format], page 157.

scheme-format

no-scheme-format

Likewise for Scheme, see Section 15.3.8 [scheme-format], page 157.

smalltalk-format

no-smalltalk-format

Likewise for Smalltalk, see Section 15.3.9 [smalltalk-format], page 157.

java-format

no-java-format

Likewise for Java, see Section 15.3.10 [java-format], page 157.

csharp-format

no-csharp-format

Likewise for C#, see Section 15.3.11 [csharp-format], page 157.

awk-format

no-awk-format

Likewise for awk, see Section 15.3.12 [awk-format], page 157.

object-pascal-format

no-object-pascal-format

Likewise for Object Pascal, see Section 15.3.13 [object-pascal-format], page 157.

ycp-format

no-ycp-format

Likewise for YCP, see Section 15.3.14 [ycp-format], page 157.

tcl-format

no-tcl-format

Likewise for Tcl, see Section 15.3.15 [tcl-format], page 157.

perl-format

no-perl-format

Likewise for Perl, see Section 15.3.16 [perl-format], page 158.

perl-brace-format

no-perl-brace-format

Likewise for Perl brace, see Section 15.3.16 [perl-format], page 158.

php-format

no-php-format

Likewise for PHP, see Section 15.3.17 [php-format], page 158.

Chapter 3: The Format of PO Files 16

gcc-internal-format

no-gcc-internal-format

Likewise for the GCC sources, see Section 15.3.18 [gcc-internal-format],
page 158.

gfc-internal-format

no-gfc-internal-format

Likewise for the GNU Fortran Compiler sources, see Section 15.3.19
[gfc-internal-format], page 158.

qt-format

no-qt-format

Likewise for Qt, see Section 15.3.20 [qt-format], page 158.

qt-plural-format

no-qt-plural-format

Likewise for Qt plural forms, see Section 15.3.21 [qt-plural-format], page 158.

kde-format

no-kde-format

Likewise for KDE, see Section 15.3.22 [kde-format], page 159.

boost-format

no-boost-format

Likewise for Boost, see Section 15.3.23 [boost-format], page 159.

lua-format

no-lua-format

Likewise for Lua, see Section 15.3.24 [lua-format], page 159.

javascript-format

no-javascript-format

Likewise for JavaScript, see Section 15.3.25 [javascript-format], page 159.

It is also possible to have entries with a context specifier. They look like this:

white-space

translator-comments

#. extracted-comments

#: reference...

#, flag...

#| msgctxt previous-context

#| msgid previous-untranslated-string

msgctxt context

msgid untranslated-string

msgstr translated-string

The context serves to disambiguate messages with the same untranslated-string. It is
possible to have several entries with the same untranslated-string in a PO file, provided
that they each have a different context. Note that an empty context string and an absent
msgctxt line do not mean the same thing.

A different kind of entries is used for translations which involve plural forms.

Chapter 3: The Format of PO Files 17

white-space

translator-comments

#. extracted-comments

#: reference...

#, flag...

#| msgid previous-untranslated-string-singular

#| msgid_plural previous-untranslated-string-plural

msgid untranslated-string-singular

msgid_plural untranslated-string-plural

msgstr[0] translated-string-case-0

...

msgstr[N] translated-string-case-n

Such an entry can look like this:

#: src/msgcmp.c:338 src/po-lex.c:699

#, c-format

msgid "found %d fatal error"

msgid_plural "found %d fatal errors"

msgstr[0] "s’ha trobat %d error fatal"

msgstr[1] "s’han trobat %d errors fatals"

Here also, a msgctxt context can be specified before msgid, like above.

Here, additional kinds of flags can be used:

range: This flag is followed by a range of non-negative numbers, using the syntax
range: minimum-value..maximum-value. It designates the possible values
that the numeric parameter of the message can take. In some languages, trans-
lators may produce slightly better translations if they know that the value can
only take on values between 0 and 10, for example.

The previous-untranslated-string is optionally inserted by the msgmerge program, at the
same time when it marks a message fuzzy. It helps the translator to see which changes were
done by the developers on the untranslated-string.

It happens that some lines, usually whitespace or comments, follow the very last entry
of a PO file. Such lines are not part of any entry, and will be dropped when the PO file is
processed by the tools, or may disturb some PO file editors.

The remainder of this section may be safely skipped by those using a PO file editor,
yet it may be interesting for everybody to have a better idea of the precise format of a PO
file. On the other hand, those wishing to modify PO files by hand should carefully continue
reading on.

An empty untranslated-string is reserved to contain the header entry with the meta
information (see Section 6.2 [Header Entry], page 42). This header entry should be the first
entry of the file. The empty untranslated-string is reserved for this purpose and must not
be used anywhere else.

Each of untranslated-string and translated-string respects the C syntax for a charac-
ter string, including the surrounding quotes and embedded backslashed escape sequences.
When the time comes to write multi-line strings, one should not use escaped newlines. In-
stead, a closing quote should follow the last character on the line to be continued, and an

Chapter 3: The Format of PO Files 18

opening quote should resume the string at the beginning of the following PO file line. For
example:

msgid ""

"Here is an example of how one might continue a very long string\n"

"for the common case the string represents multi-line output.\n"

In this example, the empty string is used on the first line, to allow better alignment of the
H from the word ‘Here’ over the f from the word ‘for’. In this example, the msgid keyword
is followed by three strings, which are meant to be concatenated. Concatenating the empty
string does not change the resulting overall string, but it is a way for us to comply with the
necessity of msgid to be followed by a string on the same line, while keeping the multi-line
presentation left-justified, as we find this to be a cleaner disposition. The empty string
could have been omitted, but only if the string starting with ‘Here’ was promoted on the
first line, right after msgid.1 It was not really necessary either to switch between the two
last quoted strings immediately after the newline ‘\n’, the switch could have occurred after
any other character, we just did it this way because it is neater.

One should carefully distinguish between end of lines marked as ‘\n’ inside quotes, which
are part of the represented string, and end of lines in the PO file itself, outside string quotes,
which have no incidence on the represented string.

Outside strings, white lines and comments may be used freely. Comments start at the
beginning of a line with ‘#’ and extend until the end of the PO file line. Comments written
by translators should have the initial ‘#’ immediately followed by some white space. If the
‘#’ is not immediately followed by white space, this comment is most likely generated and
managed by specialized GNU tools, and might disappear or be replaced unexpectedly when
the PO file is given to msgmerge.

1 This limitation is not imposed by GNU gettext, but is for compatibility with the msgfmt implementation
on Solaris.

Chapter 4: Preparing Program Sources 19

4 Preparing Program Sources

For the programmer, changes to the C source code fall into three categories. First, you
have to make the localization functions known to all modules needing message translation.
Second, you should properly trigger the operation of GNU gettext when the program
initializes, usually from the main function. Last, you should identify, adjust and mark all
constant strings in your program needing translation.

4.1 Importing the gettext declaration

Presuming that your set of programs, or package, has been adjusted so all needed GNU
gettext files are available, and your Makefile files are adjusted (see Chapter 13 [Main-
tainers], page 135), each C module having translated C strings should contain the line:

#include <libintl.h>

Similarly, each C module containing printf()/fprintf()/... calls with a format string
that could be a translated C string (even if the C string comes from a different C module)
should contain the line:

#include <libintl.h>

4.2 Triggering gettext Operations

The initialization of locale data should be done with more or less the same code in every
program, as demonstrated below:

int

main (int argc, char *argv[])

{

...

setlocale (LC_ALL, "");

bindtextdomain (PACKAGE, LOCALEDIR);

textdomain (PACKAGE);

...

}

PACKAGE and LOCALEDIR should be provided either by config.h or by the Makefile.
For now consult the gettext or hello sources for more information.

The use of LC_ALLmight not be appropriate for you. LC_ALL includes all locale categories
and especially LC_CTYPE. This latter category is responsible for determining character
classes with the isalnum etc. functions from ctype.h which could especially for programs,
which process some kind of input language, be wrong. For example this would mean that
a source code using the ç (c-cedilla character) is runnable in France but not in the U.S.

Some systems also have problems with parsing numbers using the scanf functions if an
other but the LC_ALL locale category is used. The standards say that additional formats
but the one known in the "C" locale might be recognized. But some systems seem to reject
numbers in the "C" locale format. In some situation, it might also be a problem with the
notation itself which makes it impossible to recognize whether the number is in the "C"

locale or the local format. This can happen if thousands separator characters are used.

Chapter 4: Preparing Program Sources 20

Some locales define this character according to the national conventions to ’.’ which is the
same character used in the "C" locale to denote the decimal point.

So it is sometimes necessary to replace the LC_ALL line in the code above by a sequence
of setlocale lines

{

...

setlocale (LC_CTYPE, "");

setlocale (LC_MESSAGES, "");

...

}

On all POSIX conformant systems the locale categories LC_CTYPE, LC_MESSAGES, LC_

COLLATE, LC_MONETARY, LC_NUMERIC, and LC_TIME are available. On some systems which
are only ISO C compliant, LC_MESSAGES is missing, but a substitute for it is defined in GNU
gettext’s <libintl.h> and in GNU gnulib’s <locale.h>.

Note that changing the LC_CTYPE also affects the functions declared in the <ctype.h>

standard header and some functions declared in the <string.h> and <stdlib.h> standard
headers. If this is not desirable in your application (for example in a compiler’s parser),
you can use a set of substitute functions which hardwire the C locale, such as found in
the modules ‘c-ctype’, ‘c-strcase’, ‘c-strcasestr’, ‘c-strtod’, ‘c-strtold’ in the GNU
gnulib source distribution.

It is also possible to switch the locale forth and back between the environment dependent
locale and the C locale, but this approach is normally avoided because a setlocale call is
expensive, because it is tedious to determine the places where a locale switch is needed in
a large program’s source, and because switching a locale is not multithread-safe.

4.3 Preparing Translatable Strings

Before strings can be marked for translations, they sometimes need to be adjusted.
Usually preparing a string for translation is done right before marking it, during the marking
phase which is described in the next sections. What you have to keep in mind while doing
that is the following.

• Decent English style.

• Entire sentences.

• Split at paragraphs.

• Use format strings instead of string concatenation.

• Avoid unusual markup and unusual control characters.

Let’s look at some examples of these guidelines.

Translatable strings should be in good English style. If slang language with abbreviations
and shortcuts is used, often translators will not understand the message and will produce
very inappropriate translations.

"%s: is parameter\n"

This is nearly untranslatable: Is the displayed item a parameter or the parameter?

"No match"

Chapter 4: Preparing Program Sources 21

The ambiguity in this message makes it unintelligible: Is the program attempting to set
something on fire? Does it mean "The given object does not match the template"? Does
it mean "The template does not fit for any of the objects"?

In both cases, adding more words to the message will help both the translator and the
English speaking user.

Translatable strings should be entire sentences. It is often not possible to translate single
verbs or adjectives in a substitutable way.

printf ("File %s is %s protected", filename, rw ? "write" : "read");

Most translators will not look at the source and will thus only see the string "File %s is

%s protected", which is unintelligible. Change this to

printf (rw ? "File %s is write protected" : "File %s is read protected",

filename);

This way the translator will not only understand the message, she will also be able to
find the appropriate grammatical construction. A French translator for example translates
"write protected" like "protected against writing".

Entire sentences are also important because in many languages, the declination of some
word in a sentence depends on the gender or the number (singular/plural) of another part
of the sentence. There are usually more interdependencies between words than in English.
The consequence is that asking a translator to translate two half-sentences and then com-
bining these two half-sentences through dumb string concatenation will not work, for many
languages, even though it would work for English. That’s why translators need to handle
entire sentences.

Often sentences don’t fit into a single line. If a sentence is output using two subsequent
printf statements, like this

printf ("Locale charset \"%s\" is different from\n", lcharset);

printf ("input file charset \"%s\".\n", fcharset);

the translator would have to translate two half sentences, but nothing in the POT file would
tell her that the two half sentences belong together. It is necessary to merge the two printf
statements so that the translator can handle the entire sentence at once and decide at which
place to insert a line break in the translation (if at all):

printf ("Locale charset \"%s\" is different from\n\

input file charset \"%s\".\n", lcharset, fcharset);

You may now ask: how about two or more adjacent sentences? Like in this case:

puts ("Apollo 13 scenario: Stack overflow handling failed.");

puts ("On the next stack overflow we will crash!!!");

Should these two statements merged into a single one? I would recommend to merge
them if the two sentences are related to each other, because then it makes it easier for the
translator to understand and translate both. On the other hand, if one of the two messages
is a stereotypic one, occurring in other places as well, you will do a favour to the translator
by not merging the two. (Identical messages occurring in several places are combined by
xgettext, so the translator has to handle them once only.)

Translatable strings should be limited to one paragraph; don’t let a single message be
longer than ten lines. The reason is that when the translatable string changes, the translator

Chapter 4: Preparing Program Sources 22

is faced with the task of updating the entire translated string. Maybe only a single word
will have changed in the English string, but the translator doesn’t see that (with the current
translation tools), therefore she has to proofread the entire message.

Many GNU programs have a ‘--help’ output that extends over several screen pages. It
is a courtesy towards the translators to split such a message into several ones of five to ten
lines each. While doing that, you can also attempt to split the documented options into
groups, such as the input options, the output options, and the informative output options.
This will help every user to find the option he is looking for.

Hardcoded string concatenation is sometimes used to construct English strings:

strcpy (s, "Replace ");

strcat (s, object1);

strcat (s, " with ");

strcat (s, object2);

strcat (s, "?");

In order to present to the translator only entire sentences, and also because in some lan-
guages the translator might want to swap the order of object1 and object2, it is necessary
to change this to use a format string:

sprintf (s, "Replace %s with %s?", object1, object2);

A similar case is compile time concatenation of strings. The ISO C 99 include file
<inttypes.h> contains a macro PRId64 that can be used as a formatting directive for
outputting an ‘int64_t’ integer through printf. It expands to a constant string, usually
"d" or "ld" or "lld" or something like this, depending on the platform. Assume you have
code like

printf ("The amount is %0" PRId64 "\n", number);

The gettext tools and library have special support for these <inttypes.h> macros. You
can therefore simply write

printf (gettext ("The amount is %0" PRId64 "\n"), number);

The PO file will contain the string "The amount is %0<PRId64>\n". The translators
will provide a translation containing "%0<PRId64>" as well, and at runtime the gettext

function’s result will contain the appropriate constant string, "d" or "ld" or "lld".

This works only for the predefined <inttypes.h> macros. If you have defined your own
similar macros, let’s say ‘MYPRId64’, that are not known to xgettext, the solution for this
problem is to change the code like this:

char buf1[100];

sprintf (buf1, "%0" MYPRId64, number);

printf (gettext ("The amount is %s\n"), buf1);

This means, you put the platform dependent code in one statement, and the interna-
tionalization code in a different statement. Note that a buffer length of 100 is safe, because
all available hardware integer types are limited to 128 bits, and to print a 128 bit integer
one needs at most 54 characters, regardless whether in decimal, octal or hexadecimal.

All this applies to other programming languages as well. For example, in Java and C#,
string concatenation is very frequently used, because it is a compiler built-in operator. Like
in C, in Java, you would change

Chapter 4: Preparing Program Sources 23

System.out.println("Replace "+object1+" with "+object2+"?");

into a statement involving a format string:

System.out.println(

MessageFormat.format("Replace {0} with {1}?",

new Object[] { object1, object2 }));

Similarly, in C#, you would change

Console.WriteLine("Replace "+object1+" with "+object2+"?");

into a statement involving a format string:

Console.WriteLine(

String.Format("Replace {0} with {1}?", object1, object2));

Unusual markup or control characters should not be used in translatable strings. Trans-
lators will likely not understand the particular meaning of the markup or control characters.

For example, if you have a convention that ‘|’ delimits the left-hand and right-hand part
of some GUI elements, translators will often not understand it without specific comments. It
might be better to have the translator translate the left-hand and right-hand part separately.

Another example is the ‘argp’ convention to use a single ‘\v’ (vertical tab) control
character to delimit two sections inside a string. This is flawed. Some translators may
convert it to a simple newline, some to blank lines. With some PO file editors it may not
be easy to even enter a vertical tab control character. So, you cannot be sure that the
translation will contain a ‘\v’ character, at the corresponding position. The solution is,
again, to let the translator translate two separate strings and combine at run-time the two
translated strings with the ‘\v’ required by the convention.

HTML markup, however, is common enough that it’s probably ok to use in translat-
able strings. But please bear in mind that the GNU gettext tools don’t verify that the
translations are well-formed HTML.

4.4 How Marks Appear in Sources

All strings requiring translation should be marked in the C sources. Marking is done in
such a way that each translatable string appears to be the sole argument of some function
or preprocessor macro. There are only a few such possible functions or macros meant for
translation, and their names are said to be marking keywords. The marking is attached to
strings themselves, rather than to what we do with them. This approach has more uses.
A blatant example is an error message produced by formatting. The format string needs
translation, as well as some strings inserted through some ‘%s’ specification in the format,
while the result from sprintf may have so many different instances that it is impractical
to list them all in some ‘error_string_out()’ routine, say.

This marking operation has two goals. The first goal of marking is for triggering the
retrieval of the translation, at run time. The keyword is possibly resolved into a routine able
to dynamically return the proper translation, as far as possible or wanted, for the argument
string. Most localizable strings are found in executable positions, that is, attached to
variables or given as parameters to functions. But this is not universal usage, and some
translatable strings appear in structured initializations. See Section 4.7 [Special cases],
page 28.

Chapter 4: Preparing Program Sources 24

The second goal of the marking operation is to help xgettext at properly extracting all
translatable strings when it scans a set of program sources and produces PO file templates.

The canonical keyword for marking translatable strings is ‘gettext’, it gave its name
to the whole GNU gettext package. For packages making only light use of the ‘gettext’
keyword, macro or function, it is easily used as is. However, for packages using the gettext
interface more heavily, it is usually more convenient to give the main keyword a shorter,
less obtrusive name. Indeed, the keyword might appear on a lot of strings all over the
package, and programmers usually do not want nor need their program sources to remind
them forcefully, all the time, that they are internationalized. Further, a long keyword has
the disadvantage of using more horizontal space, forcing more indentation work on sources
for those trying to keep them within 79 or 80 columns.

Many packages use ‘_’ (a simple underline) as a keyword, and write ‘_("Translatable
string")’ instead of ‘gettext ("Translatable string")’. Further, the coding rule, from
GNU standards, wanting that there is a space between the keyword and the opening paren-
thesis is relaxed, in practice, for this particular usage. So, the textual overhead per trans-
latable string is reduced to only three characters: the underline and the two parentheses.
However, even if GNU gettext uses this convention internally, it does not offer it officially.
The real, genuine keyword is truly ‘gettext’ indeed. It is fairly easy for those wanting to
use ‘_’ instead of ‘gettext’ to declare:

#include <libintl.h>

#define _(String) gettext (String)

instead of merely using ‘#include <libintl.h>’.

The marking keywords ‘gettext’ and ‘_’ take the translatable string as sole argu-
ment. It is also possible to define marking functions that take it at another argument
position. It is even possible to make the marked argument position depend on the to-
tal number of arguments of the function call; this is useful in C++. All this is achieved
using xgettext’s ‘--keyword’ option. How to pass such an option to xgettext, assum-
ing that gettextize is used, is described in Section 13.4.3 [po/Makevars], page 140 and
Section 13.5.6 [AM XGETTEXT OPTION], page 149.

Note also that long strings can be split across lines, into multiple adjacent string tokens.
Automatic string concatenation is performed at compile time according to ISO C and ISO
C++; xgettext also supports this syntax.

Later on, the maintenance is relatively easy. If, as a programmer, you add or modify
a string, you will have to ask yourself if the new or altered string requires translation,
and include it within ‘_()’ if you think it should be translated. For example, ‘"%s"’ is
an example of string not requiring translation. But ‘"%s: %d"’ does require translation,
because in French, unlike in English, it’s customary to put a space before a colon.

4.5 Marking Translatable Strings

In PO mode, one set of features is meant more for the programmer than for the trans-
lator, and allows him to interactively mark which strings, in a set of program sources, are
translatable, and which are not. Even if it is a fairly easy job for a programmer to find
and mark such strings by other means, using any editor of his choice, PO mode makes this
work more comfortable. Further, this gives translators who feel a little like programmers,

Chapter 4: Preparing Program Sources 25

or programmers who feel a little like translators, a tool letting them work at marking trans-
latable strings in the program sources, while simultaneously producing a set of translation
in some language, for the package being internationalized.

The set of program sources, targeted by the PO mode commands describe here, should
have an Emacs tags table constructed for your project, prior to using these PO file com-
mands. This is easy to do. In any shell window, change the directory to the root of your
project, then execute a command resembling:

etags src/*.[hc] lib/*.[hc]

presuming here you want to process all .h and .c files from the src/ and lib/ directories.
This command will explore all said files and create a TAGS file in your root directory,
somewhat summarizing the contents using a special file format Emacs can understand.

For packages following the GNU coding standards, there is a make goal tags or TAGS

which constructs the tag files in all directories and for all files containing source code.

Once your TAGS file is ready, the following commands assist the programmer at marking
translatable strings in his set of sources. But these commands are necessarily driven from
within a PO file window, and it is likely that you do not even have such a PO file yet. This
is not a problem at all, as you may safely open a new, empty PO file, mainly for using these
commands. This empty PO file will slowly fill in while you mark strings as translatable in
your program sources.

, Search through program sources for a string which looks like a candidate for
translation (po-tags-search).

M-, Mark the last string found with ‘_()’ (po-mark-translatable).

M-. Mark the last string found with a keyword taken from a set of possible key-
words. This command with a prefix allows some management of these keywords
(po-select-mark-and-mark).

The , (po-tags-search) command searches for the next occurrence of a string which
looks like a possible candidate for translation, and displays the program source in another
Emacs window, positioned in such a way that the string is near the top of this other
window. If the string is too big to fit whole in this window, it is positioned so only its end
is shown. In any case, the cursor is left in the PO file window. If the shown string would
be better presented differently in different native languages, you may mark it using M-, or
M-.. Otherwise, you might rather ignore it and skip to the next string by merely repeating
the , command.

A string is a good candidate for translation if it contains a sequence of three or more
letters. A string containing at most two letters in a row will be considered as a candidate if it
has more letters than non-letters. The command disregards strings containing no letters, or
isolated letters only. It also disregards strings within comments, or strings already marked
with some keyword PO mode knows (see below).

If you have never told Emacs about some TAGS file to use, the command will request
that you specify one from the minibuffer, the first time you use the command. You may
later change your TAGS file by using the regular Emacs command M-x visit-tags-table,
which will ask you to name the precise TAGS file you want to use. See Section “Tag Tables”
in The Emacs Editor.

Chapter 4: Preparing Program Sources 26

Each time you use the , command, the search resumes from where it was left by the
previous search, and goes through all program sources, obeying the TAGS file, until all sources
have been processed. However, by giving a prefix argument to the command (C-u ,), you
may request that the search be restarted all over again from the first program source; but
in this case, strings that you recently marked as translatable will be automatically skipped.

Using this , command does not prevent using of other regular Emacs tags commands. For
example, regular tags-search or tags-query-replace commands may be used without
disrupting the independent , search sequence. However, as implemented, the initial ,

command (or the , command is used with a prefix) might also reinitialize the regular Emacs
tags searching to the first tags file, this reinitialization might be considered spurious.

The M-, (po-mark-translatable) command will mark the recently found string with
the ‘_’ keyword. The M-. (po-select-mark-and-mark) command will request that you
type one keyword from the minibuffer and use that keyword for marking the string. Both
commands will automatically create a new PO file untranslated entry for the string being
marked, and make it the current entry (making it easy for you to immediately proceed to its
translation, if you feel like doing it right away). It is possible that the modifications made to
the program source by M-, or M-. render some source line longer than 80 columns, forcing
you to break and re-indent this line differently. You may use the O command from PO
mode, or any other window changing command from Emacs, to break out into the program
source window, and do any needed adjustments. You will have to use some regular Emacs
command to return the cursor to the PO file window, if you want command , for the next
string, say.

The M-. command has a few built-in speedups, so you do not have to explicitly type all
keywords all the time. The first such speedup is that you are presented with a preferred
keyword, which you may accept by merely typing RET at the prompt. The second speedup
is that you may type any non-ambiguous prefix of the keyword you really mean, and the
command will complete it automatically for you. This also means that PO mode has to
know all your possible keywords, and that it will not accept mistyped keywords.

If you reply ? to the keyword request, the command gives a list of all known keywords,
from which you may choose. When the command is prefixed by an argument (C-u M-.),
it inhibits updating any program source or PO file buffer, and does some simple keyword
management instead. In this case, the command asks for a keyword, written in full, which
becomes a new allowed keyword for later M-. commands. Moreover, this new keyword
automatically becomes the preferred keyword for later commands. By typing an already
known keyword in response to C-u M-., one merely changes the preferred keyword and does
nothing more.

All keywords known for M-. are recognized by the , command when scanning for strings,
and strings already marked by any of those known keywords are automatically skipped. If
many PO files are opened simultaneously, each one has its own independent set of known
keywords. There is no provision in PO mode, currently, for deleting a known keyword, you
have to quit the file (maybe using q) and reopen it afresh. When a PO file is newly brought
up in an Emacs window, only ‘gettext’ and ‘_’ are known as keywords, and ‘gettext’ is
preferred for the M-. command. In fact, this is not useful to prefer ‘_’, as this one is already
built in the M-, command.

Chapter 4: Preparing Program Sources 27

4.6 Special Comments preceding Keywords

In C programs strings are often used within calls of functions from the printf family.
The special thing about these format strings is that they can contain format specifiers
introduced with %. Assume we have the code

printf (gettext ("String ‘%s’ has %d characters\n"), s, strlen (s));

A possible German translation for the above string might be:

"%d Zeichen lang ist die Zeichenkette ‘%s’"

A C programmer, even if he cannot speak German, will recognize that there is something
wrong here. The order of the two format specifiers is changed but of course the arguments
in the printf don’t have. This will most probably lead to problems because now the length
of the string is regarded as the address.

To prevent errors at runtime caused by translations the msgfmt tool can check statically
whether the arguments in the original and the translation string match in type and number.
If this is not the case and the ‘-c’ option has been passed to msgfmt, msgfmt will give an
error and refuse to produce a MO file. Thus consequent use of ‘msgfmt -c’ will catch the
error, so that it cannot cause cause problems at runtime.

If the word order in the above German translation would be correct one would have to write

"%2$d Zeichen lang ist die Zeichenkette ‘%1$s’"

The routines in msgfmt know about this special notation.

Because not all strings in a program must be format strings it is not useful for msgfmt
to test all the strings in the .po file. This might cause problems because the string might
contain what looks like a format specifier, but the string is not used in printf.

Therefore the xgettext adds a special tag to those messages it thinks might be a format
string. There is no absolute rule for this, only a heuristic. In the .po file the entry is marked
using the c-format flag in the #, comment line (see Chapter 3 [PO Files], page 13).

The careful reader now might say that this again can cause problems. The heuristic
might guess it wrong. This is true and therefore xgettext knows about a special kind
of comment which lets the programmer take over the decision. If in the same line as or
the immediately preceding line to the gettext keyword the xgettext program finds a
comment containing the words xgettext:c-format, it will mark the string in any case
with the c-format flag. This kind of comment should be used when xgettext does not
recognize the string as a format string but it really is one and it should be tested. Please
note that when the comment is in the same line as the gettext keyword, it must be before
the string to be translated.

This situation happens quite often. The printf function is often called with strings
which do not contain a format specifier. Of course one would normally use fputs but it
does happen. In this case xgettext does not recognize this as a format string but what
happens if the translation introduces a valid format specifier? The printf function will try
to access one of the parameters but none exists because the original code does not pass any
parameters.

xgettext of course could make a wrong decision the other way round, i.e. a string
marked as a format string actually is not a format string. In this case the msgfmt might
give too many warnings and would prevent translating the .po file. The method to prevent

Chapter 4: Preparing Program Sources 28

this wrong decision is similar to the one used above, only the comment to use must contain
the string xgettext:no-c-format.

If a string is marked with c-format and this is not correct the user can find out who is
responsible for the decision. See Section 5.1 [xgettext Invocation], page 33 to see how the
--debug option can be used for solving this problem.

4.7 Special Cases of Translatable Strings

The attentive reader might now point out that it is not always possible to mark trans-
latable string with gettext or something like this. Consider the following case:

{

static const char *messages[] = {

"some very meaningful message",

"and another one"

};

const char *string;

...

string

= index > 1 ? "a default message" : messages[index];

fputs (string);

...

}

While it is no problem to mark the string "a default message" it is not possible to
mark the string initializers for messages. What is to be done? We have to fulfill two tasks.
First we have to mark the strings so that the xgettext program (see Section 5.1 [xgettext
Invocation], page 33) can find them, and second we have to translate the string at runtime
before printing them.

The first task can be fulfilled by creating a new keyword, which names a no-op. For the
second we have to mark all access points to a string from the array. So one solution can
look like this:

#define gettext_noop(String) String

{

static const char *messages[] = {

gettext_noop ("some very meaningful message"),

gettext_noop ("and another one")

};

const char *string;

...

string

= index > 1 ? gettext ("a default message") : gettext (messages[index]);

fputs (string);

...

}

Chapter 4: Preparing Program Sources 29

Please convince yourself that the string which is written by fputs is translated in any
case. How to get xgettext know the additional keyword gettext_noop is explained in
Section 5.1 [xgettext Invocation], page 33.

The above is of course not the only solution. You could also come along with the following
one:

#define gettext_noop(String) String

{

static const char *messages[] = {

gettext_noop ("some very meaningful message",

gettext_noop ("and another one")

};

const char *string;

...

string

= index > 1 ? gettext_noop ("a default message") : messages[index];

fputs (gettext (string));

...

}

But this has a drawback. The programmer has to take care that he uses gettext_

noop for the string "a default message". A use of gettext could have in rare cases
unpredictable results.

One advantage is that you need not make control flow analysis to make sure the output
is really translated in any case. But this analysis is generally not very difficult. If it should
be in any situation you can use this second method in this situation.

4.8 Letting Users Report Translation Bugs

Code sometimes has bugs, but translations sometimes have bugs too. The users need to
be able to report them. Reporting translation bugs to the programmer or maintainer of a
package is not very useful, since the maintainer must never change a translation, except on
behalf of the translator. Hence the translation bugs must be reported to the translators.

Here is a way to organize this so that the maintainer does not need to forward translation
bug reports, nor even keep a list of the addresses of the translators or their translation teams.

Every program has a place where is shows the bug report address. For GNU programs,
it is the code which handles the “–help” option, typically in a function called “usage”. In
this place, instruct the translator to add her own bug reporting address. For example, if
that code has a statement

printf (_("Report bugs to <%s>.\n"), PACKAGE_BUGREPORT);

you can add some translator instructions like this:

/* TRANSLATORS: The placeholder indicates the bug-reporting address

for this package. Please add _another line_ saying

"Report translation bugs to <...>\n" with the address for translation

bugs (typically your translation team’s web or email address). */

printf (_("Report bugs to <%s>.\n"), PACKAGE_BUGREPORT);

Chapter 4: Preparing Program Sources 30

These will be extracted by ‘xgettext’, leading to a .pot file that contains this:

#. TRANSLATORS: The placeholder indicates the bug-reporting address

#. for this package. Please add _another line_ saying

#. "Report translation bugs to <...>\n" with the address for translation

#. bugs (typically your translation team’s web or email address).

#: src/hello.c:178

#, c-format

msgid "Report bugs to <%s>.\n"

msgstr ""

4.9 Marking Proper Names for Translation

Should names of persons, cities, locations etc. be marked for translation or not? People
who only know languages that can be written with Latin letters (English, Spanish, French,
German, etc.) are tempted to say “no”, because names usually do not change when trans-
ported between these languages. However, in general when translating from one script to
another, names are translated too, usually phonetically or by transliteration. For exam-
ple, Russian or Greek names are converted to the Latin alphabet when being translated
to English, and English or French names are converted to the Katakana script when being
translated to Japanese. This is necessary because the speakers of the target language in
general cannot read the script the name is originally written in.

As a programmer, you should therefore make sure that names are marked for translation,
with a special comment telling the translators that it is a proper name and how to pronounce
it. In its simple form, it looks like this:

printf (_("Written by %s.\n"),

/* TRANSLATORS: This is a proper name. See the gettext

manual, section Names. Note this is actually a non-ASCII

name: The first name is (with Unicode escapes)

"Fran\u00e7ois" or (with HTML entities) "François".

Pronunciation is like "fraa-swa pee-nar". */

_("Francois Pinard"));

The GNU gnulib library offers a module ‘propername’ (http://www.gnu.org/software/
gnulib/MODULES.html#module=propername) which takes care to automatically append the
original name, in parentheses, to the translated name. For names that cannot be written
in ASCII, it also frees the translator from the task of entering the appropriate non-ASCII
characters if no script change is needed. In this more comfortable form, it looks like this:

printf (_("Written by %s and %s.\n"),

proper_name ("Ulrich Drepper"),

/* TRANSLATORS: This is a proper name. See the gettext

manual, section Names. Note this is actually a non-ASCII

name: The first name is (with Unicode escapes)

"Fran\u00e7ois" or (with HTML entities) "François".

Pronunciation is like "fraa-swa pee-nar". */

proper_name_utf8 ("Francois Pinard", "Fran\303\247ois Pinard"));

http://www.gnu.org/software/gnulib/MODULES.html#module=propername
http://www.gnu.org/software/gnulib/MODULES.html#module=propername

Chapter 4: Preparing Program Sources 31

You can also write the original name directly in Unicode (rather than with Unicode escapes
or HTML entities) and denote the pronunciation using the International Phonetic Alphabet
(see http://www.wikipedia.org/wiki/International_Phonetic_Alphabet).

As a translator, you should use some care when translating names, because it is frus-
trating if people see their names mutilated or distorted.

If your language uses the Latin script, all you need to do is to reproduce the name as
perfectly as you can within the usual character set of your language. In this particular case,
this means to provide a translation containing the c-cedilla character. If your language
uses a different script and the people speaking it don’t usually read Latin words, it means
transliteration. If the programmer used the simple case, you should still give, in parentheses,
the original writing of the name – for the sake of the people that do read the Latin script.
If the programmer used the ‘propername’ module mentioned above, you don’t need to give
the original writing of the name in parentheses, because the program will already do so.
Here is an example, using Greek as the target script:

#. This is a proper name. See the gettext

#. manual, section Names. Note this is actually a non-ASCII

#. name: The first name is (with Unicode escapes)

#. "Fran\u00e7ois" or (with HTML entities) "François".

#. Pronunciation is like "fraa-swa pee-nar".

msgid "Francois Pinard"

msgstr "\phi\rho\alpha\sigma\omicron\alpha \pi\iota\nu\alpha\rho"

" (Francois Pinard)"

Because translation of names is such a sensitive domain, it is a good idea to test your
translation before submitting it.

4.10 Preparing Library Sources

When you are preparing a library, not a program, for the use of gettext, only a few
details are different. Here we assume that the library has a translation domain and a POT
file of its own. (If it uses the translation domain and POT file of the main program, then
the previous sections apply without changes.)

1. The library code doesn’t call setlocale (LC_ALL, ""). It’s the responsibility of the
main program to set the locale. The library’s documentation should mention this fact,
so that developers of programs using the library are aware of it.

2. The library code doesn’t call textdomain (PACKAGE), because it would interfere with
the text domain set by the main program.

3. The initialization code for a program was
setlocale (LC_ALL, "");

bindtextdomain (PACKAGE, LOCALEDIR);

textdomain (PACKAGE);

For a library it is reduced to
bindtextdomain (PACKAGE, LOCALEDIR);

If your library’s API doesn’t already have an initialization function, you need to create
one, containing at least the bindtextdomain invocation. However, you usually don’t
need to export and document this initialization function: It is sufficient that all entry
points of the library call the initialization function if it hasn’t been called before. The

http://www.wikipedia.org/wiki/International_Phonetic_Alphabet

Chapter 4: Preparing Program Sources 32

typical idiom used to achieve this is a static boolean variable that indicates whether
the initialization function has been called. Like this:

static bool libfoo_initialized;

static void

libfoo_initialize (void)

{

bindtextdomain (PACKAGE, LOCALEDIR);

libfoo_initialized = true;

}

/* This function is part of the exported API. */

struct foo *

create_foo (...)

{

/* Must ensure the initialization is performed. */

if (!libfoo_initialized)

libfoo_initialize ();

...

}

/* This function is part of the exported API. The argument must be

non-NULL and have been created through create_foo(). */

int

foo_refcount (struct foo *argument)

{

/* No need to invoke the initialization function here, because

create_foo() must already have been called before. */

...

}

4. The usual declaration of the ‘_’ macro in each source file was
#include <libintl.h>

#define _(String) gettext (String)

for a program. For a library, which has its own translation domain, it reads like this:
#include <libintl.h>

#define _(String) dgettext (PACKAGE, String)

In other words, dgettext is used instead of gettext. Similarly, the dngettext function
should be used in place of the ngettext function.

Chapter 5: Making the PO Template File 33

5 Making the PO Template File

After preparing the sources, the programmer creates a PO template file. This section
explains how to use xgettext for this purpose.

xgettext creates a file named domainname.po. You should then rename it to
domainname.pot. (Why doesn’t xgettext create it under the name domainname.pot right
away? The answer is: for historical reasons. When xgettext was specified, the distinction
between a PO file and PO file template was fuzzy, and the suffix ‘.pot’ wasn’t in use at
that time.)

5.1 Invoking the xgettext Program

xgettext [option] [inputfile] ...

The xgettext program extracts translatable strings from given input files.

5.1.1 Input file location

‘inputfile ...’
Input files.

‘-f file’
‘--files-from=file’

Read the names of the input files from file instead of getting them from the
command line.

‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to this
list of directories. The resulting .po file will be written relative to the current
directory, though.

If inputfile is ‘-’, standard input is read.

5.1.2 Output file location

‘-d name’
‘--default-domain=name’

Use name.po for output (instead of messages.po).

‘-o file’
‘--output=file’

Write output to specified file (instead of name.po or messages.po).

‘-p dir’
‘--output-dir=dir’

Output files will be placed in directory dir.

If the output file is ‘-’ or ‘/dev/stdout’, the output is written to standard output.

Chapter 5: Making the PO Template File 34

5.1.3 Choice of input file language

‘-L name’
‘--language=name’

Specifies the language of the input files. The supported languages are C,
C++, ObjectiveC, PO, Shell, Python, Lisp, EmacsLisp, librep, Scheme,
Smalltalk, Java, JavaProperties, C#, awk, YCP, Tcl, Perl, PHP, GCC-source,
NXStringTable, RST, Glade, Lua, JavaScript, Vala.

‘-C’
‘--c++’ This is a shorthand for --language=C++.

By default the language is guessed depending on the input file name extension.

5.1.4 Input file interpretation

‘--from-code=name’
Specifies the encoding of the input files. This option is needed only if some
untranslated message strings or their corresponding comments contain non-
ASCII characters. Note that Tcl and Glade input files are always assumed to
be in UTF-8, regardless of this option.

By default the input files are assumed to be in ASCII.

5.1.5 Operation mode

‘-j’
‘--join-existing’

Join messages with existing file.

‘-x file’
‘--exclude-file=file’

Entries from file are not extracted. file should be a PO or POT file.

‘-c[tag]’
‘--add-comments[=tag]’

Place comment blocks starting with tag and preceding keyword lines in the out-
put file. Without a tag, the option means to put all comment blocks preceding
keyword lines in the output file.

5.1.6 Language specific options

‘-a’
‘--extract-all’

Extract all strings.

This option has an effect with most languages, namely C, C++, ObjectiveC,
Shell, Python, Lisp, EmacsLisp, librep, Java, C#, awk, Tcl, Perl, PHP, GCC-
source, Glade, Lua, JavaScript, Vala.

‘-k[keywordspec]’
‘--keyword[=keywordspec]’

Specify keywordspec as an additional keyword to be looked for. Without a
keywordspec, the option means to not use default keywords.

Chapter 5: Making the PO Template File 35

If keywordspec is a C identifier id, xgettext looks for strings in the first
argument of each call to the function or macro id. If keywordspec is of the
form ‘id:argnum’, xgettext looks for strings in the argnumth argument of
the call. If keywordspec is of the form ‘id:argnum1,argnum2’, xgettext looks
for strings in the argnum1st argument and in the argnum2nd argument of
the call, and treats them as singular/plural variants for a message with plural
handling. Also, if keywordspec is of the form ‘id:contextargnumc,argnum’ or
‘id:argnum,contextargnumc’, xgettext treats strings in the contextargnumth
argument as a context specifier. And, as a special-purpose support for
GNOME, if keywordspec is of the form ‘id:argnumg’, xgettext recognizes
the argnumth argument as a string with context, using the GNOME glib

syntax ‘"msgctxt|msgid"’.
Furthermore, if keywordspec is of the form ‘id:...,totalnumargst’,
xgettext recognizes this argument specification only if the number of actual
arguments is equal to totalnumargs. This is useful for disambiguating
overloaded function calls in C++.
Finally, if keywordspec is of the form ‘id:argnum...,"xcomment"’, xgettext,
when extracting a message from the specified argument strings, adds an
extracted comment xcomment to the message. Note that when used through a
normal shell command line, the double-quotes around the xcomment need to
be escaped.

This option has an effect with most languages, namely C, C++, ObjectiveC,
Shell, Python, Lisp, EmacsLisp, librep, Java, C#, awk, Tcl, Perl, PHP, GCC-
source, Glade, Lua, JavaScript, Vala.

The default keyword specifications, which are always looked for if not explicitly
disabled, are language dependent. They are:

• For C, C++, and GCC-source: gettext, dgettext:2, dcgettext:2,
ngettext:1,2, dngettext:2,3, dcngettext:2,3, gettext_noop, and
pgettext:1c,2, dpgettext:2c,3, dcpgettext:2c,3, npgettext:1c,2,3,
dnpgettext:2c,3,4, dcnpgettext:2c,3,4.

• For Objective C: Like for C, and also NSLocalizedString, _,
NSLocalizedStaticString, __.

• For Shell scripts: gettext, ngettext:1,2, eval_gettext, eval_

ngettext:1,2.

• For Python: gettext, ugettext, dgettext:2, ngettext:1,2,
ungettext:1,2, dngettext:2,3, _.

• For Lisp: gettext, ngettext:1,2, gettext-noop.

• For EmacsLisp: _.

• For librep: _.

• For Scheme: gettext, ngettext:1,2, gettext-noop.

• For Java: GettextResource.gettext:2, GettextResource.ngettext:2,3,
GettextResource.pgettext:2c,3, GettextResource.npgettext:2c,3,4,
gettext, ngettext:1,2, pgettext:1c,2, npgettext:1c,2,3, getString.

• For C#: GetString, GetPluralString:1,2, GetParticularString:1c,2,
GetParticularPluralString:1c,2,3.

Chapter 5: Making the PO Template File 36

• For awk: dcgettext, dcngettext:1,2.

• For Tcl: ::msgcat::mc.

• For Perl: gettext, %gettext, $gettext, dgettext:2, dcgettext:2,
ngettext:1,2, dngettext:2,3, dcngettext:2,3, gettext_noop.

• For PHP: _, gettext, dgettext:2, dcgettext:2, ngettext:1,2,
dngettext:2,3, dcngettext:2,3.

• For Glade 1: label, title, text, format, copyright, comments,
preview_text, tooltip.

• For Lua: _, gettext.gettext, gettext.dgettext:2, gettext.dcgettext:2,
gettext.ngettext:1,2, gettext.dngettext:2,3, gettext.dcngettext:2,3.

• For JavaScript: _, gettext, dgettext:2, dcgettext:2, ngettext:1,2,
dngettext:2,3, pgettext:1c,2, dpgettext:2c,3.

• For Vala: _, Q_, N_, NC_, dgettext:2, dcgettext:2, ngettext:1,2,
dngettext:2,3, dpgettext:2c,3, dpgettext2:2c,3.

To disable the default keyword specifications, the option ‘-k’ or ‘--keyword’ or
‘--keyword=’, without a keywordspec, can be used.

‘--flag=word:arg:flag’
Specifies additional flags for strings occurring as part of the argth argument of
the function word. The possible flags are the possible format string indicators,
such as ‘c-format’, and their negations, such as ‘no-c-format’, possibly
prefixed with ‘pass-’.
The meaning of --flag=function:arg:lang-format is that in language lang,
the specified function expects as argth argument a format string. (For those of
you familiar with GCC function attributes, --flag=function:arg:c-format
is roughly equivalent to the declaration ‘__attribute__ ((__format__

(__printf__, arg, ...)))’ attached to function in a C source file.) For
example, if you use the ‘error’ function from GNU libc, you can specify its
behaviour through --flag=error:3:c-format. The effect of this specification
is that xgettext will mark as format strings all gettext invocations that
occur as argth argument of function. This is useful when such strings contain
no format string directives: together with the checks done by ‘msgfmt -c’ it
will ensure that translators cannot accidentally use format string directives
that would lead to a crash at runtime.
The meaning of --flag=function:arg:pass-lang-format is that in language
lang, if the function call occurs in a position that must yield a format string,
then its argth argument must yield a format string of the same type as well.
(If you know GCC function attributes, the --flag=function:arg:pass-

c-format option is roughly equivalent to the declaration ‘__attribute__
((__format_arg__ (arg)))’ attached to function in a C source file.) For
example, if you use the ‘_’ shortcut for the gettext function, you should use
--flag=_:1:pass-c-format. The effect of this specification is that xgettext
will propagate a format string requirement for a _("string") call to its first
argument, the literal "string", and thus mark it as a format string. This is
useful when such strings contain no format string directives: together with the
checks done by ‘msgfmt -c’ it will ensure that translators cannot accidentally

Chapter 5: Making the PO Template File 37

use format string directives that would lead to a crash at runtime.
This option has an effect with most languages, namely C, C++, ObjectiveC,
Shell, Python, Lisp, EmacsLisp, librep, Scheme, Java, C#, awk, YCP, Tcl,
Perl, PHP, GCC-source, Lua, JavaScript, Vala.

‘-T’
‘--trigraphs’

Understand ANSI C trigraphs for input.
This option has an effect only with the languages C, C++, ObjectiveC.

‘--qt’ Recognize Qt format strings.
This option has an effect only with the language C++.

‘--kde’ Recognize KDE 4 format strings.
This option has an effect only with the language C++.

‘--boost’ Recognize Boost format strings.
This option has an effect only with the language C++.

‘--debug’ Use the flags c-format and possible-c-format to show who was responsi-
ble for marking a message as a format string. The latter form is used if the
xgettext program decided, the format form is used if the programmer pre-
scribed it.

By default only the c-format form is used. The translator should not have to
care about these details.

This implementation of xgettext is able to process a few awkward cases, like strings in
preprocessor macros, ANSI concatenation of adjacent strings, and escaped end of lines for
continued strings.

5.1.7 Output details

‘--color’
‘--color=when’

Specify whether or when to use colors and other text attributes. See
Section 9.11.1 [The –color option], page 91 for details.

‘--style=style_file’
Specify the CSS style rule file to use for --color. See Section 9.11.3 [The –style
option], page 93 for details.

‘--force-po’
Always write an output file even if no message is defined.

‘-i’
‘--indent’

Write the .po file using indented style.

‘--no-location’
Do not write ‘#: filename:line’ lines. Note that using this option makes it
harder for technically skilled translators to understand each message’s context.

‘-n’
‘--add-location’

Generate ‘#: filename:line’ lines (default).

Chapter 5: Making the PO Template File 38

‘--strict’
Write out a strict Uniforum conforming PO file. Note that this Uniforum format
should be avoided because it doesn’t support the GNU extensions.

‘--properties-output’
Write out a Java ResourceBundle in Java .properties syntax. Note that this
file format doesn’t support plural forms and silently drops obsolete messages.

‘--stringtable-output’
Write out a NeXTstep/GNUstep localized resource file in .strings syntax.
Note that this file format doesn’t support plural forms.

‘-w number’
‘--width=number’

Set the output page width. Long strings in the output files will be split across
multiple lines in order to ensure that each line’s width (= number of screen
columns) is less or equal to the given number.

‘--no-wrap’
Do not break long message lines. Message lines whose width exceeds the output
page width will not be split into several lines. Only file reference lines which
are wider than the output page width will be split.

‘-s’
‘--sort-output’

Generate sorted output. Note that using this option makes it much harder for
the translator to understand each message’s context.

‘-F’
‘--sort-by-file’

Sort output by file location.

‘--omit-header’
Don’t write header with ‘msgid ""’ entry.

This is useful for testing purposes because it eliminates a source of variance for
generated .gmo files. With --omit-header, two invocations of xgettext on the
same files with the same options at different times are guaranteed to produce
the same results.

Note that using this option will lead to an error if the resulting file would not
entirely be in ASCII.

‘--copyright-holder=string’
Set the copyright holder in the output. string should be the copyright holder
of the surrounding package. (Note that the msgstr strings, extracted from the
package’s sources, belong to the copyright holder of the package.) Translators
are expected to transfer or disclaim the copyright for their translations, so
that package maintainers can distribute them without legal risk. If string is
empty, the output files are marked as being in the public domain; in this case,
the translators are expected to disclaim their copyright, again so that package
maintainers can distribute them without legal risk.

The default value for string is the Free Software Foundation, Inc., simply be-
cause xgettext was first used in the GNU project.

Chapter 5: Making the PO Template File 39

‘--foreign-user’
Omit FSF copyright in output. This option is equivalent to
‘--copyright-holder=’’’. It can be useful for packages outside the
GNU project that want their translations to be in the public domain.

‘--package-name=package’
Set the package name in the header of the output.

‘--package-version=version’
Set the package version in the header of the output. This option has an effect
only if the ‘--package-name’ option is also used.

‘--msgid-bugs-address=email@address’
Set the reporting address for msgid bugs. This is the email address or URL to
which the translators shall report bugs in the untranslated strings:

- Strings which are not entire sentences, see the maintainer guidelines in
Section 4.3 [Preparing Strings], page 20.

- Strings which use unclear terms or require additional context to be under-
stood.

- Strings which make invalid assumptions about notation of date, time or
money.

- Pluralisation problems.

- Incorrect English spelling.

- Incorrect formatting.

It can be your email address, or a mailing list address where translators can
write to without being subscribed, or the URL of a web page through which
the translators can contact you.

The default value is empty, which means that translators will be clueless! Don’t
forget to specify this option.

‘-m[string]’
‘--msgstr-prefix[=string]’

Use string (or "" if not specified) as prefix for msgstr values.

‘-M[string]’
‘--msgstr-suffix[=string]’

Use string (or "" if not specified) as suffix for msgstr values.

5.1.8 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

Chapter 6: Creating a New PO File 40

6 Creating a New PO File

When starting a new translation, the translator creates a file called LANG.po, as a copy of
the package.pot template file with modifications in the initial comments (at the beginning
of the file) and in the header entry (the first entry, near the beginning of the file).

The easiest way to do so is by use of the ‘msginit’ program. For example:

$ cd PACKAGE-VERSION

$ cd po

$ msginit

The alternative way is to do the copy and modifications by hand. To do so, the translator
copies package.pot to LANG.po. Then she modifies the initial comments and the header
entry of this file.

6.1 Invoking the msginit Program

msginit [option]

The msginit program creates a new PO file, initializing the meta information with
values from the user’s environment.

6.1.1 Input file location

‘-i inputfile’
‘--input=inputfile’

Input POT file.

If no inputfile is given, the current directory is searched for the POT file. If it is ‘-’,
standard input is read.

6.1.2 Output file location

‘-o file’
‘--output-file=file’

Write output to specified PO file.

If no output file is given, it depends on the ‘--locale’ option or the user’s locale setting.
If it is ‘-’, the results are written to standard output.

6.1.3 Input file syntax

‘-P’
‘--properties-input’

Assume the input file is a Java ResourceBundle in Java .properties syntax,
not in PO file syntax.

‘--stringtable-input’
Assume the input file is a NeXTstep/GNUstep localized resource file in
.strings syntax, not in PO file syntax.

Chapter 6: Creating a New PO File 41

6.1.4 Output details

‘-l ll_CC’
‘--locale=ll_CC’

Set target locale. ll should be a language code, and CC should be a country
code. The command ‘locale -a’ can be used to output a list of all installed
locales. The default is the user’s locale setting.

‘--no-translator’
Declares that the PO file will not have a human translator and is instead auto-
matically generated.

‘--color’
‘--color=when’

Specify whether or when to use colors and other text attributes. See
Section 9.11.1 [The –color option], page 91 for details.

‘--style=style_file’
Specify the CSS style rule file to use for --color. See Section 9.11.3 [The –style
option], page 93 for details.

‘-p’
‘--properties-output’

Write out a Java ResourceBundle in Java .properties syntax. Note that this
file format doesn’t support plural forms and silently drops obsolete messages.

‘--stringtable-output’
Write out a NeXTstep/GNUstep localized resource file in .strings syntax.
Note that this file format doesn’t support plural forms.

‘-w number’
‘--width=number’

Set the output page width. Long strings in the output files will be split across
multiple lines in order to ensure that each line’s width (= number of screen
columns) is less or equal to the given number.

‘--no-wrap’
Do not break long message lines. Message lines whose width exceeds the output
page width will not be split into several lines. Only file reference lines which
are wider than the output page width will be split.

6.1.5 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

Chapter 6: Creating a New PO File 42

6.2 Filling in the Header Entry

The initial comments "SOME DESCRIPTIVE TITLE", "YEAR" and "FIRST AU-
THOR <EMAIL@ADDRESS>, YEAR" ought to be replaced by sensible information. This
can be done in any text editor; if Emacs is used and it switched to PO mode automatically
(because it has recognized the file’s suffix), you can disable it by typing M-x fundamental-

mode.

Modifying the header entry can already be done using PO mode: in Emacs, type M-x

po-mode RET and then RET again to start editing the entry. You should fill in the following
fields.

Project-Id-Version
This is the name and version of the package. Fill it in if it has not already been
filled in by xgettext.

Report-Msgid-Bugs-To
This has already been filled in by xgettext. It contains an email address or
URL where you can report bugs in the untranslated strings:

- Strings which are not entire sentences, see the maintainer guidelines in
Section 4.3 [Preparing Strings], page 20.

- Strings which use unclear terms or require additional context to be under-
stood.

- Strings which make invalid assumptions about notation of date, time or
money.

- Pluralisation problems.

- Incorrect English spelling.

- Incorrect formatting.

POT-Creation-Date
This has already been filled in by xgettext.

PO-Revision-Date
You don’t need to fill this in. It will be filled by the PO file editor when you
save the file.

Last-Translator
Fill in your name and email address (without double quotes).

Language-Team
Fill in the English name of the language, and the email address or homepage
URL of the language team you are part of.

Before starting a translation, it is a good idea to get in touch with your trans-
lation team, not only to make sure you don’t do duplicated work, but also to
coordinate difficult linguistic issues.

In the Free Translation Project, each translation team has its own mailing list.
The up-to-date list of teams can be found at the Free Translation Project’s
homepage, http://translationproject.org/, in the "Teams" area.

Language Fill in the language code of the language. This can be in one of three forms:

http://translationproject.org/

Chapter 6: Creating a New PO File 43

- ‘ll’, an ISO 639 two-letter language code (lowercase). See Appendix A
[Language Codes], page 199 for the list of codes.

- ‘ll_CC’, where ‘ll’ is an ISO 639 two-letter language code (lowercase) and
‘CC’ is an ISO 3166 two-letter country code (uppercase). The country code
specification is not redundant: Some languages have dialects in different
countries. For example, ‘de_AT’ is used for Austria, and ‘pt_BR’ for Brazil.
The country code serves to distinguish the dialects. See Appendix A [Lan-
guage Codes], page 199 and Appendix B [Country Codes], page 207 for the
lists of codes.

- ‘ll_CC@variant’, where ‘ll’ is an ISO 639 two-letter language code
(lowercase), ‘CC’ is an ISO 3166 two-letter country code (uppercase), and
‘variant’ is a variant designator. The variant designator (lowercase) can
be a script designator, such as ‘latin’ or ‘cyrillic’.

The naming convention ‘ll_CC’ is also the way locales are named on systems
based on GNU libc. But there are three important differences:

• In this PO file field, but not in locale names, ‘ll_CC’ combinations denoting
a language’s main dialect are abbreviated as ‘ll’. For example, ‘de’ is
equivalent to ‘de_DE’ (German as spoken in Germany), and ‘pt’ to ‘pt_PT’
(Portuguese as spoken in Portugal) in this context.

• In this PO file field, suffixes like ‘.encoding’ are not used.

• In this PO file field, variant designators that are not relevant to message
translation, such as ‘@euro’, are not used.

So, if your locale name is ‘de_DE.UTF-8’, the language specification in PO files
is just ‘de’.

Content-Type
Replace ‘CHARSET’ with the character encoding used for your language, in your
locale, or UTF-8. This field is needed for correct operation of the msgmerge and
msgfmt programs, as well as for users whose locale’s character encoding differs
from yours (see Section 11.2.4 [Charset conversion], page 111).

You get the character encoding of your locale by running the shell command
‘locale charmap’. If the result is ‘C’ or ‘ANSI_X3.4-1968’, which is equivalent
to ‘ASCII’ (= ‘US-ASCII’), it means that your locale is not correctly configured.
In this case, ask your translation team which charset to use. ‘ASCII’ is not
usable for any language except Latin.

Because the PO files must be portable to operating systems with less advanced
internationalization facilities, the character encodings that can be used are
limited to those supported by both GNU libc and GNU libiconv. These
are: ASCII, ISO-8859-1, ISO-8859-2, ISO-8859-3, ISO-8859-4, ISO-8859-5,
ISO-8859-6, ISO-8859-7, ISO-8859-8, ISO-8859-9, ISO-8859-13,
ISO-8859-14, ISO-8859-15, KOI8-R, KOI8-U, KOI8-T, CP850, CP866, CP874,
CP932, CP949, CP950, CP1250, CP1251, CP1252, CP1253, CP1254, CP1255,
CP1256, CP1257, GB2312, EUC-JP, EUC-KR, EUC-TW, BIG5, BIG5-HKSCS, GBK,
GB18030, SHIFT_JIS, JOHAB, TIS-620, VISCII, GEORGIAN-PS, UTF-8.

Chapter 6: Creating a New PO File 44

In the GNU system, the following encodings are frequently used for the corre-
sponding languages.

• ISO-8859-1 for Afrikaans, Albanian, Basque, Breton, Catalan, Cornish,
Danish, Dutch, English, Estonian, Faroese, Finnish, French, Galician, Ger-
man, Greenlandic, Icelandic, Indonesian, Irish, Italian, Malay, Manx, Nor-
wegian, Occitan, Portuguese, Spanish, Swedish, Tagalog, Uzbek, Walloon,

• ISO-8859-2 for Bosnian, Croatian, Czech, Hungarian, Polish, Romanian,
Serbian, Slovak, Slovenian,

• ISO-8859-3 for Maltese,

• ISO-8859-5 for Macedonian, Serbian,

• ISO-8859-6 for Arabic,

• ISO-8859-7 for Greek,

• ISO-8859-8 for Hebrew,

• ISO-8859-9 for Turkish,

• ISO-8859-13 for Latvian, Lithuanian, Maori,

• ISO-8859-14 for Welsh,

• ISO-8859-15 for Basque, Catalan, Dutch, English, Finnish, French, Gali-
cian, German, Irish, Italian, Portuguese, Spanish, Swedish, Walloon,

• KOI8-R for Russian,

• KOI8-U for Ukrainian,

• KOI8-T for Tajik,

• CP1251 for Bulgarian, Belarusian,

• GB2312, GBK, GB18030 for simplified writing of Chinese,

• BIG5, BIG5-HKSCS for traditional writing of Chinese,

• EUC-JP for Japanese,

• EUC-KR for Korean,

• TIS-620 for Thai,

• GEORGIAN-PS for Georgian,

• UTF-8 for any language, including those listed above.

When single quote characters or double quote characters are used in translations
for your language, and your locale’s encoding is one of the ISO-8859-* charsets,
it is best if you create your PO files in UTF-8 encoding, instead of your locale’s
encoding. This is because in UTF-8 the real quote characters can be represented
(single quote characters: U+2018, U+2019, double quote characters: U+201C,
U+201D), whereas none of ISO-8859-* charsets has them all. Users in UTF-8
locales will see the real quote characters, whereas users in ISO-8859-* locales
will see the vertical apostrophe and the vertical double quote instead (because
that’s what the character set conversion will transliterate them to).

To enter such quote characters under X11, you can change your keyboard
mapping using the xmodmap program. The X11 names of the quote characters
are "leftsinglequotemark", "rightsinglequotemark", "leftdoublequotemark",
"rightdoublequotemark", "singlelowquotemark", "doublelowquotemark".

Chapter 6: Creating a New PO File 45

Note that only recent versions of GNU Emacs support the UTF-8 encoding:
Emacs 20 with Mule-UCS, and Emacs 21. As of January 2001, XEmacs doesn’t
support the UTF-8 encoding.

The character encoding name can be written in either upper or lower case.
Usually upper case is preferred.

Content-Transfer-Encoding
Set this to 8bit.

Plural-Forms
This field is optional. It is only needed if the PO file has plural forms. You
can find them by searching for the ‘msgid_plural’ keyword. The format of the
plural forms field is described in Section 11.2.6 [Plural forms], page 114 and
Section 12.6 [Translating plural forms], page 131.

Chapter 7: Updating Existing PO Files 46

7 Updating Existing PO Files

7.1 Invoking the msgmerge Program

msgmerge [option] def.po ref.pot

The msgmerge program merges two Uniforum style .po files together. The def.po file
is an existing PO file with translations which will be taken over to the newly created file
as long as they still match; comments will be preserved, but extracted comments and file
positions will be discarded. The ref.pot file is the last created PO file with up-to-date source
references but old translations, or a PO Template file (generally created by xgettext); any
translations or comments in the file will be discarded, however dot comments and file
positions will be preserved. Where an exact match cannot be found, fuzzy matching is used
to produce better results.

7.1.1 Input file location

‘def.po’ Translations referring to old sources.

‘ref.pot’ References to the new sources.

‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to this
list of directories. The resulting .po file will be written relative to the current
directory, though.

‘-C file’
‘--compendium=file’

Specify an additional library of message translations. See Section 8.4 [Com-
pendium], page 65. This option may be specified more than once.

7.1.2 Operation mode

‘-U’
‘--update’

Update def.po. Do nothing if def.po is already up to date.

7.1.3 Output file location

‘-o file’
‘--output-file=file’

Write output to specified file.

The results are written to standard output if no output file is specified or if it is ‘-’.

7.1.4 Output file location in update mode

The result is written back to def.po.

‘--backup=control’
Make a backup of def.po

Chapter 7: Updating Existing PO Files 47

‘--suffix=suffix’
Override the usual backup suffix.

The version control method may be selected via the --backup option or through the
VERSION_CONTROL environment variable. Here are the values:

‘none’
‘off’ Never make backups (even if --backup is given).

‘numbered’
‘t’ Make numbered backups.

‘existing’
‘nil’ Make numbered backups if numbered backups for this file already exist, other-

wise make simple backups.

‘simple’
‘never’ Always make simple backups.

The backup suffix is ‘~’, unless set with --suffix or the SIMPLE_BACKUP_SUFFIX envi-
ronment variable.

7.1.5 Operation modifiers

‘-m’
‘--multi-domain’

Apply ref.pot to each of the domains in def.po.

‘-N’
‘--no-fuzzy-matching’

Do not use fuzzy matching when an exact match is not found. This may speed
up the operation considerably.

‘--previous’
Keep the previous msgids of translated messages, marked with ‘#|’, when
adding the fuzzy marker to such messages.

7.1.6 Input file syntax

‘-P’
‘--properties-input’

Assume the input files are Java ResourceBundles in Java .properties syntax,
not in PO file syntax.

‘--stringtable-input’
Assume the input files are NeXTstep/GNUstep localized resource files in
.strings syntax, not in PO file syntax.

7.1.7 Output details

‘--lang=catalogname’
Specify the ‘Language’ field to be used in the header entry. See Section 6.2
[Header Entry], page 42 for the meaning of this field. Note: The
‘Language-Team’ and ‘Plural-Forms’ fields are left unchanged. If this option

Chapter 7: Updating Existing PO Files 48

is not specified, the ‘Language’ field is inferred, as best as possible, from the
‘Language-Team’ field.

‘--color’
‘--color=when’

Specify whether or when to use colors and other text attributes. See
Section 9.11.1 [The –color option], page 91 for details.

‘--style=style_file’
Specify the CSS style rule file to use for --color. See Section 9.11.3 [The –style
option], page 93 for details.

‘--force-po’
Always write an output file even if it contains no message.

‘-i’
‘--indent’

Write the .po file using indented style.

‘--no-location’
Do not write ‘#: filename:line’ lines.

‘--add-location’
Generate ‘#: filename:line’ lines (default).

‘--strict’
Write out a strict Uniforum conforming PO file. Note that this Uniforum format
should be avoided because it doesn’t support the GNU extensions.

‘-p’
‘--properties-output’

Write out a Java ResourceBundle in Java .properties syntax. Note that this
file format doesn’t support plural forms and silently drops obsolete messages.

‘--stringtable-output’
Write out a NeXTstep/GNUstep localized resource file in .strings syntax.
Note that this file format doesn’t support plural forms.

‘-w number’
‘--width=number’

Set the output page width. Long strings in the output files will be split across
multiple lines in order to ensure that each line’s width (= number of screen
columns) is less or equal to the given number.

‘--no-wrap’
Do not break long message lines. Message lines whose width exceeds the output
page width will not be split into several lines. Only file reference lines which
are wider than the output page width will be split.

‘-s’
‘--sort-output’

Generate sorted output. Note that using this option makes it much harder for
the translator to understand each message’s context.

Chapter 7: Updating Existing PO Files 49

‘-F’
‘--sort-by-file’

Sort output by file location.

7.1.8 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

‘-v’
‘--verbose’

Increase verbosity level.

‘-q’
‘--quiet’
‘--silent’

Suppress progress indicators.

Chapter 8: Editing PO Files 50

8 Editing PO Files

8.1 KDE’s PO File Editor

8.2 GNOME’s PO File Editor

8.3 Emacs’s PO File Editor

For those of you being the lucky users of Emacs, PO mode has been specifically created
for providing a cozy environment for editing or modifying PO files. While editing a PO
file, PO mode allows for the easy browsing of auxiliary and compendium PO files, as well
as for following references into the set of C program sources from which PO files have been
derived. It has a few special features, among which are the interactive marking of program
strings as translatable, and the validation of PO files with easy repositioning to PO file lines
showing errors.

For the beginning, besides main PO mode commands (see Section 8.3.2 [Main PO Com-
mands], page 51), you should know how to move between entries (see Section 8.3.3 [Entry
Positioning], page 52), and how to handle untranslated entries (see Section 8.3.7 [Untrans-
lated Entries], page 56).

8.3.1 Completing GNU gettext Installation

Once you have received, unpacked, configured and compiled the GNU gettext distribu-
tion, the ‘make install’ command puts in place the programs xgettext, msgfmt, gettext,
and msgmerge, as well as their available message catalogs. To top off a comfortable instal-
lation, you might also want to make the PO mode available to your Emacs users.

During the installation of the PO mode, you might want to modify your file .emacs,
once and for all, so it contains a few lines looking like:

(setq auto-mode-alist

(cons ’("\\.po\\’\\|\\.po\\." . po-mode) auto-mode-alist))

(autoload ’po-mode "po-mode" "Major mode for translators to edit PO files" t)

Later, whenever you edit some .po file, or any file having the string ‘.po.’ within its
name, Emacs loads po-mode.elc (or po-mode.el) as needed, and automatically activates
PO mode commands for the associated buffer. The string PO appears in the mode line for
any buffer for which PO mode is active. Many PO files may be active at once in a single
Emacs session.

If you are using Emacs version 20 or newer, and have already installed the appropriate
international fonts on your system, you may also tell Emacs how to determine automatically
the coding system of every PO file. This will often (but not always) cause the necessary
fonts to be loaded and used for displaying the translations on your Emacs screen. For this
to happen, add the lines:

(modify-coding-system-alist ’file "\\.po\\’\\|\\.po\\."

’po-find-file-coding-system)

(autoload ’po-find-file-coding-system "po-mode")

to your .emacs file. If, with this, you still see boxes instead of international characters, try
a different font set (via Shift Mouse button 1).

Chapter 8: Editing PO Files 51

8.3.2 Main PO mode Commands

After setting up Emacs with something similar to the lines in Section 8.3.1 [Installation],
page 50, PO mode is activated for a window when Emacs finds a PO file in that window.
This puts the window read-only and establishes a po-mode-map, which is a genuine Emacs
mode, in a way that is not derived from text mode in any way. Functions found on po-mode-

hook, if any, will be executed.

When PO mode is active in a window, the letters ‘PO’ appear in the mode line for
that window. The mode line also displays how many entries of each kind are held in the
PO file. For example, the string ‘132t+3f+10u+2o’ would tell the translator that the PO
mode contains 132 translated entries (see Section 8.3.5 [Translated Entries], page 55, 3 fuzzy
entries (see Section 8.3.6 [Fuzzy Entries], page 56), 10 untranslated entries (see Section 8.3.7
[Untranslated Entries], page 56) and 2 obsolete entries (see Section 8.3.8 [Obsolete Entries],
page 57). Zero-coefficients items are not shown. So, in this example, if the fuzzy entries were
unfuzzied, the untranslated entries were translated and the obsolete entries were deleted,
the mode line would merely display ‘145t’ for the counters.

The main PO commands are those which do not fit into the other categories of subsequent
sections. These allow for quitting PO mode or for managing windows in special ways.

_ Undo last modification to the PO file (po-undo).

Q Quit processing and save the PO file (po-quit).

q Quit processing, possibly after confirmation (po-confirm-and-quit).

0 Temporary leave the PO file window (po-other-window).

?

h Show help about PO mode (po-help).

= Give some PO file statistics (po-statistics).

V Batch validate the format of the whole PO file (po-validate).

The command _ (po-undo) interfaces to the Emacs undo facility. See Section “Undoing
Changes” in The Emacs Editor. Each time _ is typed, modifications which the translator
did to the PO file are undone a little more. For the purpose of undoing, each PO mode
command is atomic. This is especially true for the RET command: the whole edition made
by using a single use of this command is undone at once, even if the edition itself implied
several actions. However, while in the editing window, one can undo the edition work quite
parsimoniously.

The commands Q (po-quit) and q (po-confirm-and-quit) are used when the translator
is done with the PO file. The former is a bit less verbose than the latter. If the file has
been modified, it is saved to disk first. In both cases, and prior to all this, the commands
check if any untranslated messages remain in the PO file and, if so, the translator is asked
if she really wants to leave off working with this PO file. This is the preferred way of
getting rid of an Emacs PO file buffer. Merely killing it through the usual command C-x k

(kill-buffer) is not the tidiest way to proceed.

The command 0 (po-other-window) is another, softer way, to leave PO mode, tem-
porarily. It just moves the cursor to some other Emacs window, and pops one if necessary.
For example, if the translator just got PO mode to show some source context in some other,

Chapter 8: Editing PO Files 52

she might discover some apparent bug in the program source that needs correction. This
command allows the translator to change sex, become a programmer, and have the cursor
right into the window containing the program she (or rather he) wants to modify. By later
getting the cursor back in the PO file window, or by asking Emacs to edit this file once
again, PO mode is then recovered.

The command h (po-help) displays a summary of all available PO mode commands.
The translator should then type any character to resume normal PO mode operations. The
command ? has the same effect as h.

The command = (po-statistics) computes the total number of entries in the PO file,
the ordinal of the current entry (counted from 1), the number of untranslated entries, the
number of obsolete entries, and displays all these numbers.

The command V (po-validate) launches msgfmt in checking and verbose mode over the
current PO file. This command first offers to save the current PO file on disk. The msgfmt
tool, from GNU gettext, has the purpose of creating a MO file out of a PO file, and PO
mode uses the features of this program for checking the overall format of a PO file, as well
as all individual entries.

The program msgfmt runs asynchronously with Emacs, so the translator regains control
immediately while her PO file is being studied. Error output is collected in the Emacs
‘*compilation*’ buffer, displayed in another window. The regular Emacs command C-x‘

(next-error), as well as other usual compile commands, allow the translator to reposition
quickly to the offending parts of the PO file. Once the cursor is on the line in error, the
translator may decide on any PO mode action which would help correcting the error.

8.3.3 Entry Positioning

The cursor in a PO file window is almost always part of an entry. The only exceptions
are the special case when the cursor is after the last entry in the file, or when the PO file
is empty. The entry where the cursor is found to be is said to be the current entry. Many
PO mode commands operate on the current entry, so moving the cursor does more than
allowing the translator to browse the PO file, this also selects on which entry commands
operate.

Some PO mode commands alter the position of the cursor in a specialized way. A few of
those special purpose positioning are described here, the others are described in following
sections (for a complete list try C-h m):

. Redisplay the current entry (po-current-entry).

n Select the entry after the current one (po-next-entry).

p Select the entry before the current one (po-previous-entry).

< Select the first entry in the PO file (po-first-entry).

> Select the last entry in the PO file (po-last-entry).

m Record the location of the current entry for later use (po-push-location).

r Return to a previously saved entry location (po-pop-location).

x Exchange the current entry location with the previously saved one
(po-exchange-location).

Chapter 8: Editing PO Files 53

Any Emacs command able to reposition the cursor may be used to select the current entry
in PO mode, including commands which move by characters, lines, paragraphs, screens or
pages, and search commands. However, there is a kind of standard way to display the current
entry in PO mode, which usual Emacs commands moving the cursor do not especially try
to enforce. The command . (po-current-entry) has the sole purpose of redisplaying the
current entry properly, after the current entry has been changed by means external to PO
mode, or the Emacs screen otherwise altered.

It is yet to be decided if PO mode helps the translator, or otherwise irritates her, by
forcing a rigid window disposition while she is doing her work. We originally had quite
precise ideas about how windows should behave, but on the other hand, anyone used to
Emacs is often happy to keep full control. Maybe a fixed window disposition might be
offered as a PO mode option that the translator might activate or deactivate at will, so
it could be offered on an experimental basis. If nobody feels a real need for using it, or a
compulsion for writing it, we should drop this whole idea. The incentive for doing it should
come from translators rather than programmers, as opinions from an experienced translator
are surely more worth to me than opinions from programmers thinking about how others
should do translation.

The commands n (po-next-entry) and p (po-previous-entry) move the cursor the
entry following, or preceding, the current one. If n is given while the cursor is on the last
entry of the PO file, or if p is given while the cursor is on the first entry, no move is done.

The commands < (po-first-entry) and > (po-last-entry) move the cursor to the first
entry, or last entry, of the PO file. When the cursor is located past the last entry in a PO
file, most PO mode commands will return an error saying ‘After last entry’. Moreover,
the commands < and > have the special property of being able to work even when the cursor
is not into some PO file entry, and one may use them for nicely correcting this situation.
But even these commands will fail on a truly empty PO file. There are development plans
for the PO mode for it to interactively fill an empty PO file from sources. See Section 4.5
[Marking], page 24.

The translator may decide, before working at the translation of a particular entry, that
she needs to browse the remainder of the PO file, maybe for finding the terminology or
phraseology used in related entries. She can of course use the standard Emacs idioms for
saving the current cursor location in some register, and use that register for getting back,
or else, use the location ring.

PO mode offers another approach, by which cursor locations may be saved onto a special
stack. The command m (po-push-location) merely adds the location of current entry to
the stack, pushing the already saved locations under the new one. The command r (po-pop-
location) consumes the top stack element and repositions the cursor to the entry associated
with that top element. This position is then lost, for the next r will move the cursor to the
previously saved location, and so on until no locations remain on the stack.

If the translator wants the position to be kept on the location stack, maybe for taking
a look at the entry associated with the top element, then go elsewhere with the intent of
getting back later, she ought to use m immediately after r.

The command x (po-exchange-location) simultaneously repositions the cursor to the
entry associated with the top element of the stack of saved locations, and replaces that top
element with the location of the current entry before the move. Consequently, repeating the

Chapter 8: Editing PO Files 54

x command toggles alternatively between two entries. For achieving this, the translator will
position the cursor on the first entry, use m, then position to the second entry, and merely
use x for making the switch.

8.3.4 Normalizing Strings in Entries

There are many different ways for encoding a particular string into a PO file entry,
because there are so many different ways to split and quote multi-line strings, and even, to
represent special characters by backslashed escaped sequences. Some features of PO mode
rely on the ability for PO mode to scan an already existing PO file for a particular string
encoded into the msgid field of some entry. Even if PO mode has internally all the built-in
machinery for implementing this recognition easily, doing it fast is technically difficult. To
facilitate a solution to this efficiency problem, we decided on a canonical representation for
strings.

A conventional representation of strings in a PO file is currently under discussion, and
PO mode experiments with a canonical representation. Having both xgettext and PO
mode converging towards a uniform way of representing equivalent strings would be useful,
as the internal normalization needed by PO mode could be automatically satisfied when
using xgettext from GNU gettext. An explicit PO mode normalization should then
be only necessary for PO files imported from elsewhere, or for when the convention itself
evolves.

So, for achieving normalization of at least the strings of a given PO file needing a
canonical representation, the following PO mode command is available:

M-x po-normalize

Tidy the whole PO file by making entries more uniform.

The special command M-x po-normalize, which has no associated keys, revises all en-
tries, ensuring that strings of both original and translated entries use uniform internal
quoting in the PO file. It also removes any crumb after the last entry. This command may
be useful for PO files freshly imported from elsewhere, or if we ever improve on the canonical
quoting format we use. This canonical format is not only meant for getting cleaner PO files,
but also for greatly speeding up msgid string lookup for some other PO mode commands.

M-x po-normalize presently makes three passes over the entries. The first implements
heuristics for converting PO files for GNU gettext 0.6 and earlier, in which msgid and
msgstr fields were using K&R style C string syntax for multi-line strings. These heuristics
may fail for comments not related to obsolete entries and ending with a backslash; they also
depend on subsequent passes for finalizing the proper commenting of continued lines for
obsolete entries. This first pass might disappear once all oldish PO files would have been
adjusted. The second and third pass normalize all msgid and msgstr strings respectively.
They also clean out those trailing backslashes used by XView’s msgfmt for continued lines.

Having such an explicit normalizing command allows for importing PO files from other
sources, but also eases the evolution of the current convention, evolution driven mostly by
aesthetic concerns, as of now. It is easy to make suggested adjustments at a later time, as the
normalizing command and eventually, other GNU gettext tools should greatly automate
conformance. A description of the canonical string format is given below, for the particular
benefit of those not having Emacs handy, and who would nevertheless want to handcraft
their PO files in nice ways.

Chapter 8: Editing PO Files 55

Right now, in PO mode, strings are single line or multi-line. A string goes multi-line if
and only if it has embedded newlines, that is, if it matches ‘[^\n]\n+[^\n]’. So, we would
have:

msgstr "\n\nHello, world!\n\n\n"

but, replacing the space by a newline, this becomes:

msgstr ""

"\n"

"\n"

"Hello,\n"

"world!\n"

"\n"

"\n"

We are deliberately using a caricatural example, here, to make the point clearer. Usually,
multi-lines are not that bad looking. It is probable that we will implement the following
suggestion. We might lump together all initial newlines into the empty string, and also
all newlines introducing empty lines (that is, for n > 1, the n-1’th last newlines would go
together on a separate string), so making the previous example appear:

msgstr "\n\n"

"Hello,\n"

"world!\n"

"\n\n"

There are a few yet undecided little points about string normalization, to be documented
in this manual, once these questions settle.

8.3.5 Translated Entries

Each PO file entry for which the msgstr field has been filled with a translation, and
which is not marked as fuzzy (see Section 8.3.6 [Fuzzy Entries], page 56), is said to be a
translated entry. Only translated entries will later be compiled by GNU msgfmt and become
usable in programs. Other entry types will be excluded; translation will not occur for them.

Some commands are more specifically related to translated entry processing.

t Find the next translated entry (po-next-translated-entry).

T Find the previous translated entry (po-previous-translated-entry).

The commands t (po-next-translated-entry) and T (po-previous-translated-
entry) move forwards or backwards, chasing for an translated entry. If none is found, the
search is extended and wraps around in the PO file buffer.

Translated entries usually result from the translator having edited in a translation for
them, Section 8.3.9 [Modifying Translations], page 58. However, if the variable po-auto-

fuzzy-on-edit is not nil, the entry having received a new translation first becomes a fuzzy
entry, which ought to be later unfuzzied before becoming an official, genuine translated
entry. See Section 8.3.6 [Fuzzy Entries], page 56.

8.3.6 Fuzzy Entries

Each PO file entry may have a set of attributes, which are qualities given a name and
explicitly associated with the translation, using a special system comment. One of these

Chapter 8: Editing PO Files 56

attributes has the name fuzzy, and entries having this attribute are said to have a fuzzy
translation. They are called fuzzy entries, for short.

Fuzzy entries, even if they account for translated entries for most other purposes, usu-
ally call for revision by the translator. Those may be produced by applying the program
msgmerge to update an older translated PO files according to a new PO template file, when
this tool hypothesises that some new msgid has been modified only slightly out of an older
one, and chooses to pair what it thinks to be the old translation for the new modified entry.
The slight alteration in the original string (the msgid string) should often be reflected in
the translated string, and this requires the intervention of the translator. For this reason,
msgmerge might mark some entries as being fuzzy.

Also, the translator may decide herself to mark an entry as fuzzy for her own convenience,
when she wants to remember that the entry has to be later revisited. So, some commands
are more specifically related to fuzzy entry processing.

f Find the next fuzzy entry (po-next-fuzzy-entry).

F Find the previous fuzzy entry (po-previous-fuzzy-entry).

TAB Remove the fuzzy attribute of the current entry (po-unfuzzy).

The commands f (po-next-fuzzy-entry) and F (po-previous-fuzzy-entry) move
forwards or backwards, chasing for a fuzzy entry. If none is found, the search is extended
and wraps around in the PO file buffer.

The command TAB (po-unfuzzy) removes the fuzzy attribute associated with an entry,
usually leaving it translated. Further, if the variable po-auto-select-on-unfuzzy has not
the nil value, the TAB command will automatically chase for another interesting entry to
work on. The initial value of po-auto-select-on-unfuzzy is nil.

The initial value of po-auto-fuzzy-on-edit is nil. However, if the variable po-auto-
fuzzy-on-edit is set to t, any entry edited through the RET command is marked fuzzy, as
a way to ensure some kind of double check, later. In this case, the usual paradigm is that an
entry becomes fuzzy (if not already) whenever the translator modifies it. If she is satisfied
with the translation, she then uses TAB to pick another entry to work on, clearing the fuzzy
attribute on the same blow. If she is not satisfied yet, she merely uses SPC to chase another
entry, leaving the entry fuzzy.

The translator may also use the DEL command (po-fade-out-entry) over any translated
entry to mark it as being fuzzy, when she wants to easily leave a trace she wants to later
return working at this entry.

Also, when time comes to quit working on a PO file buffer with the q command, the
translator is asked for confirmation, if fuzzy string still exists.

8.3.7 Untranslated Entries

When xgettext originally creates a PO file, unless told otherwise, it initializes the
msgid field with the untranslated string, and leaves the msgstr string to be empty. Such
entries, having an empty translation, are said to be untranslated entries. Later, when the
programmer slightly modifies some string right in the program, this change is later reflected
in the PO file by the appearance of a new untranslated entry for the modified string.

Chapter 8: Editing PO Files 57

The usual commands moving from entry to entry consider untranslated entries on the
same level as active entries. Untranslated entries are easily recognizable by the fact they
end with ‘msgstr ""’.

The work of the translator might be (quite naively) seen as the process of seeking for
an untranslated entry, editing a translation for it, and repeating these actions until no
untranslated entries remain. Some commands are more specifically related to untranslated
entry processing.

u Find the next untranslated entry (po-next-untranslated-entry).

U Find the previous untranslated entry (po-previous-untransted-entry).

k Turn the current entry into an untranslated one (po-kill-msgstr).

The commands u (po-next-untranslated-entry) and U (po-previous-untransted-
entry) move forwards or backwards, chasing for an untranslated entry. If none is found,
the search is extended and wraps around in the PO file buffer.

An entry can be turned back into an untranslated entry by merely emptying its transla-
tion, using the command k (po-kill-msgstr). See Section 8.3.9 [Modifying Translations],
page 58.

Also, when time comes to quit working on a PO file buffer with the q command, the
translator is asked for confirmation, if some untranslated string still exists.

8.3.8 Obsolete Entries

By obsolete PO file entries, we mean those entries which are commented out, usually by
msgmerge when it found that the translation is not needed anymore by the package being
localized.

The usual commands moving from entry to entry consider obsolete entries on the same
level as active entries. Obsolete entries are easily recognizable by the fact that all their lines
start with #, even those lines containing msgid or msgstr.

Commands exist for emptying the translation or reinitializing it to the original untrans-
lated string. Commands interfacing with the kill ring may force some previously saved text
into the translation. The user may interactively edit the translation. All these commands
may apply to obsolete entries, carefully leaving the entry obsolete after the fact.

Moreover, some commands are more specifically related to obsolete entry processing.

o Find the next obsolete entry (po-next-obsolete-entry).

O Find the previous obsolete entry (po-previous-obsolete-entry).

DEL Make an active entry obsolete, or zap out an obsolete entry (po-fade-out-
entry).

The commands o (po-next-obsolete-entry) and O (po-previous-obsolete-entry)
move forwards or backwards, chasing for an obsolete entry. If none is found, the search is
extended and wraps around in the PO file buffer.

PO mode does not provide ways for un-commenting an obsolete entry and making it
active, because this would reintroduce an original untranslated string which does not corre-
spond to any marked string in the program sources. This goes with the philosophy of never
introducing useless msgid values.

Chapter 8: Editing PO Files 58

However, it is possible to comment out an active entry, so making it obsolete. GNU
gettext utilities will later react to the disappearance of a translation by using the untrans-
lated string. The command DEL (po-fade-out-entry) pushes the current entry a little
further towards annihilation. If the entry is active (it is a translated entry), then it is first
made fuzzy. If it is already fuzzy, then the entry is merely commented out, with confirma-
tion. If the entry is already obsolete, then it is completely deleted from the PO file. It is
easy to recycle the translation so deleted into some other PO file entry, usually one which
is untranslated. See Section 8.3.9 [Modifying Translations], page 58.

Here is a quite interesting problem to solve for later development of PO mode, for those
nights you are not sleepy. The idea would be that PO mode might become bright enough,
one of these days, to make good guesses at retrieving the most probable candidate, among
all obsolete entries, for initializing the translation of a newly appeared string. I think it
might be a quite hard problem to do this algorithmically, as we have to develop good and
efficient measures of string similarity. Right now, PO mode completely lets the decision to
the translator, when the time comes to find the adequate obsolete translation, it merely
tries to provide handy tools for helping her to do so.

8.3.9 Modifying Translations

PO mode prevents direct modification of the PO file, by the usual means Emacs gives
for altering a buffer’s contents. By doing so, it pretends helping the translator to avoid little
clerical errors about the overall file format, or the proper quoting of strings, as those errors
would be easily made. Other kinds of errors are still possible, but some may be caught and
diagnosed by the batch validation process, which the translator may always trigger by the
V command. For all other errors, the translator has to rely on her own judgment, and also
on the linguistic reports submitted to her by the users of the translated package, having
the same mother tongue.

When the time comes to create a translation, correct an error diagnosed mechanically
or reported by a user, the translators have to resort to using the following commands for
modifying the translations.

RET Interactively edit the translation (po-edit-msgstr).

LFD

C-j Reinitialize the translation with the original, untranslated string (po-msgid-
to-msgstr).

k Save the translation on the kill ring, and delete it (po-kill-msgstr).

w Save the translation on the kill ring, without deleting it (po-kill-ring-save-
msgstr).

y Replace the translation, taking the new from the kill ring (po-yank-msgstr).

The command RET (po-edit-msgstr) opens a new Emacs window meant to edit in a
new translation, or to modify an already existing translation. The new window contains a
copy of the translation taken from the current PO file entry, all ready for edition, expunged
of all quoting marks, fully modifiable and with the complete extent of Emacs modifying
commands. When the translator is done with her modifications, she may use C-c C-c to
close the subedit window with the automatically requoted results, or C-c C-k to abort her
modifications. See Section 8.3.11 [Subedit], page 62, for more information.

Chapter 8: Editing PO Files 59

The command LFD (po-msgid-to-msgstr) initializes, or reinitializes the translation with
the original string. This command is normally used when the translator wants to redo a
fresh translation of the original string, disregarding any previous work.

It is possible to arrange so, whenever editing an untranslated entry, the LFD command
be automatically executed. If you set po-auto-edit-with-msgid to t, the translation
gets initialised with the original string, in case none exists already. The default value for
po-auto-edit-with-msgid is nil.

In fact, whether it is best to start a translation with an empty string, or rather with a
copy of the original string, is a matter of taste or habit. Sometimes, the source language
and the target language are so different that is simply best to start writing on an empty
page. At other times, the source and target languages are so close that it would be a waste
to retype a number of words already being written in the original string. A translator may
also like having the original string right under her eyes, as she will progressively overwrite
the original text with the translation, even if this requires some extra editing work to get
rid of the original.

The command k (po-kill-msgstr) merely empties the translation string, so turning
the entry into an untranslated one. But while doing so, its previous contents is put apart
in a special place, known as the kill ring. The command w (po-kill-ring-save-msgstr)
has also the effect of taking a copy of the translation onto the kill ring, but it otherwise
leaves the entry alone, and does not remove the translation from the entry. Both commands
use exactly the Emacs kill ring, which is shared between buffers, and which is well known
already to Emacs lovers.

The translator may use k or w many times in the course of her work, as the kill ring
may hold several saved translations. From the kill ring, strings may later be reinserted
in various Emacs buffers. In particular, the kill ring may be used for moving translation
strings between different entries of a single PO file buffer, or if the translator is handling
many such buffers at once, even between PO files.

To facilitate exchanges with buffers which are not in PO mode, the translation string put
on the kill ring by the k command is fully unquoted before being saved: external quotes are
removed, multi-line strings are concatenated, and backslash escaped sequences are turned
into their corresponding characters. In the special case of obsolete entries, the translation
is also uncommented prior to saving.

The command y (po-yank-msgstr) completely replaces the translation of the current
entry by a string taken from the kill ring. Following Emacs terminology, we then say that
the replacement string is yanked into the PO file buffer. See Section “Yanking” in The
Emacs Editor. The first time y is used, the translation receives the value of the most
recent addition to the kill ring. If y is typed once again, immediately, without intervening
keystrokes, the translation just inserted is taken away and replaced by the second most
recent addition to the kill ring. By repeating y many times in a row, the translator may
travel along the kill ring for saved strings, until she finds the string she really wanted.

When a string is yanked into a PO file entry, it is fully and automatically requoted
for complying with the format PO files should have. Further, if the entry is obsolete, PO
mode then appropriately push the inserted string inside comments. Once again, translators
should not burden themselves with quoting considerations besides, of course, the necessity
of the translated string itself respective to the program using it.

Chapter 8: Editing PO Files 60

Note that k or w are not the only commands pushing strings on the kill ring, as almost any
PO mode command replacing translation strings (or the translator comments) automatically
saves the old string on the kill ring. The main exceptions to this general rule are the yanking
commands themselves.

To better illustrate the operation of killing and yanking, let’s use an actual example,
taken from a common situation. When the programmer slightly modifies some string right
in the program, his change is later reflected in the PO file by the appearance of a new
untranslated entry for the modified string, and the fact that the entry translating the
original or unmodified string becomes obsolete. In many cases, the translator might spare
herself some work by retrieving the unmodified translation from the obsolete entry, then
initializing the untranslated entry msgstr field with this retrieved translation. Once this
done, the obsolete entry is not wanted anymore, and may be safely deleted.

When the translator finds an untranslated entry and suspects that a slight variant of
the translation exists, she immediately uses m to mark the current entry location, then
starts chasing obsolete entries with o, hoping to find some translation corresponding to
the unmodified string. Once found, she uses the DEL command for deleting the obsolete
entry, knowing that DEL also kills the translation, that is, pushes the translation on the
kill ring. Then, r returns to the initial untranslated entry, and y then yanks the saved
translation right into the msgstr field. The translator is then free to use RET for fine tuning
the translation contents, and maybe to later use u, then m again, for going on with the next
untranslated string.

When some sequence of keys has to be typed over and over again, the translator may
find it useful to become better acquainted with the Emacs capability of learning these
sequences and playing them back under request. See Section “Keyboard Macros” in The
Emacs Editor.

8.3.10 Modifying Comments

Any translation work done seriously will raise many linguistic difficulties, for which
decisions have to be made, and the choices further documented. These documents may be
saved within the PO file in form of translator comments, which the translator is free to
create, delete, or modify at will. These comments may be useful to herself when she returns
to this PO file after a while.

Comments not having whitespace after the initial ‘#’, for example, those beginning with
‘#.’ or ‘#:’, are not translator comments, they are exclusively created by other gettext

tools. So, the commands below will never alter such system added comments, they are not
meant for the translator to modify. See Chapter 3 [PO Files], page 13.

The following commands are somewhat similar to those modifying translations, so the
general indications given for those apply here. See Section 8.3.9 [Modifying Translations],
page 58.

Interactively edit the translator comments (po-edit-comment).

K Save the translator comments on the kill ring, and delete it (po-kill-comment).

W Save the translator comments on the kill ring, without deleting it (po-kill-
ring-save-comment).

Chapter 8: Editing PO Files 61

Y Replace the translator comments, taking the new from the kill ring (po-yank-
comment).

These commands parallel PO mode commands for modifying the translation strings, and
behave much the same way as they do, except that they handle this part of PO file comments
meant for translator usage, rather than the translation strings. So, if the descriptions given
below are slightly succinct, it is because the full details have already been given. See
Section 8.3.9 [Modifying Translations], page 58.

The command # (po-edit-comment) opens a new Emacs window containing a copy of
the translator comments on the current PO file entry. If there are no such comments,
PO mode understands that the translator wants to add a comment to the entry, and she
is presented with an empty screen. Comment marks (#) and the space following them
are automatically removed before edition, and reinstated after. For translator comments
pertaining to obsolete entries, the uncommenting and recommenting operations are done
twice. Once in the editing window, the keys C-c C-c allow the translator to tell she is
finished with editing the comment. See Section 8.3.11 [Subedit], page 62, for further details.

Functions found on po-subedit-mode-hook, if any, are executed after the string has
been inserted in the edit buffer.

The command K (po-kill-comment) gets rid of all translator comments, while saving
those comments on the kill ring. The command W (po-kill-ring-save-comment) takes a
copy of the translator comments on the kill ring, but leaves them undisturbed in the current
entry. The command Y (po-yank-comment) completely replaces the translator comments
by a string taken at the front of the kill ring. When this command is immediately repeated,
the comments just inserted are withdrawn, and replaced by other strings taken along the
kill ring.

On the kill ring, all strings have the same nature. There is no distinction between
translation strings and translator comments strings. So, for example, let’s presume the
translator has just finished editing a translation, and wants to create a new translator
comment to document why the previous translation was not good, just to remember what
was the problem. Foreseeing that she will do that in her documentation, the translator
may want to quote the previous translation in her translator comments. To do so, she may
initialize the translator comments with the previous translation, still at the head of the kill
ring. Because editing already pushed the previous translation on the kill ring, she merely
has to type M-w prior to #, and the previous translation will be right there, all ready for
being introduced by some explanatory text.

On the other hand, presume there are some translator comments already and that the
translator wants to add to those comments, instead of wholly replacing them. Then, she
should edit the comment right away with #. Once inside the editing window, she can use the
regular Emacs commands C-y (yank) and M-y (yank-pop) to get the previous translation
where she likes.

8.3.11 Details of Sub Edition

The PO subedit minor mode has a few peculiarities worth being described in fuller detail.
It installs a few commands over the usual editing set of Emacs, which are described below.

C-c C-c Complete edition (po-subedit-exit).

Chapter 8: Editing PO Files 62

C-c C-k Abort edition (po-subedit-abort).

C-c C-a Consult auxiliary PO files (po-subedit-cycle-auxiliary).

The window’s contents represents a translation for a given message, or a translator
comment. The translator may modify this window to her heart’s content. Once this is done,
the command C-c C-c (po-subedit-exit) may be used to return the edited translation into
the PO file, replacing the original translation, even if it moved out of sight or if buffers were
switched.

If the translator becomes unsatisfied with her translation or comment, to the extent
she prefers keeping what was existent prior to the RET or # command, she may use the
command C-c C-k (po-subedit-abort) to merely get rid of edition, while preserving the
original translation or comment. Another way would be for her to exit normally with
C-c C-c, then type U once for undoing the whole effect of last edition.

The command C-c C-a (po-subedit-cycle-auxiliary) allows for glancing through
translations already achieved in other languages, directly while editing the current transla-
tion. This may be quite convenient when the translator is fluent at many languages, but of
course, only makes sense when such completed auxiliary PO files are already available to
her (see Section 8.3.13 [Auxiliary], page 64).

Functions found on po-subedit-mode-hook, if any, are executed after the string has
been inserted in the edit buffer.

While editing her translation, the translator should pay attention to not inserting un-
wanted RET (newline) characters at the end of the translated string if those are not meant
to be there, or to removing such characters when they are required. Since these characters
are not visible in the editing buffer, they are easily introduced by mistake. To help her, RET
automatically puts the character < at the end of the string being edited, but this < is not
really part of the string. On exiting the editing window with C-c C-c, PO mode automat-
ically removes such < and all whitespace added after it. If the translator adds characters
after the terminating <, it looses its delimiting property and integrally becomes part of the
string. If she removes the delimiting <, then the edited string is taken as is, with all trailing
newlines, even if invisible. Also, if the translated string ought to end itself with a genuine
<, then the delimiting < may not be removed; so the string should appear, in the editing
window, as ending with two < in a row.

When a translation (or a comment) is being edited, the translator may move the cursor
back into the PO file buffer and freely move to other entries, browsing at will. If, with
an edition pending, the translator wanders in the PO file buffer, she may decide to start
modifying another entry. Each entry being edited has its own subedit buffer. It is possible
to simultaneously edit the translation and the comment of a single entry, or to edit entries
in different PO files, all at once. Typing RET on a field already being edited merely resumes
that particular edit. Yet, the translator should better be comfortable at handling many
Emacs windows!

Pending subedits may be completed or aborted in any order, regardless of how or when
they were started. When many subedits are pending and the translator asks for quitting
the PO file (with the q command), subedits are automatically resumed one at a time, so
she may decide for each of them.

Chapter 8: Editing PO Files 63

8.3.12 C Sources Context

POmode is particularly powerful when used with PO files created through GNU gettext

utilities, as those utilities insert special comments in the PO files they generate. Some of
these special comments relate the PO file entry to exactly where the untranslated string
appears in the program sources.

When the translator gets to an untranslated entry, she is fairly often faced with an orig-
inal string which is not as informative as it normally should be, being succinct, cryptic, or
otherwise ambiguous. Before choosing how to translate the string, she needs to understand
better what the string really means and how tight the translation has to be. Most of the
time, when problems arise, the only way left to make her judgment is looking at the true
program sources from where this string originated, searching for surrounding comments the
programmer might have put in there, and looking around for helping clues of any kind.

Surely, when looking at program sources, the translator will receive more help if she
is a fluent programmer. However, even if she is not versed in programming and feels a
little lost in C code, the translator should not be shy at taking a look, once in a while.
It is most probable that she will still be able to find some of the hints she needs. She
will learn quickly to not feel uncomfortable in program code, paying more attention to
programmer’s comments, variable and function names (if he dared choosing them well),
and overall organization, than to the program code itself.

The following commands are meant to help the translator at getting program source
context for a PO file entry.

s Resume the display of a program source context, or cycle through them
(po-cycle-source-reference).

M-s Display of a program source context selected by menu (po-select-source-
reference).

S Add a directory to the search path for source files (po-consider-source-path).

M-S Delete a directory from the search path for source files (po-ignore-source-
path).

The commands s (po-cycle-source-reference) and M-s (po-select-source-
reference) both open another window displaying some source program file, and already
positioned in such a way that it shows an actual use of the string to be translated. By
doing so, the command gives source program context for the string. But if the entry has
no source context references, or if all references are unresolved along the search path for
program sources, then the command diagnoses this as an error.

Even if s (or M-s) opens a new window, the cursor stays in the PO file window. If the
translator really wants to get into the program source window, she ought to do it explicitly,
maybe by using command O.

When s is typed for the first time, or for a PO file entry which is different of the last
one used for getting source context, then the command reacts by giving the first context
available for this entry, if any. If some context has already been recently displayed for the
current PO file entry, and the translator wandered off to do other things, typing s again
will merely resume, in another window, the context last displayed. In particular, if the
translator moved the cursor away from the context in the source file, the command will

Chapter 8: Editing PO Files 64

bring the cursor back to the context. By using s many times in a row, with no other
commands intervening, PO mode will cycle to the next available contexts for this particular
entry, getting back to the first context once the last has been shown.

The command M-s behaves differently. Instead of cycling through references, it lets the
translator choose a particular reference among many, and displays that reference. It is best
used with completion, if the translator types TAB immediately after M-s, in response to the
question, she will be offered a menu of all possible references, as a reminder of which are
the acceptable answers. This command is useful only where there are really many contexts
available for a single string to translate.

Program source files are usually found relative to where the PO file stands. As a special
provision, when this fails, the file is also looked for, but relative to the directory immediately
above it. Those two cases take proper care of most PO files. However, it might happen
that a PO file has been moved, or is edited in a different place than its normal location.
When this happens, the translator should tell PO mode in which directory normally sits the
genuine PO file. Many such directories may be specified, and all together, they constitute
what is called the search path for program sources. The command S (po-consider-source-
path) is used to interactively enter a new directory at the front of the search path, and
the command M-S (po-ignore-source-path) is used to select, with completion, one of the
directories she does not want anymore on the search path.

8.3.13 Consulting Auxiliary PO Files

PO mode is able to help the knowledgeable translator, being fluent in many languages,
at taking advantage of translations already achieved in other languages she just happens to
know. It provides these other language translations as additional context for her own work.
Moreover, it has features to ease the production of translations for many languages at once,
for translators preferring to work in this way.

An auxiliary PO file is an existing PO file meant for the same package the translator
is working on, but targeted to a different mother tongue language. Commands exist for
declaring and handling auxiliary PO files, and also for showing contexts for the entry under
work.

Here are the auxiliary file commands available in PO mode.

a Seek auxiliary files for another translation for the same entry (po-cycle-
auxiliary).

C-c C-a Switch to a particular auxiliary file (po-select-auxiliary).

A Declare this PO file as an auxiliary file (po-consider-as-auxiliary).

M-A Remove this PO file from the list of auxiliary files (po-ignore-as-auxiliary).

Command A (po-consider-as-auxiliary) adds the current PO file to the list of aux-
iliary files, while command M-A (po-ignore-as-auxiliary just removes it.

The command a (po-cycle-auxiliary) seeks all auxiliary PO files, round-robin, search-
ing for a translated entry in some other language having an msgid field identical as the one
for the current entry. The found PO file, if any, takes the place of the current PO file in
the display (its window gets on top). Before doing so, the current PO file is also made into
an auxiliary file, if not already. So, a in this newly displayed PO file will seek another PO
file, and so on, so repeating a will eventually yield back the original PO file.

Chapter 8: Editing PO Files 65

The command C-c C-a (po-select-auxiliary) asks the translator for her choice of a
particular auxiliary file, with completion, and then switches to that selected PO file. The
command also checks if the selected file has an msgid field identical as the one for the
current entry, and if yes, this entry becomes current. Otherwise, the cursor of the selected
file is left undisturbed.

For all this to work fully, auxiliary PO files will have to be normalized, in that way that
msgid fields should be written exactly the same way. It is possible to write msgid fields
in various ways for representing the same string, different writing would break the proper
behaviour of the auxiliary file commands of PO mode. This is not expected to be much a
problem in practice, as most existing PO files have their msgid entries written by the same
GNU gettext tools.

However, PO files initially created by PO mode itself, while marking strings in source
files, are normalised differently. So are PO files resulting of the ‘M-x normalize’ command.
Until these discrepancies between PO mode and other GNU gettext tools get fully resolved,
the translator should stay aware of normalisation issues.

8.4 Using Translation Compendia

A compendium is a special PO file containing a set of translations recurring in many
different packages. The translator can use gettext tools to build a new compendium, to
add entries to her compendium, and to initialize untranslated entries, or to update already
translated entries, from translations kept in the compendium.

8.4.1 Creating Compendia

Basically every PO file consisting of translated entries only can be declared as a valid
compendium. Often the translator wants to have special compendia; let’s consider two
cases: concatenating PO files and extracting a message subset from a PO file.

8.4.1.1 Concatenate PO Files

To concatenate several valid PO files into one compendium file you can use ‘msgcomm’
or ‘msgcat’ (the latter preferred):

msgcat -o compendium.po file1.po file2.po

By default, msgcat will accumulate divergent translations for the same string. Those oc-
currences will be marked as fuzzy and highly visible decorated; calling msgcat on file1.po:

#: src/hello.c:200

#, c-format

msgid "Report bugs to <%s>.\n"

msgstr "Comunicar ‘bugs’ a <%s>.\n"

and file2.po:

#: src/bye.c:100

#, c-format

msgid "Report bugs to <%s>.\n"

msgstr "Comunicar \"bugs\" a <%s>.\n"

will result in:

Chapter 8: Editing PO Files 66

#: src/hello.c:200 src/bye.c:100

#, fuzzy, c-format

msgid "Report bugs to <%s>.\n"

msgstr ""

"#-#-#-#-# file1.po #-#-#-#-#\n"

"Comunicar ‘bugs’ a <%s>.\n"

"#-#-#-#-# file2.po #-#-#-#-#\n"

"Comunicar \"bugs\" a <%s>.\n"

The translator will have to resolve this “conflict” manually; she has to decide whether
the first or the second version is appropriate (or provide a new translation), to delete the
“marker lines”, and finally to remove the fuzzy mark.

If the translator knows in advance the first found translation of a message is always the
best translation she can make use to the ‘--use-first’ switch:

msgcat --use-first -o compendium.po file1.po file2.po

A good compendium file must not contain fuzzy or untranslated entries. If input files
are “dirty” you must preprocess the input files or postprocess the result using ‘msgattrib
--translated --no-fuzzy’.

8.4.1.2 Extract a Message Subset from a PO File

Nobody wants to translate the same messages again and again; thus you may wish to
have a compendium file containing getopt.c messages.

To extract a message subset (e.g., all getopt.c messages) from an existing PO file into
one compendium file you can use ‘msggrep’:

msggrep --location src/getopt.c -o compendium.po file.po

8.4.2 Using Compendia

You can use a compendium file to initialize a translation from scratch or to update an
already existing translation.

8.4.2.1 Initialize a New Translation File

Since a PO file with translations does not exist the translator can merely use /dev/null
to fake the “old” translation file.

msgmerge --compendium compendium.po -o file.po /dev/null file.pot

8.4.2.2 Update an Existing Translation File

Concatenate the compendium file(s) and the existing PO, merge the result with the POT
file and remove the obsolete entries (optional, here done using ‘msgattrib’):

msgcat --use-first -o update.po compendium1.po compendium2.po file.po

msgmerge update.po file.pot | msgattrib --no-obsolete > file.po

Chapter 9: Manipulating PO Files 67

9 Manipulating PO Files

Sometimes it is necessary to manipulate PO files in a way that is better performed
automatically than by hand. GNU gettext includes a complete set of tools for this purpose.

When merging two packages into a single package, the resulting POT file will be the
concatenation of the two packages’ POT files. Thus the maintainer must concatenate the
two existing package translations into a single translation catalog, for each language. This
is best performed using ‘msgcat’. It is then the translators’ duty to deal with any possible
conflicts that arose during the merge.

When a translator takes over the translation job from another translator, but she uses
a different character encoding in her locale, she will convert the catalog to her character
encoding. This is best done through the ‘msgconv’ program.

When a maintainer takes a source file with tagged messages from another package, he
should also take the existing translations for this source file (and not let the translators do
the same job twice). One way to do this is through ‘msggrep’, another is to create a POT
file for that source file and use ‘msgmerge’.

When a translator wants to adjust some translation catalog for a special dialect or
orthography — for example, German as written in Switzerland versus German as written
in Germany — she needs to apply some text processing to every message in the catalog.
The tool for doing this is ‘msgfilter’.

Another use of msgfilter is to produce approximately the POT file for which a given
PO file was made. This can be done through a filter command like ‘msgfilter sed -e

d | sed -e ’/^# /d’’. Note that the original POT file may have had different comments
and different plural message counts, that’s why it’s better to use the original POT file if
available.

When a translator wants to check her translations, for example according to orthography
rules or using a non-interactive spell checker, she can do so using the ‘msgexec’ program.

When third party tools create PO or POT files, sometimes duplicates cannot be avoided.
But the GNU gettext tools give an error when they encounter duplicate msgids in the same
file and in the same domain. To merge duplicates, the ‘msguniq’ program can be used.

‘msgcomm’ is a more general tool for keeping or throwing away duplicates, occurring in
different files.

‘msgcmp’ can be used to check whether a translation catalog is completely translated.

‘msgattrib’ can be used to select and extract only the fuzzy or untranslated messages
of a translation catalog.

‘msgen’ is useful as a first step for preparing English translation catalogs. It copies each
message’s msgid to its msgstr.

Finally, for those applications where all these various programs are not sufficient, a
library ‘libgettextpo’ is provided that can be used to write other specialized programs
that process PO files.

Chapter 9: Manipulating PO Files 68

9.1 Invoking the msgcat Program

msgcat [option] [inputfile]...

The msgcat program concatenates and merges the specified PO files. It finds messages
which are common to two or more of the specified PO files. By using the --more-than

option, greater commonality may be requested before messages are printed. Conversely,
the --less-than option may be used to specify less commonality before messages are
printed (i.e. ‘--less-than=2’ will only print the unique messages). Translations, comments,
extracted comments, and file positions will be cumulated, except that if --use-first is
specified, they will be taken from the first PO file to define them.

9.1.1 Input file location

‘inputfile ...’
Input files.

‘-f file’
‘--files-from=file’

Read the names of the input files from file instead of getting them from the
command line.

‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to this
list of directories. The resulting .po file will be written relative to the current
directory, though.

If inputfile is ‘-’, standard input is read.

9.1.2 Output file location

‘-o file’
‘--output-file=file’

Write output to specified file.

The results are written to standard output if no output file is specified or if it is ‘-’.

9.1.3 Message selection

‘-< number’
‘--less-than=number’

Print messages with less than number definitions, defaults to infinite if not set.

‘-> number’
‘--more-than=number’

Print messages with more than number definitions, defaults to 0 if not set.

‘-u’
‘--unique’

Shorthand for ‘--less-than=2’. Requests that only unique messages be
printed.

Chapter 9: Manipulating PO Files 69

9.1.4 Input file syntax

‘-P’
‘--properties-input’

Assume the input files are Java ResourceBundles in Java .properties syntax,
not in PO file syntax.

‘--stringtable-input’
Assume the input files are NeXTstep/GNUstep localized resource files in
.strings syntax, not in PO file syntax.

9.1.5 Output details

‘-t’
‘--to-code=name’

Specify encoding for output.

‘--use-first’
Use first available translation for each message. Don’t merge several translations
into one.

‘--lang=catalogname’
Specify the ‘Language’ field to be used in the header entry. See Section 6.2
[Header Entry], page 42 for the meaning of this field. Note: The
‘Language-Team’ and ‘Plural-Forms’ fields are left unchanged.

‘--color’
‘--color=when’

Specify whether or when to use colors and other text attributes. See
Section 9.11.1 [The –color option], page 91 for details.

‘--style=style_file’
Specify the CSS style rule file to use for --color. See Section 9.11.3 [The –style
option], page 93 for details.

‘--force-po’
Always write an output file even if it contains no message.

‘-i’
‘--indent’

Write the .po file using indented style.

‘--no-location’
Do not write ‘#: filename:line’ lines.

‘-n’
‘--add-location’

Generate ‘#: filename:line’ lines (default).

‘--strict’
Write out a strict Uniforum conforming PO file. Note that this Uniforum format
should be avoided because it doesn’t support the GNU extensions.

Chapter 9: Manipulating PO Files 70

‘-p’
‘--properties-output’

Write out a Java ResourceBundle in Java .properties syntax. Note that this
file format doesn’t support plural forms and silently drops obsolete messages.

‘--stringtable-output’
Write out a NeXTstep/GNUstep localized resource file in .strings syntax.
Note that this file format doesn’t support plural forms.

‘-w number’
‘--width=number’

Set the output page width. Long strings in the output files will be split across
multiple lines in order to ensure that each line’s width (= number of screen
columns) is less or equal to the given number.

‘--no-wrap’
Do not break long message lines. Message lines whose width exceeds the output
page width will not be split into several lines. Only file reference lines which
are wider than the output page width will be split.

‘-s’
‘--sort-output’

Generate sorted output. Note that using this option makes it much harder for
the translator to understand each message’s context.

‘-F’
‘--sort-by-file’

Sort output by file location.

9.1.6 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

9.2 Invoking the msgconv Program

msgconv [option] [inputfile]

The msgconv program converts a translation catalog to a different character encoding.

9.2.1 Input file location

‘inputfile’
Input PO file.

‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to this
list of directories. The resulting .po file will be written relative to the current
directory, though.

Chapter 9: Manipulating PO Files 71

If no inputfile is given or if it is ‘-’, standard input is read.

9.2.2 Output file location

‘-o file’
‘--output-file=file’

Write output to specified file.

The results are written to standard output if no output file is specified or if it is ‘-’.

9.2.3 Conversion target

‘-t’
‘--to-code=name’

Specify encoding for output.

The default encoding is the current locale’s encoding.

9.2.4 Input file syntax

‘-P’
‘--properties-input’

Assume the input file is a Java ResourceBundle in Java .properties syntax,
not in PO file syntax.

‘--stringtable-input’
Assume the input file is a NeXTstep/GNUstep localized resource file in
.strings syntax, not in PO file syntax.

9.2.5 Output details

‘--color’
‘--color=when’

Specify whether or when to use colors and other text attributes. See
Section 9.11.1 [The –color option], page 91 for details.

‘--style=style_file’
Specify the CSS style rule file to use for --color. See Section 9.11.3 [The –style
option], page 93 for details.

‘--force-po’
Always write an output file even if it contains no message.

‘-i’
‘--indent’

Write the .po file using indented style.

‘--no-location’
Do not write ‘#: filename:line’ lines.

‘--add-location’
Generate ‘#: filename:line’ lines (default).

‘--strict’
Write out a strict Uniforum conforming PO file. Note that this Uniforum format
should be avoided because it doesn’t support the GNU extensions.

Chapter 9: Manipulating PO Files 72

‘-p’
‘--properties-output’

Write out a Java ResourceBundle in Java .properties syntax. Note that this
file format doesn’t support plural forms and silently drops obsolete messages.

‘--stringtable-output’
Write out a NeXTstep/GNUstep localized resource file in .strings syntax.
Note that this file format doesn’t support plural forms.

‘-w number’
‘--width=number’

Set the output page width. Long strings in the output files will be split across
multiple lines in order to ensure that each line’s width (= number of screen
columns) is less or equal to the given number.

‘--no-wrap’
Do not break long message lines. Message lines whose width exceeds the output
page width will not be split into several lines. Only file reference lines which
are wider than the output page width will be split.

‘-s’
‘--sort-output’

Generate sorted output. Note that using this option makes it much harder for
the translator to understand each message’s context.

‘-F’
‘--sort-by-file’

Sort output by file location.

9.2.6 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

9.3 Invoking the msggrep Program

msggrep [option] [inputfile]

The msggrep program extracts all messages of a translation catalog that match a given
pattern or belong to some given source files.

9.3.1 Input file location

‘inputfile’
Input PO file.

Chapter 9: Manipulating PO Files 73

‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to this
list of directories. The resulting .po file will be written relative to the current
directory, though.

If no inputfile is given or if it is ‘-’, standard input is read.

9.3.2 Output file location

‘-o file’
‘--output-file=file’

Write output to specified file.

The results are written to standard output if no output file is specified or if it is ‘-’.

9.3.3 Message selection

[-N sourcefile]... [-M domainname]...

[-J msgctxt-pattern] [-K msgid-pattern] [-T msgstr-pattern]

[-C comment-pattern]

A message is selected if

• it comes from one of the specified source files,

• or if it comes from one of the specified domains,

• or if ‘-J’ is given and its context (msgctxt) matches msgctxt-pattern,

• or if ‘-K’ is given and its key (msgid or msgid plural) matches msgid-pattern,

• or if ‘-T’ is given and its translation (msgstr) matches msgstr-pattern,

• or if ‘-C’ is given and the translator’s comment matches comment-pattern.

When more than one selection criterion is specified, the set of selected messages is the
union of the selected messages of each criterion.

msgctxt-pattern or msgid-pattern or msgstr-pattern syntax:

[-E | -F] [-e pattern | -f file]...

patterns are basic regular expressions by default, or extended regular expressions if -E
is given, or fixed strings if -F is given.

‘-N sourcefile’
‘--location=sourcefile’

Select messages extracted from sourcefile. sourcefile can be either a literal file
name or a wildcard pattern.

‘-M domainname’
‘--domain=domainname’

Select messages belonging to domain domainname.

‘-J’
‘--msgctxt’

Start of patterns for the msgctxt.

‘-K’
‘--msgid’ Start of patterns for the msgid.

Chapter 9: Manipulating PO Files 74

‘-T’
‘--msgstr’

Start of patterns for the msgstr.

‘-C’
‘--comment’

Start of patterns for the translator’s comment.

‘-X’
‘--extracted-comment’

Start of patterns for the extracted comments.

‘-E’
‘--extended-regexp’

Specify that pattern is an extended regular expression.

‘-F’
‘--fixed-strings’

Specify that pattern is a set of newline-separated strings.

‘-e pattern’
‘--regexp=pattern’

Use pattern as a regular expression.

‘-f file’
‘--file=file’

Obtain pattern from file.

‘-i’
‘--ignore-case’

Ignore case distinctions.

‘-v’
‘--invert-match’

Output only the messages that do not match any selection criterion, instead of
the messages that match a selection criterion.

9.3.4 Input file syntax

‘-P’
‘--properties-input’

Assume the input file is a Java ResourceBundle in Java .properties syntax,
not in PO file syntax.

‘--stringtable-input’
Assume the input file is a NeXTstep/GNUstep localized resource file in
.strings syntax, not in PO file syntax.

9.3.5 Output details

‘--color’
‘--color=when’

Specify whether or when to use colors and other text attributes. See
Section 9.11.1 [The –color option], page 91 for details.

Chapter 9: Manipulating PO Files 75

‘--style=style_file’
Specify the CSS style rule file to use for --color. See Section 9.11.3 [The –style
option], page 93 for details.

‘--force-po’
Always write an output file even if it contains no message.

‘--indent’
Write the .po file using indented style.

‘--no-location’
Do not write ‘#: filename:line’ lines.

‘--add-location’
Generate ‘#: filename:line’ lines (default).

‘--strict’
Write out a strict Uniforum conforming PO file. Note that this Uniforum format
should be avoided because it doesn’t support the GNU extensions.

‘-p’
‘--properties-output’

Write out a Java ResourceBundle in Java .properties syntax. Note that this
file format doesn’t support plural forms and silently drops obsolete messages.

‘--stringtable-output’
Write out a NeXTstep/GNUstep localized resource file in .strings syntax.
Note that this file format doesn’t support plural forms.

‘-w number’
‘--width=number’

Set the output page width. Long strings in the output files will be split across
multiple lines in order to ensure that each line’s width (= number of screen
columns) is less or equal to the given number.

‘--no-wrap’
Do not break long message lines. Message lines whose width exceeds the output
page width will not be split into several lines. Only file reference lines which
are wider than the output page width will be split.

‘--sort-output’
Generate sorted output. Note that using this option makes it much harder for
the translator to understand each message’s context.

‘--sort-by-file’
Sort output by file location.

9.3.6 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

Chapter 9: Manipulating PO Files 76

9.3.7 Examples

To extract the messages that come from the source files gnulib-lib/error.c and
gnulib-lib/getopt.c:

msggrep -N gnulib-lib/error.c -N gnulib-lib/getopt.c input.po

To extract the messages that contain the string “Please specify” in the original string:

msggrep --msgid -F -e ’Please specify’ input.po

To extract the messages that have a context specifier of either “Menu>File” or
“Menu>Edit” or a submenu of them:

msggrep --msgctxt -E -e ’^Menu>(File|Edit)’ input.po

To extract the messages whose translation contains one of the strings in the file
wordlist.txt:

msggrep --msgstr -F -f wordlist.txt input.po

9.4 Invoking the msgfilter Program

msgfilter [option] filter [filter-option]

The msgfilter program applies a filter to all translations of a translation catalog.

During each filter invocation, the environment variable MSGFILTER_MSGID is bound to
the message’s msgid, and the environment variable MSGFILTER_LOCATION is bound to the
location in the PO file of the message. If the message has a context, the environment
variable MSGFILTER_MSGCTXT is bound to the message’s msgctxt, otherwise it is unbound.

9.4.1 Input file location

‘-i inputfile’
‘--input=inputfile’

Input PO file.

‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to this
list of directories. The resulting .po file will be written relative to the current
directory, though.

If no inputfile is given or if it is ‘-’, standard input is read.

9.4.2 Output file location

‘-o file’
‘--output-file=file’

Write output to specified file.

The results are written to standard output if no output file is specified or if it is ‘-’.

9.4.3 The filter

The filter can be any program that reads a translation from standard input and writes a
modified translation to standard output. A frequently used filter is ‘sed’. A few particular
built-in filters are also recognized.

Chapter 9: Manipulating PO Files 77

Note: If the filter is not a built-in filter, you have to care about encodings: It is your
responsibility to ensure that the filter can cope with input encoded in the translation cat-
alog’s encoding. If the filter wants input in a particular encoding, you can in a first step
convert the translation catalog to that encoding using the ‘msgconv’ program, before invok-
ing ‘msgfilter’. If the filter wants input in the locale’s encoding, but you want to avoid
the locale’s encoding, then you can first convert the translation catalog to UTF-8 using
the ‘msgconv’ program and then make ‘msgfilter’ work in an UTF-8 locale, by using the
LC_ALL environment variable.

Note: Most translations in a translation catalog don’t end with a newline character.
For this reason, it is important that the filter recognizes its last input line even if it ends
without a newline, and that it doesn’t add an undesired trailing newline at the end. The
‘sed’ program on some platforms is known to ignore the last line of input if it is not
terminated with a newline. You can use GNU sed instead; it does not have this limitation.

9.4.4 Useful filter-options when the filter is ‘sed’

‘-e script’
‘--expression=script’

Add script to the commands to be executed.

‘-f scriptfile’
‘--file=scriptfile’

Add the contents of scriptfile to the commands to be executed.

‘-n’
‘--quiet’
‘--silent’

Suppress automatic printing of pattern space.

9.4.5 Built-in filters

The filter ‘recode-sr-latin’ is recognized as a built-in filter. The command
‘recode-sr-latin’ converts Serbian text, written in the Cyrillic script, to the Latin script.
The command ‘msgfilter recode-sr-latin’ applies this conversion to the translations
of a PO file. Thus, it can be used to convert an sr.po file to an sr@latin.po file.

The use of built-in filters is not sensitive to the current locale’s encoding. Moreover,
when used with a built-in filter, ‘msgfilter’ can automatically convert the message catalog
to the UTF-8 encoding when needed.

9.4.6 Input file syntax

‘-P’
‘--properties-input’

Assume the input file is a Java ResourceBundle in Java .properties syntax,
not in PO file syntax.

‘--stringtable-input’
Assume the input file is a NeXTstep/GNUstep localized resource file in
.strings syntax, not in PO file syntax.

Chapter 9: Manipulating PO Files 78

9.4.7 Output details

‘--color’
‘--color=when’

Specify whether or when to use colors and other text attributes. See
Section 9.11.1 [The –color option], page 91 for details.

‘--style=style_file’
Specify the CSS style rule file to use for --color. See Section 9.11.3 [The –style
option], page 93 for details.

‘--force-po’
Always write an output file even if it contains no message.

‘--indent’
Write the .po file using indented style.

‘--keep-header’
Keep the header entry, i.e. the message with ‘msgid ""’, unmodified, instead
of filtering it. By default, the header entry is subject to filtering like any other
message.

‘--no-location’
Do not write ‘#: filename:line’ lines.

‘--add-location’
Generate ‘#: filename:line’ lines (default).

‘--strict’
Write out a strict Uniforum conforming PO file. Note that this Uniforum format
should be avoided because it doesn’t support the GNU extensions.

‘-p’
‘--properties-output’

Write out a Java ResourceBundle in Java .properties syntax. Note that this
file format doesn’t support plural forms and silently drops obsolete messages.

‘--stringtable-output’
Write out a NeXTstep/GNUstep localized resource file in .strings syntax.
Note that this file format doesn’t support plural forms.

‘-w number’
‘--width=number’

Set the output page width. Long strings in the output files will be split across
multiple lines in order to ensure that each line’s width (= number of screen
columns) is less or equal to the given number.

‘--no-wrap’
Do not break long message lines. Message lines whose width exceeds the output
page width will not be split into several lines. Only file reference lines which
are wider than the output page width will be split.

Chapter 9: Manipulating PO Files 79

‘-s’
‘--sort-output’

Generate sorted output. Note that using this option makes it much harder for
the translator to understand each message’s context.

‘-F’
‘--sort-by-file’

Sort output by file location.

9.4.8 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

9.4.9 Examples

To convert German translations to Swiss orthography (in an UTF-8 locale):

msgconv -t UTF-8 de.po | msgfilter sed -e ’s/ß/ss/g’

To convert Serbian translations in Cyrillic script to Latin script:

msgfilter recode-sr-latin < sr.po

9.5 Invoking the msguniq Program

msguniq [option] [inputfile]

The msguniq program unifies duplicate translations in a translation catalog. It finds du-
plicate translations of the same message ID. Such duplicates are invalid input for other pro-
grams like msgfmt, msgmerge or msgcat. By default, duplicates are merged together. When
using the ‘--repeated’ option, only duplicates are output, and all other messages are dis-
carded. Comments and extracted comments will be cumulated, except that if ‘--use-first’
is specified, they will be taken from the first translation. File positions will be cumulated.
When using the ‘--unique’ option, duplicates are discarded.

9.5.1 Input file location

‘inputfile’
Input PO file.

‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to this
list of directories. The resulting .po file will be written relative to the current
directory, though.

If no inputfile is given or if it is ‘-’, standard input is read.

Chapter 9: Manipulating PO Files 80

9.5.2 Output file location

‘-o file’
‘--output-file=file’

Write output to specified file.

The results are written to standard output if no output file is specified or if it is ‘-’.

9.5.3 Message selection

‘-d’
‘--repeated’

Print only duplicates.

‘-u’
‘--unique’

Print only unique messages, discard duplicates.

9.5.4 Input file syntax

‘-P’
‘--properties-input’

Assume the input file is a Java ResourceBundle in Java .properties syntax,
not in PO file syntax.

‘--stringtable-input’
Assume the input file is a NeXTstep/GNUstep localized resource file in
.strings syntax, not in PO file syntax.

9.5.5 Output details

‘-t’
‘--to-code=name’

Specify encoding for output.

‘--use-first’
Use first available translation for each message. Don’t merge several translations
into one.

‘--color’
‘--color=when’

Specify whether or when to use colors and other text attributes. See
Section 9.11.1 [The –color option], page 91 for details.

‘--style=style_file’
Specify the CSS style rule file to use for --color. See Section 9.11.3 [The –style
option], page 93 for details.

‘--force-po’
Always write an output file even if it contains no message.

‘-i’
‘--indent’

Write the .po file using indented style.

Chapter 9: Manipulating PO Files 81

‘--no-location’
Do not write ‘#: filename:line’ lines.

‘-n’
‘--add-location’

Generate ‘#: filename:line’ lines (default).

‘--strict’
Write out a strict Uniforum conforming PO file. Note that this Uniforum format
should be avoided because it doesn’t support the GNU extensions.

‘-p’
‘--properties-output’

Write out a Java ResourceBundle in Java .properties syntax. Note that this
file format doesn’t support plural forms and silently drops obsolete messages.

‘--stringtable-output’
Write out a NeXTstep/GNUstep localized resource file in .strings syntax.
Note that this file format doesn’t support plural forms.

‘-w number’
‘--width=number’

Set the output page width. Long strings in the output files will be split across
multiple lines in order to ensure that each line’s width (= number of screen
columns) is less or equal to the given number.

‘--no-wrap’
Do not break long message lines. Message lines whose width exceeds the output
page width will not be split into several lines. Only file reference lines which
are wider than the output page width will be split.

‘-s’
‘--sort-output’

Generate sorted output. Note that using this option makes it much harder for
the translator to understand each message’s context.

‘-F’
‘--sort-by-file’

Sort output by file location.

9.5.6 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

9.6 Invoking the msgcomm Program

msgcomm [option] [inputfile]...

Chapter 9: Manipulating PO Files 82

The msgcomm program finds messages which are common to two or more of the specified
PO files. By using the --more-than option, greater commonality may be requested before
messages are printed. Conversely, the --less-than option may be used to specify less
commonality before messages are printed (i.e. ‘--less-than=2’ will only print the unique
messages). Translations, comments and extracted comments will be preserved, but only
from the first PO file to define them. File positions from all PO files will be cumulated.

9.6.1 Input file location

‘inputfile ...’
Input files.

‘-f file’
‘--files-from=file’

Read the names of the input files from file instead of getting them from the
command line.

‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to this
list of directories. The resulting .po file will be written relative to the current
directory, though.

If inputfile is ‘-’, standard input is read.

9.6.2 Output file location

‘-o file’
‘--output-file=file’

Write output to specified file.

The results are written to standard output if no output file is specified or if it is ‘-’.

9.6.3 Message selection

‘-< number’
‘--less-than=number’

Print messages with less than number definitions, defaults to infinite if not set.

‘-> number’
‘--more-than=number’

Print messages with more than number definitions, defaults to 1 if not set.

‘-u’
‘--unique’

Shorthand for ‘--less-than=2’. Requests that only unique messages be
printed.

9.6.4 Input file syntax

‘-P’
‘--properties-input’

Assume the input files are Java ResourceBundles in Java .properties syntax,
not in PO file syntax.

Chapter 9: Manipulating PO Files 83

‘--stringtable-input’
Assume the input files are NeXTstep/GNUstep localized resource files in
.strings syntax, not in PO file syntax.

9.6.5 Output details

‘--color’
‘--color=when’

Specify whether or when to use colors and other text attributes. See
Section 9.11.1 [The –color option], page 91 for details.

‘--style=style_file’
Specify the CSS style rule file to use for --color. See Section 9.11.3 [The –style
option], page 93 for details.

‘--force-po’
Always write an output file even if it contains no message.

‘-i’
‘--indent’

Write the .po file using indented style.

‘--no-location’
Do not write ‘#: filename:line’ lines.

‘-n’
‘--add-location’

Generate ‘#: filename:line’ lines (default).

‘--strict’
Write out a strict Uniforum conforming PO file. Note that this Uniforum format
should be avoided because it doesn’t support the GNU extensions.

‘-p’
‘--properties-output’

Write out a Java ResourceBundle in Java .properties syntax. Note that this
file format doesn’t support plural forms and silently drops obsolete messages.

‘--stringtable-output’
Write out a NeXTstep/GNUstep localized resource file in .strings syntax.
Note that this file format doesn’t support plural forms.

‘-w number’
‘--width=number’

Set the output page width. Long strings in the output files will be split across
multiple lines in order to ensure that each line’s width (= number of screen
columns) is less or equal to the given number.

‘--no-wrap’
Do not break long message lines. Message lines whose width exceeds the output
page width will not be split into several lines. Only file reference lines which
are wider than the output page width will be split.

Chapter 9: Manipulating PO Files 84

‘-s’
‘--sort-output’

Generate sorted output. Note that using this option makes it much harder for
the translator to understand each message’s context.

‘-F’
‘--sort-by-file’

Sort output by file location.

‘--omit-header’
Don’t write header with ‘msgid ""’ entry.

9.6.6 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

9.7 Invoking the msgcmp Program

msgcmp [option] def.po ref.pot

The msgcmp program compares two Uniforum style .po files to check that both contain
the same set of msgid strings. The def.po file is an existing PO file with the translations.
The ref.pot file is the last created PO file, or a PO Template file (generally created by
xgettext). This is useful for checking that you have translated each and every message in
your program. Where an exact match cannot be found, fuzzy matching is used to produce
better diagnostics.

9.7.1 Input file location

‘def.po’ Translations.

‘ref.pot’ References to the sources.

‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to this
list of directories.

9.7.2 Operation modifiers

‘-m’
‘--multi-domain’

Apply ref.pot to each of the domains in def.po.

‘-N’
‘--no-fuzzy-matching’

Do not use fuzzy matching when an exact match is not found. This may speed
up the operation considerably.

Chapter 9: Manipulating PO Files 85

‘--use-fuzzy’
Consider fuzzy messages in the def.po file like translated messages. Note that
using this option is usually wrong, because fuzzy messages are exactly those
which have not been validated by a human translator.

‘--use-untranslated’
Consider untranslated messages in the def.po file like translated messages. Note
that using this option is usually wrong.

9.7.3 Input file syntax

‘-P’
‘--properties-input’

Assume the input files are Java ResourceBundles in Java .properties syntax,
not in PO file syntax.

‘--stringtable-input’
Assume the input files are NeXTstep/GNUstep localized resource files in
.strings syntax, not in PO file syntax.

9.7.4 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

9.8 Invoking the msgattrib Program

msgattrib [option] [inputfile]

The msgattrib program filters the messages of a translation catalog according to their
attributes, and manipulates the attributes.

9.8.1 Input file location

‘inputfile’
Input PO file.

‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to this
list of directories. The resulting .po file will be written relative to the current
directory, though.

If no inputfile is given or if it is ‘-’, standard input is read.

9.8.2 Output file location

‘-o file’
‘--output-file=file’

Write output to specified file.

Chapter 9: Manipulating PO Files 86

The results are written to standard output if no output file is specified or if it is ‘-’.

9.8.3 Message selection

‘--translated’
Keep translated messages, remove untranslated messages.

‘--untranslated’
Keep untranslated messages, remove translated messages.

‘--no-fuzzy’
Remove ‘fuzzy’ marked messages.

‘--only-fuzzy’
Keep ‘fuzzy’ marked messages, remove all other messages.

‘--no-obsolete’
Remove obsolete #~ messages.

‘--only-obsolete’
Keep obsolete #~ messages, remove all other messages.

9.8.4 Attribute manipulation

Attributes are modified after the message selection/removal has been performed. If the
‘--only-file’ or ‘--ignore-file’ option is specified, the attribute modification is applied
only to those messages that are listed in the only-file and not listed in the ignore-file.

‘--set-fuzzy’
Set all messages ‘fuzzy’.

‘--clear-fuzzy’
Set all messages non-‘fuzzy’.

‘--set-obsolete’
Set all messages obsolete.

‘--clear-obsolete’
Set all messages non-obsolete.

‘--previous’
When setting ‘fuzzy’ mark, keep “previous msgid” of translated messages.

‘--clear-previous’
Remove the “previous msgid” (‘#|’) comments from all messages.

‘--only-file=file’
Limit the attribute changes to entries that are listed in file. file should be a PO
or POT file.

‘--ignore-file=file’
Limit the attribute changes to entries that are not listed in file. file should be
a PO or POT file.

‘--fuzzy’ Synonym for ‘--only-fuzzy --clear-fuzzy’: It keeps only the fuzzy messages
and removes their ‘fuzzy’ mark.

Chapter 9: Manipulating PO Files 87

‘--obsolete’
Synonym for ‘--only-obsolete --clear-obsolete’: It keeps only the obsolete
messages and makes them non-obsolete.

9.8.5 Input file syntax

‘-P’
‘--properties-input’

Assume the input file is a Java ResourceBundle in Java .properties syntax,
not in PO file syntax.

‘--stringtable-input’
Assume the input file is a NeXTstep/GNUstep localized resource file in
.strings syntax, not in PO file syntax.

9.8.6 Output details

‘--color’
‘--color=when’

Specify whether or when to use colors and other text attributes. See
Section 9.11.1 [The –color option], page 91 for details.

‘--style=style_file’
Specify the CSS style rule file to use for --color. See Section 9.11.3 [The –style
option], page 93 for details.

‘--force-po’
Always write an output file even if it contains no message.

‘-i’
‘--indent’

Write the .po file using indented style.

‘--no-location’
Do not write ‘#: filename:line’ lines.

‘-n’
‘--add-location’

Generate ‘#: filename:line’ lines (default).

‘--strict’
Write out a strict Uniforum conforming PO file. Note that this Uniforum format
should be avoided because it doesn’t support the GNU extensions.

‘-p’
‘--properties-output’

Write out a Java ResourceBundle in Java .properties syntax. Note that this
file format doesn’t support plural forms and silently drops obsolete messages.

‘--stringtable-output’
Write out a NeXTstep/GNUstep localized resource file in .strings syntax.
Note that this file format doesn’t support plural forms.

Chapter 9: Manipulating PO Files 88

‘-w number’
‘--width=number’

Set the output page width. Long strings in the output files will be split across
multiple lines in order to ensure that each line’s width (= number of screen
columns) is less or equal to the given number.

‘--no-wrap’
Do not break long message lines. Message lines whose width exceeds the output
page width will not be split into several lines. Only file reference lines which
are wider than the output page width will be split.

‘-s’
‘--sort-output’

Generate sorted output. Note that using this option makes it much harder for
the translator to understand each message’s context.

‘-F’
‘--sort-by-file’

Sort output by file location.

9.8.7 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

9.9 Invoking the msgen Program

msgen [option] inputfile

The msgen program creates an English translation catalog. The input file is the last
created English PO file, or a PO Template file (generally created by xgettext). Untranslated
entries are assigned a translation that is identical to the msgid.

Note: ‘msginit --no-translator --locale=en’ performs a very similar task. The main
difference is that msginit cares specially about the header entry, whereas msgen doesn’t.

9.9.1 Input file location

‘inputfile’
Input PO or POT file.

‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to this
list of directories. The resulting .po file will be written relative to the current
directory, though.

If inputfile is ‘-’, standard input is read.

Chapter 9: Manipulating PO Files 89

9.9.2 Output file location

‘-o file’
‘--output-file=file’

Write output to specified file.

The results are written to standard output if no output file is specified or if it is ‘-’.

9.9.3 Input file syntax

‘-P’
‘--properties-input’

Assume the input file is a Java ResourceBundle in Java .properties syntax,
not in PO file syntax.

‘--stringtable-input’
Assume the input file is a NeXTstep/GNUstep localized resource file in
.strings syntax, not in PO file syntax.

9.9.4 Output details

‘--lang=catalogname’
Specify the ‘Language’ field to be used in the header entry. See Section 6.2
[Header Entry], page 42 for the meaning of this field. Note: The
‘Language-Team’ and ‘Plural-Forms’ fields are not set by this option.

‘--color’
‘--color=when’

Specify whether or when to use colors and other text attributes. See
Section 9.11.1 [The –color option], page 91 for details.

‘--style=style_file’
Specify the CSS style rule file to use for --color. See Section 9.11.3 [The –style
option], page 93 for details.

‘--force-po’
Always write an output file even if it contains no message.

‘-i’
‘--indent’

Write the .po file using indented style.

‘--no-location’
Do not write ‘#: filename:line’ lines.

‘--add-location’
Generate ‘#: filename:line’ lines (default).

‘--strict’
Write out a strict Uniforum conforming PO file. Note that this Uniforum format
should be avoided because it doesn’t support the GNU extensions.

‘-p’
‘--properties-output’

Write out a Java ResourceBundle in Java .properties syntax. Note that this
file format doesn’t support plural forms and silently drops obsolete messages.

Chapter 9: Manipulating PO Files 90

‘--stringtable-output’
Write out a NeXTstep/GNUstep localized resource file in .strings syntax.
Note that this file format doesn’t support plural forms.

‘-w number’
‘--width=number’

Set the output page width. Long strings in the output files will be split across
multiple lines in order to ensure that each line’s width (= number of screen
columns) is less or equal to the given number.

‘--no-wrap’
Do not break long message lines. Message lines whose width exceeds the output
page width will not be split into several lines. Only file reference lines which
are wider than the output page width will be split.

‘-s’
‘--sort-output’

Generate sorted output. Note that using this option makes it much harder for
the translator to understand each message’s context.

‘-F’
‘--sort-by-file’

Sort output by file location.

9.9.5 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

9.10 Invoking the msgexec Program

msgexec [option] command [command-option]

The msgexec program applies a command to all translations of a translation catalog.
The command can be any program that reads a translation from standard input. It is
invoked once for each translation. Its output becomes msgexec’s output. msgexec’s return
code is the maximum return code across all invocations.

A special builtin command called ‘0’ outputs the translation, followed by a null byte.
The output of ‘msgexec 0’ is suitable as input for ‘xargs -0’.

During each command invocation, the environment variable MSGEXEC_MSGID is bound
to the message’s msgid, and the environment variable MSGEXEC_LOCATION is bound to the
location in the PO file of the message. If the message has a context, the environment
variable MSGEXEC_MSGCTXT is bound to the message’s msgctxt, otherwise it is unbound.

Note: It is your responsibility to ensure that the command can cope with input encoded
in the translation catalog’s encoding. If the command wants input in a particular encoding,
you can in a first step convert the translation catalog to that encoding using the ‘msgconv’
program, before invoking ‘msgexec’. If the command wants input in the locale’s encoding,

Chapter 9: Manipulating PO Files 91

but you want to avoid the locale’s encoding, then you can first convert the translation
catalog to UTF-8 using the ‘msgconv’ program and then make ‘msgexec’ work in an UTF-8
locale, by using the LC_ALL environment variable.

9.10.1 Input file location

‘-i inputfile’
‘--input=inputfile’

Input PO file.

‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to this
list of directories. The resulting .po file will be written relative to the current
directory, though.

If no inputfile is given or if it is ‘-’, standard input is read.

9.10.2 Input file syntax

‘-P’
‘--properties-input’

Assume the input file is a Java ResourceBundle in Java .properties syntax,
not in PO file syntax.

‘--stringtable-input’
Assume the input file is a NeXTstep/GNUstep localized resource file in
.strings syntax, not in PO file syntax.

9.10.3 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

9.11 Highlighting parts of PO files

Translators are usually only interested in seeing the untranslated and fuzzy messages of
a PO file. Also, when a message is set fuzzy because the msgid changed, they want to see
the differences between the previous msgid and the current one (especially if the msgid is
long and only few words in it have changed). Finally, it’s always welcome to highlight the
different sections of a message in a PO file (comments, msgid, msgstr, etc.).

Such highlighting is possible through the msgcat options ‘--color’ and ‘--style’.

9.11.1 The --color option

The ‘--color=when’ option specifies under which conditions colorized output should be
generated. The when part can be one of the following:

Chapter 9: Manipulating PO Files 92

always

yes The output will be colorized.

never

no The output will not be colorized.

auto

tty The output will be colorized if the output device is a tty, i.e. when the output
goes directly to a text screen or terminal emulator window.

html The output will be colorized and be in HTML format.

‘--color’ is equivalent to ‘--color=yes’. The default is ‘--color=auto’.

Thus, a command like ‘msgcat vi.po’ will produce colorized output when called by itself
in a command window. Whereas in a pipe, such as ‘msgcat vi.po | less -R’, it will not
produce colorized output. To get colorized output in this situation nevertheless, use the
command ‘msgcat --color vi.po | less -R’.

The ‘--color=html’ option will produce output that can be viewed in a browser. This
can be useful, for example, for Indic languages, because the renderic of Indic scripts in
browser is usually better than in terminal emulators.

Note that the output produced with the --color option is not a valid PO file in itself.
It contains additional terminal-specific escape sequences or HTML tags. A PO file reader
will give a syntax error when confronted with such content. Except for the ‘--color=html’
case, you therefore normally don’t need to save output produced with the --color option
in a file.

9.11.2 The environment variable TERM

The environment variable TERM contains a identifier for the text window’s capabilities.
You can get a detailed list of these cababilities by using the ‘infocmp’ command, using ‘man
5 terminfo’ as a reference.

When producing text with embedded color directives, msgcat looks at the TERM variable.
Text windows today typically support at least 8 colors. Often, however, the text window
supports 16 or more colors, even though the TERM variable is set to a identifier denoting
only 8 supported colors. It can be worth setting the TERM variable to a different value in
these cases:

xterm xterm is in most cases built with support for 16 colors. It can also be built with
support for 88 or 256 colors (but not both). You can try to set TERM to either
xterm-16color, xterm-88color, or xterm-256color.

rxvt rxvt is often built with support for 16 colors. You can try to set TERM to
rxvt-16color.

konsole konsole too is often built with support for 16 colors. You can try to set TERM
to konsole-16color or xterm-16color.

After setting TERM, you can verify it by invoking ‘msgcat --color=test’ and seeing
whether the output looks like a reasonable color map.

Chapter 9: Manipulating PO Files 93

9.11.3 The --style option

The ‘--style=style_file’ option specifies the style file to use when colorizing. It has
an effect only when the --color option is effective.

If the --style option is not specified, the environment variable PO_STYLE is considered.
It is meant to point to the user’s preferred style for PO files.

The default style file is $prefix/share/gettext/styles/po-default.css, where
$prefix is the installation location.

A few style files are predefined:

po-vim.css

This style imitates the look used by vim 7.

po-emacs-x.css

This style imitates the look used by GNU Emacs 21 and 22 in an X11 window.

po-emacs-xterm.css

po-emacs-xterm16.css

po-emacs-xterm256.css

This style imitates the look used by GNU Emacs 22 in a terminal of type
‘xterm’ (8 colors) or ‘xterm-16color’ (16 colors) or ‘xterm-256color’ (256
colors), respectively.

You can use these styles without specifying a directory. They are actually located in
$prefix/share/gettext/styles/, where $prefix is the installation location.

You can also design your own styles. This is described in the next section.

9.11.4 Style rules for PO files

The same style file can be used for styling of a PO file, for terminal output and for
HTML output. It is written in CSS (Cascading Style Sheet) syntax. See http://www.w3.

org/TR/css2/cover.html for a formal definition of CSS. Many HTML authoring tutorials
also contain explanations of CSS.

In the case of HTML output, the style file is embedded in the HTML output. In the
case of text output, the style file is interpreted by the msgcat program. This means, in
particular, that when @import is used with relative file names, the file names are

− relative to the resulting HTML file, in the case of HTML output,

− relative to the style sheet containing the @import, in the case of text output. (Actually,
@imports are not yet supported in this case, due to a limitation in libcroco.)

CSS rules are built up from selectors and declarations. The declarations specify graphical
properties; the selectors specify specify when they apply.

In PO files, the following simple selectors (based on "CSS classes", see the CSS2 spec,
section 5.8.3) are supported.

• Selectors that apply to entire messages:

.header This matches the header entry of a PO file.

.translated

This matches a translated message.

http://www.w3.org/TR/css2/cover.html
http://www.w3.org/TR/css2/cover.html

Chapter 9: Manipulating PO Files 94

.untranslated

This matches an untranslated message (i.e. a message with empty transla-
tion).

.fuzzy This matches a fuzzy message (i.e. a message which has a translation that
needs review by the translator).

.obsolete

This matches an obsolete message (i.e. a message that was translated but
is not needed by the current POT file any more).

• Selectors that apply to parts of a message in PO syntax. Recall the general structure
of a message in PO syntax:

white-space

translator-comments

#. extracted-comments

#: reference...

#, flag...

#| msgid previous-untranslated-string

msgid untranslated-string

msgstr translated-string

.comment This matches all comments (translator comments, extracted comments,
source file reference comments, flag comments, previous message com-
ments, as well as the entire obsolete messages).

.translator-comment

This matches the translator comments.

.extracted-comment

This matches the extracted comments, i.e. the comments placed by the
programmer at the attention of the translator.

.reference-comment

This matches the source file reference comments (entire lines).

.reference

This matches the individual source file references inside the source file
reference comment lines.

.flag-comment

This matches the flag comment lines (entire lines).

.flag This matches the individual flags inside flag comment lines.

.fuzzy-flag

This matches the ‘fuzzy’ flag inside flag comment lines.

.previous-comment

This matches the comments containing the previous untranslated string
(entire lines).

.previous

This matches the previous untranslated string including the string delim-
iters, the associated keywords (msgid etc.) and the spaces between them.

Chapter 9: Manipulating PO Files 95

.msgid This matches the untranslated string including the string delimiters, the
associated keywords (msgid etc.) and the spaces between them.

.msgstr This matches the translated string including the string delimiters, the as-
sociated keywords (msgstr etc.) and the spaces between them.

.keyword This matches the keywords (msgid, msgstr, etc.).

.string This matches strings, including the string delimiters (double quotes).

• Selectors that apply to parts of strings:

.text This matches the entire contents of a string (excluding the string delimiters,
i.e. the double quotes).

.escape-sequence

This matches an escape sequence (starting with a backslash).

.format-directive

This matches a format string directive (starting with a ‘%’ sign in the case
of most programming languages, with a ‘{’ in the case of java-format and
csharp-format, with a ‘~’ in the case of lisp-format and scheme-format,
or with ‘$’ in the case of sh-format).

.invalid-format-directive

This matches an invalid format string directive.

.added In an untranslated string, this matches a part of the string that was not
present in the previous untranslated string. (Not yet implemented in this
release.)

.changed In an untranslated string or in a previous untranslated string, this matches
a part of the string that is changed or replaced. (Not yet implemented in
this release.)

.removed In a previous untranslated string, this matches a part of the string that is
not present in the current untranslated string. (Not yet implemented in
this release.)

These selectors can be combined to hierarchical selectors. For example,

.msgstr .invalid-format-directive { color: red; }

will highlight the invalid format directives in the translated strings.

In text mode, pseudo-classes (CSS2 spec, section 5.11) and pseudo-elements (CSS2 spec,
section 5.12) are not supported.

The declarations in HTML mode are not limited; any graphical attribute supported by
the browsers can be used.

The declarations in text mode are limited to the following properties. Other properties
will be silently ignored.

color (CSS2 spec, section 14.1)
background-color (CSS2 spec, section 14.2.1)

These properties is supported. Colors will be adjusted to match the terminal’s
capabilities. Note that many terminals support only 8 colors.

Chapter 9: Manipulating PO Files 96

font-weight (CSS2 spec, section 15.2.3)
This property is supported, but most terminals can only render two different
weights: normal and bold. Values >= 600 are rendered as bold.

font-style (CSS2 spec, section 15.2.3)
This property is supported. The values italic and oblique are rendered the
same way.

text-decoration (CSS2 spec, section 16.3.1)
This property is supported, limited to the values none and underline.

9.11.5 Customizing less for viewing PO files

The ‘less’ program is a popular text file browser for use in a text screen or termi-
nal emulator. It also supports text with embedded escape sequences for colors and text
decorations.

You can use less to view a PO file like this (assuming an UTF-8 environment):
msgcat --to-code=UTF-8 --color xyz.po | less -R

You can simplify this to this simple command:
less xyz.po

after these three preparations:

1. Add the options ‘-R’ and ‘-f’ to the LESS environment variable. In sh shells:
$ LESS="$LESS -R -f"

$ export LESS

2. If your system does not already have the lessopen.sh and lessclose.sh scripts,
create them and set the LESSOPEN and LESSCLOSE environment variables, as indicated
in the manual page (‘man less’).

3. Add to lessopen.sh a piece of script that recognizes PO files through their file exten-
sion and invokes msgcat on them, producing a temporary file. Like this:

case "$1" in

*.po)

tmpfile=‘mktemp "${TMPDIR-/tmp}/less.XXXXXX"‘

msgcat --to-code=UTF-8 --color "$1" > "$tmpfile"

echo "$tmpfile"

exit 0

;;

esac

9.12 Writing your own programs that process PO files

For the tasks for which a combination of ‘msgattrib’, ‘msgcat’ etc. is not sufficient, a
set of C functions is provided in a library, to make it possible to process PO files in your
own programs. When you use this library, you don’t need to write routines to parse the
PO file; instead, you retrieve a pointer in memory to each of messages contained in the PO
file. Functions for writing PO files are not provided at this time.

The functions are declared in the header file ‘<gettext-po.h>’, and are defined in a
library called ‘libgettextpo’.

[Data Type]po_file_t
This is a pointer type that refers to the contents of a PO file, after it has been read
into memory.

Chapter 9: Manipulating PO Files 97

[Data Type]po_message_iterator_t
This is a pointer type that refers to an iterator that produces a sequence of messages.

[Data Type]po_message_t
This is a pointer type that refers to a message of a PO file, including its translation.

[Function]po_file_t po_file_read (const char *filename)
The po_file_read function reads a PO file into memory. The file name is given as
argument. The return value is a handle to the PO file’s contents, valid until po_
file_free is called on it. In case of error, the return value is NULL, and errno is
set.

[Function]void po_file_free (po file t file)
The po_file_free function frees a PO file’s contents from memory, including all
messages that are only implicitly accessible through iterators.

[Function]const char * const * po_file_domains (po file t file)
The po_file_domains function returns the domains for which the given PO file has
messages. The return value is a NULL terminated array which is valid as long as the
file handle is valid. For PO files which contain no ‘domain’ directive, the return value
contains only one domain, namely the default domain "messages".

[Function]po_message_iterator_t po_message_iterator (po file t file,
const char *domain)

The po_message_iterator returns an iterator that will produce the messages of file
that belong to the given domain. If domain is NULL, the default domain is used
instead. To list the messages, use the function po_next_message repeatedly.

[Function]void po_message_iterator_free (po message iterator t iterator)
The po_message_iterator_free function frees an iterator previously allocated
through the po_message_iterator function.

[Function]po_message_t po_next_message (po message iterator t iterator)
The po_next_message function returns the next message from iterator and advances
the iterator. It returns NULL when the iterator has reached the end of its message list.

The following functions returns details of a po_message_t. Recall that the results are
valid as long as the file handle is valid.

[Function]const char * po_message_msgid (po message t message)
The po_message_msgid function returns the msgid (untranslated English string) of
a message. This is guaranteed to be non-NULL.

[Function]const char * po_message_msgid_plural (po message t message)
The po_message_msgid_plural function returns the msgid_plural (untranslated
English plural string) of a message with plurals, or NULL for a message without plural.

[Function]const char * po_message_msgstr (po message t message)
The po_message_msgstr function returns the msgstr (translation) of a message. For
an untranslated message, the return value is an empty string.

Chapter 9: Manipulating PO Files 98

[Function]const char * po_message_msgstr_plural (po message t message,
int index)

The po_message_msgstr_plural function returns the msgstr[index] of a message
with plurals, or NULL when the index is out of range or for a message without plural.

Here is an example code how these functions can be used.

const char *filename = ...;

po_file_t file = po_file_read (filename);

if (file == NULL)

error (EXIT_FAILURE, errno, "couldn’t open the PO file %s", filename);

{

const char * const *domains = po_file_domains (file);

const char * const *domainp;

for (domainp = domains; *domainp; domainp++)

{

const char *domain = *domainp;

po_message_iterator_t iterator = po_message_iterator (file, domain);

for (;;)

{

po_message_t *message = po_next_message (iterator);

if (message == NULL)

break;

{

const char *msgid = po_message_msgid (message);

const char *msgstr = po_message_msgstr (message);

...

}

}

po_message_iterator_free (iterator);

}

}

po_file_free (file);

Chapter 10: Producing Binary MO Files 99

10 Producing Binary MO Files

10.1 Invoking the msgfmt Program

msgfmt [option] filename.po ...

The msgfmt programs generates a binary message catalog from a textual translation
description.

10.1.1 Input file location

‘filename.po ...’
‘-D directory’
‘--directory=directory’

Add directory to the list of directories. Source files are searched relative to
this list of directories. The resulting binary file will be written relative to the
current directory, though.

If an input file is ‘-’, standard input is read.

10.1.2 Operation mode

‘-j’
‘--java’ Java mode: generate a Java ResourceBundle class.

‘--java2’ Like –java, and assume Java2 (JDK 1.2 or higher).

‘--csharp’
C# mode: generate a .NET .dll file containing a subclass of
GettextResourceSet.

‘--csharp-resources’
C# resources mode: generate a .NET .resources file.

‘--tcl’ Tcl mode: generate a tcl/msgcat .msg file.

‘--qt’ Qt mode: generate a Qt .qm file.

10.1.3 Output file location

‘-o file’
‘--output-file=file’

Write output to specified file.

‘--strict’
Direct the program to work strictly following the Uniforum/Sun implementa-
tion. Currently this only affects the naming of the output file. If this option is
not given the name of the output file is the same as the domain name. If the
strict Uniforum mode is enabled the suffix .mo is added to the file name if it is
not already present.

We find this behaviour of Sun’s implementation rather silly and so by default
this mode is not selected.

If the output file is ‘-’, output is written to standard output.

Chapter 10: Producing Binary MO Files 100

10.1.4 Output file location in Java mode

‘-r resource’
‘--resource=resource’

Specify the resource name.

‘-l locale’
‘--locale=locale’

Specify the locale name, either a language specification of the form ll or a
combined language and country specification of the form ll CC.

‘-d directory’
Specify the base directory of classes directory hierarchy.

The class name is determined by appending the locale name to the resource name,
separated with an underscore. The ‘-d’ option is mandatory. The class is written under
the specified directory.

10.1.5 Output file location in C# mode

‘-r resource’
‘--resource=resource’

Specify the resource name.

‘-l locale’
‘--locale=locale’

Specify the locale name, either a language specification of the form ll or a
combined language and country specification of the form ll CC.

‘-d directory’
Specify the base directory for locale dependent .dll files.

The ‘-l’ and ‘-d’ options are mandatory. The .dll file is written in a subdirectory of
the specified directory whose name depends on the locale.

10.1.6 Output file location in Tcl mode

‘-l locale’
‘--locale=locale’

Specify the locale name, either a language specification of the form ll or a
combined language and country specification of the form ll CC.

‘-d directory’
Specify the base directory of .msg message catalogs.

The ‘-l’ and ‘-d’ options are mandatory. The .msg file is written in the specified
directory.

10.1.7 Input file syntax

‘-P’
‘--properties-input’

Assume the input files are Java ResourceBundles in Java .properties syntax,
not in PO file syntax.

Chapter 10: Producing Binary MO Files 101

‘--stringtable-input’
Assume the input files are NeXTstep/GNUstep localized resource files in
.strings syntax, not in PO file syntax.

10.1.8 Input file interpretation

‘-c’
‘--check’ Perform all the checks implied by --check-format, --check-header, --check-

domain.

‘--check-format’
Check language dependent format strings.

If the string represents a format string used in a printf-like function both
strings should have the same number of ‘%’ format specifiers, with matching
types. If the flag c-format or possible-c-format appears in the special com-
ment #, for this entry a check is performed. For example, the check will diagnose
using ‘%.*s’ against ‘%s’, or ‘%d’ against ‘%s’, or ‘%d’ against ‘%x’. It can even
handle positional parameters.

Normally the xgettext program automatically decides whether a string is a
format string or not. This algorithm is not perfect, though. It might regard a
string as a format string though it is not used in a printf-like function and so
msgfmt might report errors where there are none.

To solve this problem the programmer can dictate the decision to the xgettext
program (see Section 15.3.1 [c-format], page 155). The translator should not
consider removing the flag from the #, line. This "fix" would be reversed again
as soon as msgmerge is called the next time.

‘--check-header’
Verify presence and contents of the header entry. See Section 6.2 [Header Entry],
page 42, for a description of the various fields in the header entry.

‘--check-domain’
Check for conflicts between domain directives and the --output-file option

‘-C’
‘--check-compatibility’

Check that GNU msgfmt behaves like X/Open msgfmt. This will give an error
when attempting to use the GNU extensions.

‘--check-accelerators[=char]’
Check presence of keyboard accelerators for menu items. This is based on the
convention used in some GUIs that a keyboard accelerator in a menu item
string is designated by an immediately preceding ‘&’ character. Sometimes a
keyboard accelerator is also called "keyboard mnemonic". This check verifies
that if the untranslated string has exactly one ‘&’ character, the translated
string has exactly one ‘&’ as well. If this option is given with a char argument,
this char should be a non-alphanumeric character and is used as keyboard
accelerator mark instead of ‘&’.

Chapter 10: Producing Binary MO Files 102

‘-f’
‘--use-fuzzy’

Use fuzzy entries in output. Note that using this option is usually wrong,
because fuzzy messages are exactly those which have not been validated by a
human translator.

10.1.9 Output details

‘-a number’
‘--alignment=number’

Align strings to number bytes (default: 1).

‘--endianness=byteorder’
Write out 32-bit numbers in the given byte order. The possible values are big

and little. The default depends on the platform, namely on the endianness
of the CPU.

MO files of any endianness can be used on any platform. When a MO file has
an endianness other than the platform’s one, the 32-bit numbers from the MO
file are swapped at runtime. The performance impact is negligible.

This option can be useful to produce MO files that are independent of the
platform.

‘--no-hash’
Don’t include a hash table in the binary file. Lookup will be more expensive at
run time (binary search instead of hash table lookup).

10.1.10 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

‘--statistics’
Print statistics about translations. When the option --verbose is used in
combination with --statistics, the input file name is printed in front of the
statistics line.

‘-v’
‘--verbose’

Increase verbosity level.

10.2 Invoking the msgunfmt Program

msgunfmt [option] [file]...

The msgunfmt program converts a binary message catalog to a Uniforum style .po file.

Chapter 10: Producing Binary MO Files 103

10.2.1 Operation mode

‘-j’
‘--java’ Java mode: input is a Java ResourceBundle class.

‘--csharp’
C# mode: input is a .NET .dll file containing a subclass of
GettextResourceSet.

‘--csharp-resources’
C# resources mode: input is a .NET .resources file.

‘--tcl’ Tcl mode: input is a tcl/msgcat .msg file.

10.2.2 Input file location

‘file ...’ Input .mo files.

If no input file is given or if it is ‘-’, standard input is read.

10.2.3 Input file location in Java mode

‘-r resource’
‘--resource=resource’

Specify the resource name.

‘-l locale’
‘--locale=locale’

Specify the locale name, either a language specification of the form ll or a
combined language and country specification of the form ll CC.

The class name is determined by appending the locale name to the resource name,
separated with an underscore. The class is located using the CLASSPATH.

10.2.4 Input file location in C# mode

‘-r resource’
‘--resource=resource’

Specify the resource name.

‘-l locale’
‘--locale=locale’

Specify the locale name, either a language specification of the form ll or a
combined language and country specification of the form ll CC.

‘-d directory’
Specify the base directory for locale dependent .dll files.

The ‘-l’ and ‘-d’ options are mandatory. The .msg file is located in a subdirectory of
the specified directory whose name depends on the locale.

10.2.5 Input file location in Tcl mode

‘-l locale’
‘--locale=locale’

Specify the locale name, either a language specification of the form ll or a
combined language and country specification of the form ll CC.

Chapter 10: Producing Binary MO Files 104

‘-d directory’
Specify the base directory of .msg message catalogs.

The ‘-l’ and ‘-d’ options are mandatory. The .msg file is located in the specified
directory.

10.2.6 Output file location

‘-o file’
‘--output-file=file’

Write output to specified file.

The results are written to standard output if no output file is specified or if it is ‘-’.

10.2.7 Output details

‘--color’
‘--color=when’

Specify whether or when to use colors and other text attributes. See
Section 9.11.1 [The –color option], page 91 for details.

‘--style=style_file’
Specify the CSS style rule file to use for --color. See Section 9.11.3 [The –style
option], page 93 for details.

‘--force-po’
Always write an output file even if it contains no message.

‘-i’
‘--indent’

Write the .po file using indented style.

‘--strict’
Write out a strict Uniforum conforming PO file. Note that this Uniforum format
should be avoided because it doesn’t support the GNU extensions.

‘-p’
‘--properties-output’

Write out a Java ResourceBundle in Java .properties syntax. Note that this
file format doesn’t support plural forms and silently drops obsolete messages.

‘--stringtable-output’
Write out a NeXTstep/GNUstep localized resource file in .strings syntax.
Note that this file format doesn’t support plural forms.

‘-w number’
‘--width=number’

Set the output page width. Long strings in the output files will be split across
multiple lines in order to ensure that each line’s width (= number of screen
columns) is less or equal to the given number.

‘--no-wrap’
Do not break long message lines. Message lines whose width exceeds the output
page width will not be split into several lines. Only file reference lines which
are wider than the output page width will be split.

Chapter 10: Producing Binary MO Files 105

‘-s’
‘--sort-output’

Generate sorted output. Note that using this option makes it much harder for
the translator to understand each message’s context.

10.2.8 Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

‘-v’
‘--verbose’

Increase verbosity level.

10.3 The Format of GNU MO Files

The format of the generated MO files is best described by a picture, which appears
below.

The first two words serve the identification of the file. The magic number will always
signal GNU MO files. The number is stored in the byte order of the generating machine,
so the magic number really is two numbers: 0x950412de and 0xde120495.

The second word describes the current revision of the file format, composed of a major
and a minor revision number. The revision numbers ensure that the readers of MO files
can distinguish new formats from old ones and handle their contents, as far as possible. For
now the major revision is 0 or 1, and the minor revision is also 0 or 1. More revisions might
be added in the future. A program seeing an unexpected major revision number should
stop reading the MO file entirely; whereas an unexpected minor revision number means
that the file can be read but will not reveal its full contents, when parsed by a program
that supports only smaller minor revision numbers.

The version is kept separate from the magic number, instead of using different magic
numbers for different formats, mainly because /etc/magic is not updated often.

Follow a number of pointers to later tables in the file, allowing for the extension of the
prefix part of MO files without having to recompile programs reading them. This might
become useful for later inserting a few flag bits, indication about the charset used, new
tables, or other things.

Then, at offsetO and offset T in the picture, two tables of string descriptors can be found.
In both tables, each string descriptor uses two 32 bits integers, one for the string length,
another for the offset of the string in the MO file, counting in bytes from the start of the
file. The first table contains descriptors for the original strings, and is sorted so the original
strings are in increasing lexicographical order. The second table contains descriptors for the
translated strings, and is parallel to the first table: to find the corresponding translation
one has to access the array slot in the second array with the same index.

Having the original strings sorted enables the use of simple binary search, for when the
MO file does not contain an hashing table, or for when it is not practical to use the hashing

Chapter 10: Producing Binary MO Files 106

table provided in the MO file. This also has another advantage, as the empty string in a
PO file GNU gettext is usually translated into some system information attached to that
particular MO file, and the empty string necessarily becomes the first in both the original
and translated tables, making the system information very easy to find.

The size S of the hash table can be zero. In this case, the hash table itself is not contained
in the MO file. Some people might prefer this because a precomputed hashing table takes
disk space, and does not win that much speed. The hash table contains indices to the sorted
array of strings in the MO file. Conflict resolution is done by double hashing. The precise
hashing algorithm used is fairly dependent on GNU gettext code, and is not documented
here.

As for the strings themselves, they follow the hash file, and each is terminated with a
NUL, and this NUL is not counted in the length which appears in the string descriptor. The
msgfmt program has an option selecting the alignment for MO file strings. With this option,
each string is separately aligned so it starts at an offset which is a multiple of the alignment
value. On some RISC machines, a correct alignment will speed things up.

Contexts are stored by storing the concatenation of the context, a EOT byte, and the
original string, instead of the original string.

Plural forms are stored by letting the plural of the original string follow the singular of
the original string, separated through a NUL byte. The length which appears in the string
descriptor includes both. However, only the singular of the original string takes part in
the hash table lookup. The plural variants of the translation are all stored consecutively,
separated through a NUL byte. Here also, the length in the string descriptor includes all of
them.

Nothing prevents a MO file from having embedded NULs in strings. However, the program
interface currently used already presumes that strings are NUL terminated, so embedded NULs
are somewhat useless. But the MO file format is general enough so other interfaces would
be later possible, if for example, we ever want to implement wide characters right in MO
files, where NUL bytes may accidentally appear. (No, we don’t want to have wide characters
in MO files. They would make the file unnecessarily large, and the ‘wchar_t’ type being
platform dependent, MO files would be platform dependent as well.)

This particular issue has been strongly debated in the GNU gettext development forum,
and it is expectable that MO file format will evolve or change over time. It is even possible
that many formats may later be supported concurrently. But surely, we have to start
somewhere, and the MO file format described here is a good start. Nothing is cast in
concrete, and the format may later evolve fairly easily, so we should feel comfortable with
the current approach.

Chapter 10: Producing Binary MO Files 107

byte

+--+

0 | magic number = 0x950412de |

| |

4 | file format revision = 0 |

| |

8 | number of strings | == N

| |

12 | offset of table with original strings | == O

| |

16 | offset of table with translation strings | == T

| |

20 | size of hashing table | == S

| |

24 | offset of hashing table | == H

| |

. .

. (possibly more entries later) .

. .

| |

O | length & offset 0th string ----------------.

O + 8 | length & offset 1st string ------------------.

... ... | |

O + ((N-1)*8)| length & offset (N-1)th string | | |

| | | |

T | length & offset 0th translation ---------------.

T + 8 | length & offset 1st translation -----------------.

... ... | | | |

T + ((N-1)*8)| length & offset (N-1)th translation | | | | |

| | | | | |

H | start hash table | | | | |

... ... | | | |

H + S * 4 | end hash table | | | | |

| | | | | |

| NUL terminated 0th string <----------------’ | | |

| | | | |

| NUL terminated 1st string <------------------’ | |

| | | |

... ... | |

| | | |

| NUL terminated 0th translation <---------------’ |

| | |

| NUL terminated 1st translation <-----------------’

| |

... ...

| |

+--+

Chapter 11: The Programmer’s View 108

11 The Programmer’s View

One aim of the current message catalog implementation provided by GNU gettext was
to use the system’s message catalog handling, if the installer wishes to do so. So we perhaps
should first take a look at the solutions we know about. The people in the POSIX committee
did not manage to agree on one of the semi-official standards which we’ll describe below.
In fact they couldn’t agree on anything, so they decided only to include an example of
an interface. The major Unix vendors are split in the usage of the two most important
specifications: X/Open’s catgets vs. Uniforum’s gettext interface. We’ll describe them
both and later explain our solution of this dilemma.

11.1 About catgets

The catgets implementation is defined in the X/Open Portability Guide, Volume 3, XSI
Supplementary Definitions, Chapter 5. But the process of creating this standard seemed
to be too slow for some of the Unix vendors so they created their implementations on
preliminary versions of the standard. Of course this leads again to problems while writing
platform independent programs: even the usage of catgets does not guarantee a unique
interface.

Another, personal comment on this that only a bunch of committee members could have
made this interface. They never really tried to program using this interface. It is a fast,
memory-saving implementation, an user can happily live with it. But programmers hate it
(at least I and some others do. . .)

But we must not forget one point: after all the trouble with transferring the rights on
Unix(tm) they at last came to X/Open, the very same who published this specification.
This leads me to making the prediction that this interface will be in future Unix standards
(e.g. Spec1170) and therefore part of all Unix implementation (implementations, which are
allowed to wear this name).

11.1.1 The Interface

The interface to the catgets implementation consists of three functions which corre-
spond to those used in file access: catopen to open the catalog for using, catgets for
accessing the message tables, and catclose for closing after work is done. Prototypes for
the functions and the needed definitions are in the <nl_types.h> header file.

catopen is used like in this:

nl_catd catd = catopen ("catalog_name", 0);

The function takes as the argument the name of the catalog. This usual refers to the
name of the program or the package. The second parameter is not further specified in the
standard. I don’t even know whether it is implemented consistently among various systems.
So the common advice is to use 0 as the value. The return value is a handle to the message
catalog, equivalent to handles to file returned by open.

This handle is of course used in the catgets function which can be used like this:

char *translation = catgets (catd, set_no, msg_id, "original string");

The first parameter is this catalog descriptor. The second parameter specifies the set of
messages in this catalog, in which the message described by msg_id is obtained. catgets

therefore uses a three-stage addressing:

Chapter 11: The Programmer’s View 109

catalog name ⇒ set number ⇒ message ID ⇒ translation

The fourth argument is not used to address the translation. It is given as a default value
in case when one of the addressing stages fail. One important thing to remember is that
although the return type of catgets is char * the resulting string must not be changed. It
should better be const char *, but the standard is published in 1988, one year before ANSI
C.

The last of these functions is used and behaves as expected:

catclose (catd);

After this no catgets call using the descriptor is legal anymore.

11.1.2 Problems with the catgets Interface?!

Now that this description seemed to be really easy — where are the problems we speak
of? In fact the interface could be used in a reasonable way, but constructing the message
catalogs is a pain. The reason for this lies in the third argument of catgets: the unique
message ID. This has to be a numeric value for all messages in a single set. Perhaps you
could imagine the problems keeping such a list while changing the source code. Add a new
message here, remove one there. Of course there have been developed a lot of tools helping
to organize this chaos but one as the other fails in one aspect or the other. We don’t want
to say that the other approach has no problems but they are far more easy to manage.

11.2 About gettext

The definition of the gettext interface comes from a Uniforum proposal. It was submit-
ted there by Sun, who had implemented the gettext function in SunOS 4, around 1990.
Nowadays, the gettext interface is specified by the OpenI18N standard.

The main point about this solution is that it does not follow the method of normal file
handling (open-use-close) and that it does not burden the programmer with so many tasks,
especially the unique key handling. Of course here also a unique key is needed, but this key
is the message itself (how long or short it is). See Section 11.3 [Comparison], page 121 for
a more detailed comparison of the two methods.

The following section contains a rather detailed description of the interface. We make
it that detailed because this is the interface we chose for the GNU gettext Library. Pro-
grammers interested in using this library will be interested in this description.

11.2.1 The Interface

The minimal functionality an interface must have is a) to select a domain the strings are
coming from (a single domain for all programs is not reasonable because its construction
and maintenance is difficult, perhaps impossible) and b) to access a string in a selected
domain.

This is principally the description of the gettext interface. It has a global domain which
unqualified usages reference. Of course this domain is selectable by the user.

char *textdomain (const char *domain_name);

This provides the possibility to change or query the current status of the current global
domain of the LC_MESSAGE category. The argument is a null-terminated string, whose
characters must be legal in the use in filenames. If the domain name argument is NULL, the

Chapter 11: The Programmer’s View 110

function returns the current value. If no value has been set before, the name of the default
domain is returned: messages. Please note that although the return value of textdomain
is of type char * no changing is allowed. It is also important to know that no checks of
the availability are made. If the name is not available you will see this by the fact that no
translations are provided.

To use a domain set by textdomain the function

char *gettext (const char *msgid);

is to be used. This is the simplest reasonable form one can imagine. The translation of the
string msgid is returned if it is available in the current domain. If it is not available, the
argument itself is returned. If the argument is NULL the result is undefined.

One thing which should come into mind is that no explicit dependency to the used
domain is given. The current value of the domain is used. If this changes between two
executions of the same gettext call in the program, both calls reference a different message
catalog.

For the easiest case, which is normally used in internationalized packages, once at the
beginning of execution a call to textdomain is issued, setting the domain to a unique name,
normally the package name. In the following code all strings which have to be translated
are filtered through the gettext function. That’s all, the package speaks your language.

11.2.2 Solving Ambiguities

While this single name domain works well for most applications there might be the need
to get translations from more than one domain. Of course one could switch between different
domains with calls to textdomain, but this is really not convenient nor is it fast. A possible
situation could be one case subject to discussion during this writing: all error messages of
functions in the set of common used functions should go into a separate domain error. By
this mean we would only need to translate them once. Another case are messages from a
library, as these have to be independent of the current domain set by the application.

For this reasons there are two more functions to retrieve strings:

char *dgettext (const char *domain_name, const char *msgid);

char *dcgettext (const char *domain_name, const char *msgid,

int category);

Both take an additional argument at the first place, which corresponds to the argument
of textdomain. The third argument of dcgettext allows to use another locale category
but LC_MESSAGES. But I really don’t know where this can be useful. If the domain name is
NULL or category has an value beside the known ones, the result is undefined. It should also
be noted that this function is not part of the second known implementation of this function
family, the one found in Solaris.

A second ambiguity can arise by the fact, that perhaps more than one domain has the
same name. This can be solved by specifying where the needed message catalog files can
be found.

char *bindtextdomain (const char *domain_name,

const char *dir_name);

Calling this function binds the given domain to a file in the specified directory (how this
file is determined follows below). Especially a file in the systems default place is not favored

Chapter 11: The Programmer’s View 111

against the specified file anymore (as it would be by solely using textdomain). A NULL

pointer for the dir name parameter returns the binding associated with domain name. If
domain name itself is NULL nothing happens and a NULL pointer is returned. Here again as
for all the other functions is true that none of the return value must be changed!

It is important to remember that relative path names for the dir name parameter can
be trouble. Since the path is always computed relative to the current directory different
results will be achieved when the program executes a chdir command. Relative paths
should always be avoided to avoid dependencies and unreliabilities.

11.2.3 Locating Message Catalog Files

Because many different languages for many different packages have to be stored we need
some way to add these information to file message catalog files. The way usually used in Unix
environments is have this encoding in the file name. This is also done here. The directory
name given in bindtextdomains second argument (or the default directory), followed by
the name of the locale, the locale category, and the domain name are concatenated:

dir_name/locale/LC_category/domain_name.mo

The default value for dir name is system specific. For the GNU library, and for packages
adhering to its conventions, it’s:

/usr/local/share/locale

locale is the name of the locale category which is designated by LC_category. For gettext
and dgettext this LC_category is always LC_MESSAGES.1 The name of the locale cate-
gory is determined through setlocale (LC_category, NULL).2 When using the function
dcgettext, you can specify the locale category through the third argument.

11.2.4 How to specify the output character set gettext uses

gettext not only looks up a translation in a message catalog. It also converts the
translation on the fly to the desired output character set. This is useful if the user is
working in a different character set than the translator who created the message catalog,
because it avoids distributing variants of message catalogs which differ only in the character
set.

The output character set is, by default, the value of nl_langinfo (CODESET), which
depends on the LC_CTYPE part of the current locale. But programs which store strings in a
locale independent way (e.g. UTF-8) can request that gettext and related functions return
the translations in that encoding, by use of the bind_textdomain_codeset function.

Note that the msgid argument to gettext is not subject to character set conversion.
Also, when gettext does not find a translation for msgid, it returns msgid unchanged –
independently of the current output character set. It is therefore recommended that all
msgids be US-ASCII strings.

1 Some system, e.g. mingw, don’t have LC_MESSAGES. Here we use a more or less arbitrary value for it,
namely 1729, the smallest positive integer which can be represented in two different ways as the sum of
two cubes.

2 When the system does not support setlocale its behavior in setting the locale values is simulated by
looking at the environment variables.

Chapter 11: The Programmer’s View 112

[Function]char * bind_textdomain_codeset (const char *domainname, const
char *codeset)

The bind_textdomain_codeset function can be used to specify the output character
set for message catalogs for domain domainname. The codeset argument must be a
valid codeset name which can be used for the iconv_open function, or a null pointer.

If the codeset parameter is the null pointer, bind_textdomain_codeset returns the
currently selected codeset for the domain with the name domainname. It returns
NULL if no codeset has yet been selected.

The bind_textdomain_codeset function can be used several times. If used multiple
times with the same domainname argument, the later call overrides the settings made
by the earlier one.

The bind_textdomain_codeset function returns a pointer to a string containing the
name of the selected codeset. The string is allocated internally in the function and
must not be changed by the user. If the system went out of core during the execution
of bind_textdomain_codeset, the return value is NULL and the global variable errno
is set accordingly.

11.2.5 Using contexts for solving ambiguities

One place where the gettext functions, if used normally, have big problems is within
programs with graphical user interfaces (GUIs). The problem is that many of the strings
which have to be translated are very short. They have to appear in pull-down menus
which restricts the length. But strings which are not containing entire sentences or at least
large fragments of a sentence may appear in more than one situation in the program but
might have different translations. This is especially true for the one-word strings which are
frequently used in GUI programs.

As a consequence many people say that the gettext approach is wrong and instead
catgets should be used which indeed does not have this problem. But there is a very
simple and powerful method to handle this kind of problems with the gettext functions.

Contexts can be added to strings to be translated. A context dependent translation
lookup is when a translation for a given string is searched, that is limited to a given context.
The translation for the same string in a different context can be different. The different
translations of the same string in different contexts can be stored in the in the same MO
file, and can be edited by the translator in the same PO file.

The gettext.h include file contains the lookup macros for strings with contexts. They
are implemented as thin macros and inline functions over the functions from <libintl.h>.

const char *pgettext (const char *msgctxt, const char *msgid);

In a call of this macro, msgctxt and msgid must be string literals. The macro returns
the translation of msgid, restricted to the context given by msgctxt.

The msgctxt string is visible in the PO file to the translator. You should try to make
it somehow canonical and never changing. Because every time you change an msgctxt, the
translator will have to review the translation of msgid.

Finding a canonical msgctxt string that doesn’t change over time can be hard. But you
shouldn’t use the file name or class name containing the pgettext call – because it is a
common development task to rename a file or a class, and it shouldn’t cause translator

Chapter 11: The Programmer’s View 113

work. Also you shouldn’t use a comment in the form of a complete English sentence as
msgctxt – because orthography or grammar changes are often applied to such sentences,
and again, it shouldn’t force the translator to do a review.

The ‘p’ in ‘pgettext’ stands for “particular”: pgettext fetches a particular translation
of the msgid.

const char *dpgettext (const char *domain_name,

const char *msgctxt, const char *msgid);

const char *dcpgettext (const char *domain_name,

const char *msgctxt, const char *msgid,

int category);

These are generalizations of pgettext. They behave similarly to dgettext and
dcgettext, respectively. The domain name argument defines the translation domain. The
category argument allows to use another locale category than LC_MESSAGES.

As as example consider the following fictional situation. A GUI program has a menu
bar with the following entries:

+------------+------------+--------------------------------------+

| File | Printer | |

+------------+------------+--------------------------------------+

| Open | | Select |

| New | | Open |

+----------+ | Connect |

+----------+

To have the strings File, Printer, Open, New, Select, and Connect translated there
has to be at some point in the code a call to a function of the gettext family. But in two
places the string passed into the function would be Open. The translations might not be
the same and therefore we are in the dilemma described above.

What distinguishes the two places is the menu path from the menu root to the particular
menu entries:

Menu|File

Menu|Printer

Menu|File|Open

Menu|File|New

Menu|Printer|Select

Menu|Printer|Open

Menu|Printer|Connect

The context is thus the menu path without its last part. So, the calls look like this:

pgettext ("Menu|", "File")

pgettext ("Menu|", "Printer")

pgettext ("Menu|File|", "Open")

pgettext ("Menu|File|", "New")

pgettext ("Menu|Printer|", "Select")

pgettext ("Menu|Printer|", "Open")

pgettext ("Menu|Printer|", "Connect")

Whether or not to use the ‘|’ character at the end of the context is a matter of style.

For more complex cases, where the msgctxt or msgid are not string literals, more general
macros are available:

const char *pgettext_expr (const char *msgctxt, const char *msgid);

const char *dpgettext_expr (const char *domain_name,

Chapter 11: The Programmer’s View 114

const char *msgctxt, const char *msgid);

const char *dcpgettext_expr (const char *domain_name,

const char *msgctxt, const char *msgid,

int category);

Here msgctxt and msgid can be arbitrary string-valued expressions. These macros are
more general. But in the case that both argument expressions are string literals, the macros
without the ‘_expr’ suffix are more efficient.

11.2.6 Additional functions for plural forms

The functions of the gettext family described so far (and all the catgets functions
as well) have one problem in the real world which have been neglected completely in all
existing approaches. What is meant here is the handling of plural forms.

Looking through Unix source code before the time anybody thought about internation-
alization (and, sadly, even afterwards) one can often find code similar to the following:

printf ("%d file%s deleted", n, n == 1 ? "" : "s");

After the first complaints from people internationalizing the code people either completely
avoided formulations like this or used strings like "file(s)". Both look unnatural and
should be avoided. First tries to solve the problem correctly looked like this:

if (n == 1)

printf ("%d file deleted", n);

else

printf ("%d files deleted", n);

But this does not solve the problem. It helps languages where the plural form of a
noun is not simply constructed by adding an ‘s’ but that is all. Once again people fell into
the trap of believing the rules their language is using are universal. But the handling of
plural forms differs widely between the language families. For example, Rafal Maszkowski
<rzm@mat.uni.torun.pl> reports:

In Polish we use e.g. plik (file) this way:

1 plik

2,3,4 pliki

5-21 pliko’w

22-24 pliki

25-31 pliko’w

and so on (o’ means 8859-2 oacute which should be rather okreska, similar to
aogonek).

There are two things which can differ between languages (and even inside language
families);

• The form how plural forms are built differs. This is a problem with languages which
have many irregularities. German, for instance, is a drastic case. Though English and
German are part of the same language family (Germanic), the almost regular forming
of plural noun forms (appending an ‘s’) is hardly found in German.

• The number of plural forms differ. This is somewhat surprising for those who only have
experiences with Romanic and Germanic languages since here the number is the same
(there are two).

Chapter 11: The Programmer’s View 115

But other language families have only one form or many forms. More information on
this in an extra section.

The consequence of this is that application writers should not try to solve the problem in
their code. This would be localization since it is only usable for certain, hardcoded language
environments. Instead the extended gettext interface should be used.

These extra functions are taking instead of the one key string two strings and a numerical
argument. The idea behind this is that using the numerical argument and the first string
as a key, the implementation can select using rules specified by the translator the right
plural form. The two string arguments then will be used to provide a return value in case
no message catalog is found (similar to the normal gettext behavior). In this case the
rules for Germanic language is used and it is assumed that the first string argument is the
singular form, the second the plural form.

This has the consequence that programs without language catalogs can display the cor-
rect strings only if the program itself is written using a Germanic language. This is a
limitation but since the GNU C library (as well as the GNU gettext package) are written
as part of the GNU package and the coding standards for the GNU project require program
being written in English, this solution nevertheless fulfills its purpose.

[Function]char * ngettext (const char *msgid1, const char *msgid2, unsigned
long int n)

The ngettext function is similar to the gettext function as it finds the message
catalogs in the same way. But it takes two extra arguments. The msgid1 parameter
must contain the singular form of the string to be converted. It is also used as the
key for the search in the catalog. The msgid2 parameter is the plural form. The
parameter n is used to determine the plural form. If no message catalog is found
msgid1 is returned if n == 1, otherwise msgid2.

An example for the use of this function is:

printf (ngettext ("%d file removed", "%d files removed", n), n);

Please note that the numeric value n has to be passed to the printf function as well.
It is not sufficient to pass it only to ngettext.

In the English singular case, the number – always 1 – can be replaced with "one":

printf (ngettext ("One file removed", "%d files removed", n), n);

This works because the ‘printf’ function discards excess arguments that are not
consumed by the format string.

If this function is meant to yield a format string that takes two or more arguments,
you can not use it like this:

printf (ngettext ("%d file removed from directory %s",

"%d files removed from directory %s",

n),

n, dir);

because in many languages the translators want to replace the ‘%d’ with an explicit
word in the singular case, just like “one” in English, and C format strings cannot
consume the second argument but skip the first argument. Instead, you have to
reorder the arguments so that ‘n’ comes last:

Chapter 11: The Programmer’s View 116

printf (ngettext ("%$2d file removed from directory %$1s",

"%$2d files removed from directory %$1s",

n),

dir, n);

See Section 15.3.1 [c-format], page 155 for details about this argument reordering
syntax.

When you know that the value of n is within a given range, you can specify it as a
comment directed to the xgettext tool. This information may help translators to
use more adequate translations. Like this:

if (days > 7 && days < 14)

/* xgettext: range: 1..6 */

printf (ngettext ("one week and one day", "one week and %d days",

days - 7),

days - 7);

It is also possible to use this function when the strings don’t contain a cardinal
number:

puts (ngettext ("Delete the selected file?",

"Delete the selected files?",

n));

In this case the number n is only used to choose the plural form.

[Function]char * dngettext (const char *domain, const char *msgid1, const char
*msgid2, unsigned long int n)

The dngettext is similar to the dgettext function in the way the message catalog
is selected. The difference is that it takes two extra parameter to provide the correct
plural form. These two parameters are handled in the same way ngettext handles
them.

[Function]char * dcngettext (const char *domain, const char *msgid1, const
char *msgid2, unsigned long int n, int category)

The dcngettext is similar to the dcgettext function in the way the message catalog
is selected. The difference is that it takes two extra parameter to provide the correct
plural form. These two parameters are handled in the same way ngettext handles
them.

Now, how do these functions solve the problem of the plural forms? Without the input
of linguists (which was not available) it was not possible to determine whether there are
only a few different forms in which plural forms are formed or whether the number can
increase with every new supported language.

Therefore the solution implemented is to allow the translator to specify the rules of how
to select the plural form. Since the formula varies with every language this is the only viable
solution except for hardcoding the information in the code (which still would require the
possibility of extensions to not prevent the use of new languages).

The information about the plural form selection has to be stored in the header entry of
the PO file (the one with the empty msgid string). The plural form information looks like
this:

Plural-Forms: nplurals=2; plural=n == 1 ? 0 : 1;

The nplurals value must be a decimal number which specifies how many different plural
forms exist for this language. The string following plural is an expression which is using

Chapter 11: The Programmer’s View 117

the C language syntax. Exceptions are that no negative numbers are allowed, numbers must
be decimal, and the only variable allowed is n. Spaces are allowed in the expression, but
backslash-newlines are not; in the examples below the backslash-newlines are present for
formatting purposes only. This expression will be evaluated whenever one of the functions
ngettext, dngettext, or dcngettext is called. The numeric value passed to these functions
is then substituted for all uses of the variable n in the expression. The resulting value then
must be greater or equal to zero and smaller than the value given as the value of nplurals.

The following rules are known at this point. The language with families are listed. But this
does not necessarily mean the information can be generalized for the whole family (as can
be easily seen in the table below).3

Only one form:
Some languages only require one single form. There is no distinction between
the singular and plural form. An appropriate header entry would look like this:

Plural-Forms: nplurals=1; plural=0;

Languages with this property include:

Asian family
Japanese, Vietnamese, Korean

Two forms, singular used for one only
This is the form used in most existing programs since it is what English is using.
A header entry would look like this:

Plural-Forms: nplurals=2; plural=n != 1;

(Note: this uses the feature of C expressions that boolean expressions have to
value zero or one.)

Languages with this property include:

Germanic family
English, German, Dutch, Swedish, Danish, Norwegian, Faroese

Romanic family
Spanish, Portuguese, Italian, Bulgarian

Latin/Greek family
Greek

Finno-Ugric family
Finnish, Estonian

Semitic family
Hebrew

Artificial Esperanto

Other languages using the same header entry are:

Finno-Ugric family
Hungarian

3 Additions are welcome. Send appropriate information to bug-gnu-gettext@gnu.org and
bug-glibc-manual@gnu.org.

mailto:bug-gnu-gettext@gnu.org
mailto:bug-glibc-manual@gnu.org

Chapter 11: The Programmer’s View 118

Turkic/Altaic family
Turkish

Hungarian does not appear to have a plural if you look at sentences involving
cardinal numbers. For example, “1 apple” is “1 alma”, and “123 apples” is “123
alma”. But when the number is not explicit, the distinction between singular
and plural exists: “the apple” is “az alma”, and “the apples” is “az almák”.
Since ngettext has to support both types of sentences, it is classified here,
under “two forms”.

The same holds for Turkish: “1 apple” is “1 elma”, and “123 apples” is “123
elma”. But when the number is omitted, the distinction between singular and
plural exists: “the apple” is “elma”, and “the apples” is “elmalar”.

Two forms, singular used for zero and one
Exceptional case in the language family. The header entry would be:

Plural-Forms: nplurals=2; plural=n>1;

Languages with this property include:

Romanic family
Brazilian Portuguese, French

Three forms, special case for zero
The header entry would be:

Plural-Forms: nplurals=3; plural=n%10==1 && n%100!=11 ? 0 : n != 0 ? 1 : 2;

Languages with this property include:

Baltic family
Latvian

Three forms, special cases for one and two
The header entry would be:

Plural-Forms: nplurals=3; plural=n==1 ? 0 : n==2 ? 1 : 2;

Languages with this property include:

Celtic Gaeilge (Irish)

Three forms, special case for numbers ending in 00 or [2-9][0-9]
The header entry would be:

Plural-Forms: nplurals=3; \

plural=n==1 ? 0 : (n==0 || (n%100 > 0 && n%100 < 20)) ? 1 : 2;

Languages with this property include:

Romanic family
Romanian

Three forms, special case for numbers ending in 1[2-9]
The header entry would look like this:

Plural-Forms: nplurals=3; \

plural=n%10==1 && n%100!=11 ? 0 : \

n%10>=2 && (n%100<10 || n%100>=20) ? 1 : 2;

Languages with this property include:

Chapter 11: The Programmer’s View 119

Baltic family
Lithuanian

Three forms, special cases for numbers ending in 1 and 2, 3, 4, except those ending in
1[1-4]

The header entry would look like this:
Plural-Forms: nplurals=3; \

plural=n%10==1 && n%100!=11 ? 0 : \

n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2;

Languages with this property include:

Slavic family
Russian, Ukrainian, Belarusian, Serbian, Croatian

Three forms, special cases for 1 and 2, 3, 4
The header entry would look like this:

Plural-Forms: nplurals=3; \

plural=(n==1) ? 0 : (n>=2 && n<=4) ? 1 : 2;

Languages with this property include:

Slavic family
Czech, Slovak

Three forms, special case for one and some numbers ending in 2, 3, or 4
The header entry would look like this:

Plural-Forms: nplurals=3; \

plural=n==1 ? 0 : \

n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2;

Languages with this property include:

Slavic family
Polish

Four forms, special case for one and all numbers ending in 02, 03, or 04
The header entry would look like this:

Plural-Forms: nplurals=4; \

plural=n%100==1 ? 0 : n%100==2 ? 1 : n%100==3 || n%100==4 ? 2 : 3;

Languages with this property include:

Slavic family
Slovenian

You might now ask, ngettext handles only numbers n of type ‘unsigned long’. What
about larger integer types? What about negative numbers? What about floating-point
numbers?

About larger integer types, such as ‘uintmax_t’ or ‘unsigned long long’: they can be
handled by reducing the value to a range that fits in an ‘unsigned long’. Simply casting
the value to ‘unsigned long’ would not do the right thing, since it would treat ULONG_MAX +

1 like zero, ULONG_MAX + 2 like singular, and the like. Here you can exploit the fact that all
mentioned plural form formulas eventually become periodic, with a period that is a divisor
of 100 (or 1000 or 1000000). So, when you reduce a large value to another one in the range
[1000000, 1999999] that ends in the same 6 decimal digits, you can assume that it will lead
to the same plural form selection. This code does this:

Chapter 11: The Programmer’s View 120

#include <inttypes.h>

uintmax_t nbytes = ...;

printf (ngettext ("The file has %"PRIuMAX" byte.",

"The file has %"PRIuMAX" bytes.",

(nbytes > ULONG_MAX

? (nbytes % 1000000) + 1000000

: nbytes)),

nbytes);

Negative and floating-point values usually represent physical entities for which singular
and plural don’t clearly apply. In such cases, there is no need to use ngettext; a simple
gettext call with a form suitable for all values will do. For example:

printf (gettext ("Time elapsed: %.3f seconds"),

num_milliseconds * 0.001);

Even if num milliseconds happens to be a multiple of 1000, the output

Time elapsed: 1.000 seconds

is acceptable in English, and similarly for other languages.

The translators’ perspective regarding plural forms is explained in Section 12.6 [Trans-
lating plural forms], page 131.

11.2.7 Optimization of the *gettext functions

At this point of the discussion we should talk about an advantage of the GNU gettext

implementation. Some readers might have pointed out that an internationalized program
might have a poor performance if some string has to be translated in an inner loop. While
this is unavoidable when the string varies from one run of the loop to the other it is simply
a waste of time when the string is always the same. Take the following example:

{

while (...)

{

puts (gettext ("Hello world"));

}

}

When the locale selection does not change between two runs the resulting string is always
the same. One way to use this is:

{

str = gettext ("Hello world");

while (...)

{

puts (str);

}

}

But this solution is not usable in all situation (e.g. when the locale selection changes) nor
does it lead to legible code.

For this reason, GNU gettext caches previous translation results. When the same
translation is requested twice, with no new message catalogs being loaded in between,
gettext will, the second time, find the result through a single cache lookup.

Chapter 11: The Programmer’s View 121

11.3 Comparing the Two Interfaces

The following discussion is perhaps a little bit colored. As said above we implemented
GNU gettext following the Uniforum proposal and this surely has its reasons. But it
should show how we came to this decision.

First we take a look at the developing process. When we write an application using NLS
provided by gettext we proceed as always. Only when we come to a string which might be
seen by the users and thus has to be translated we use gettext("...") instead of "...".
At the beginning of each source file (or in a central header file) we define

#define gettext(String) (String)

Even this definition can be avoided when the system supports the gettext function in
its C library. When we compile this code the result is the same as if no NLS code is used.
When you take a look at the GNU gettext code you will see that we use _("...") instead
of gettext("..."). This reduces the number of additional characters per translatable
string to 3 (in words: three).

When now a production version of the program is needed we simply replace the definition

#define _(String) (String)

by

#include <libintl.h>

#define _(String) gettext (String)

Additionally we run the program xgettext on all source code file which contain translatable
strings and that’s it: we have a running program which does not depend on translations to
be available, but which can use any that becomes available.

The same procedure can be done for the gettext_noop invocations (see Section 4.7
[Special cases], page 28). One usually defines gettext_noop as a no-op macro. So you
should consider the following code for your project:

#define gettext_noop(String) String

#define N_(String) gettext_noop (String)

N_ is a short form similar to _. The Makefile in the po/ directory of GNU gettext

knows by default both of the mentioned short forms so you are invited to follow this proposal
for your own ease.

Now to catgets. The main problem is the work for the programmer. Every time he
comes to a translatable string he has to define a number (or a symbolic constant) which has
also be defined in the message catalog file. He also has to take care for duplicate entries,
duplicate message IDs etc. If he wants to have the same quality in the message catalog as
the GNU gettext program provides he also has to put the descriptive comments for the
strings and the location in all source code files in the message catalog. This is nearly a
Mission: Impossible.

But there are also some points people might call advantages speaking for catgets. If
you have a single word in a string and this string is used in different contexts it is likely
that in one or the other language the word has different translations. Example:

printf ("%s: %d", gettext ("number"), number_of_errors)

printf ("you should see %d %s", number_count,

Chapter 11: The Programmer’s View 122

number_count == 1 ? gettext ("number") : gettext ("numbers"))

Here we have to translate two times the string "number". Even if you do not speak a
language beside English it might be possible to recognize that the two words have a different
meaning. In German the first appearance has to be translated to "Anzahl" and the second
to "Zahl".

Now you can say that this example is really esoteric. And you are right! This is exactly
how we felt about this problem and decide that it does not weight that much. The solution
for the above problem could be very easy:

printf ("%s %d", gettext ("number:"), number_of_errors)

printf (number_count == 1 ? gettext ("you should see %d number")

: gettext ("you should see %d numbers"),

number_count)

We believe that we can solve all conflicts with this method. If it is difficult one can
also consider changing one of the conflicting string a little bit. But it is not impossible to
overcome.

catgets allows same original entry to have different translations, but gettext has an-
other, scalable approach for solving ambiguities of this kind: See Section 11.2.2 [Ambigui-
ties], page 110.

11.4 Using libintl.a in own programs

Starting with version 0.9.4 the library libintl.h should be self-contained. I.e., you can
use it in your own programs without providing additional functions. The Makefile will put
the header and the library in directories selected using the $(prefix).

11.5 Being a gettext grok

NOTE: This documentation section is outdated and needs to be revised.

To fully exploit the functionality of the GNU gettext library it is surely helpful to read
the source code. But for those who don’t want to spend that much time in reading the
(sometimes complicated) code here is a list comments:

• Changing the language at runtime

For interactive programs it might be useful to offer a selection of the used language
at runtime. To understand how to do this one need to know how the used language
is determined while executing the gettext function. The method which is presented
here only works correctly with the GNU implementation of the gettext functions.

In the function dcgettext at every call the current setting of the highest priority
environment variable is determined and used. Highest priority means here the following
list with decreasing priority:

1. LANGUAGE

2. LC_ALL

3. LC_xxx, according to selected locale category

4. LANG

Chapter 11: The Programmer’s View 123

Afterwards the path is constructed using the found value and the translation file is
loaded if available.

What happens now when the value for, say, LANGUAGE changes? According to the
process explained above the new value of this variable is found as soon as the dcgettext
function is called. But this also means the (perhaps) different message catalog file is
loaded. In other words: the used language is changed.

But there is one little hook. The code for gcc-2.7.0 and up provides some optimization.
This optimization normally prevents the calling of the dcgettext function as long as
no new catalog is loaded. But if dcgettext is not called the program also cannot find
the LANGUAGE variable be changed (see Section 11.2.7 [Optimized gettext], page 120).
A solution for this is very easy. Include the following code in the language switching
function.

/* Change language. */

setenv ("LANGUAGE", "fr", 1);

/* Make change known. */

{

extern int _nl_msg_cat_cntr;

++_nl_msg_cat_cntr;

}

The variable _nl_msg_cat_cntr is defined in loadmsgcat.c. You don’t need to know
what this is for. But it can be used to detect whether a gettext implementation is
GNU gettext and not non-GNU system’s native gettext implementation.

11.6 Temporary Notes for the Programmers Chapter

NOTE: This documentation section is outdated and needs to be revised.

11.6.1 Temporary - Two Possible Implementations

There are two competing methods for language independent messages: the X/Open
catgets method, and the Uniforum gettext method. The catgets method indexes mes-
sages by integers; the gettext method indexes them by their English translations. The
catgets method has been around longer and is supported by more vendors. The gettext

method is supported by Sun, and it has been heard that the COSE multi-vendor initiative
is supporting it. Neither method is a POSIX standard; the POSIX.1 committee had a lot
of disagreement in this area.

Neither one is in the POSIX standard. There was much disagreement in the POSIX.1
committee about using the gettext routines vs. catgets (XPG). In the end the committee
couldn’t agree on anything, so no messaging system was included as part of the standard.
I believe the informative annex of the standard includes the XPG3 messaging interfaces,
“. . . as an example of a messaging system that has been implemented. . . ”

They were very careful not to say anywhere that you should use one set of interfaces
over the other. For more on this topic please see the Programming for Internationalization
FAQ.

Chapter 11: The Programmer’s View 124

11.6.2 Temporary - About catgets

There have been a few discussions of late on the use of catgets as a base. I think
it important to present both sides of the argument and hence am opting to play devil’s
advocate for a little bit.

I’ll not deny the fact that catgets could have been designed a lot better. It currently
has quite a number of limitations and these have already been pointed out.

However there is a great deal to be said for consistency and standardization. A common
recurring problem when writing Unix software is the myriad portability problems across
Unix platforms. It seems as if every Unix vendor had a look at the operating system
and found parts they could improve upon. Undoubtedly, these modifications are probably
innovative and solve real problems. However, software developers have a hard time keeping
up with all these changes across so many platforms.

And this has prompted the Unix vendors to begin to standardize their systems. Hence
the impetus for Spec1170. Every major Unix vendor has committed to supporting this
standard and every Unix software developer waits with glee the day they can write software
to this standard and simply recompile (without having to use autoconf) across different
platforms.

As I understand it, Spec1170 is roughly based upon version 4 of the X/Open Portability
Guidelines (XPG4). Because catgets and friends are defined in XPG4, I’m led to believe
that catgets is a part of Spec1170 and hence will become a standardized component of all
Unix systems.

11.6.3 Temporary - Why a single implementation

Now it seems kind of wasteful to me to have two different systems installed for accessing
message catalogs. If we do want to remedy catgets deficiencies why don’t we try to
expand catgets (in a compatible manner) rather than implement an entirely new system.
Otherwise, we’ll end up with two message catalog access systems installed with an operating
system - one set of routines for packages using GNU gettext for their internationalization,
and another set of routines (catgets) for all other software. Bloated?

Supposing another catalog access system is implemented. Which do we recommend? At
least for Linux, we need to attract as many software developers as possible. Hence we need
to make it as easy for them to port their software as possible. Which means supporting
catgets. We will be implementing the libintl code within our libc, but does this mean
we also have to incorporate another message catalog access scheme within our libc as well?
And what about people who are going to be using the libintl + non-catgets routines.
When they port their software to other platforms, they’re now going to have to include the
front-end (libintl) code plus the back-end code (the non-catgets access routines) with
their software instead of just including the libintl code with their software.

Message catalog support is however only the tip of the iceberg. What about the data
for the other locale categories? They also have a number of deficiencies. Are we going
to abandon them as well and develop another duplicate set of routines (should libintl

expand beyond message catalog support)?

Like many parts of Unix that can be improved upon, we’re stuck with balancing com-
patibility with the past with useful improvements and innovations for the future.

Chapter 11: The Programmer’s View 125

11.6.4 Temporary - Notes

X/Open agreed very late on the standard form so that many implementations differ from
the final form. Both of my system (old Linux catgets and Ultrix-4) have a strange variation.

OK. After incorporating the last changes I have to spend some time on making the
GNU/Linux libc gettext functions. So in future Solaris is not the only system having
gettext.

Chapter 12: The Translator’s View 126

12 The Translator’s View

12.1 Introduction 0

NOTE: This documentation section is outdated and needs to be revised.

Free software is going international! The Translation Project is a way to get maintainers,
translators and users all together, so free software will gradually become able to speak many
native languages.

The GNU gettext tool set contains everything maintainers need for internationalizing
their packages for messages. It also contains quite useful tools for helping translators at
localizing messages to their native language, once a package has already been internation-
alized.

To achieve the Translation Project, we need many interested people who like their own
language and write it well, and who are also able to synergize with other translators speaking
the same language. If you’d like to volunteer to work at translating messages, please send
mail to your translating team.

Each team has its own mailing list, courtesy of Linux International. You may reach your
translating team at the address ll@li.org, replacing ll by the two-letter ISO 639 code for
your language. Language codes are not the same as country codes given in ISO 3166. The
following translating teams exist:

Chinese zh, Czech cs, Danish da, Dutch nl, Esperanto eo, Finnish fi, French
fr, Irish ga, German de, Greek el, Italian it, Japanese ja, Indonesian in,
Norwegian no, Polish pl, Portuguese pt, Russian ru, Spanish es, Swedish sv

and Turkish tr.

For example, you may reach the Chinese translating team by writing to zh@li.org. When
you become a member of the translating team for your own language, you may subscribe
to its list. For example, Swedish people can send a message to sv-request@li.org, having
this message body:

subscribe

Keep in mind that team members should be interested in working at transla-
tions, or at solving translational difficulties, rather than merely lurking around.
If your team does not exist yet and you want to start one, please write to
coordinator@translationproject.org; you will then reach the coordinator for all
translator teams.

A handful of GNU packages have already been adapted and provided with message
translations for several languages. Translation teams have begun to organize, using these
packages as a starting point. But there are many more packages and many languages for
which we have no volunteer translators. If you would like to volunteer to work at translat-
ing messages, please send mail to coordinator@translationproject.org indicating what
language(s) you can work on.

12.2 Introduction 1

NOTE: This documentation section is outdated and needs to be revised.

Chapter 12: The Translator’s View 127

This is now official, GNU is going international! Here is the announcement submitted
for the January 1995 GNU Bulletin:

A handful of GNU packages have already been adapted and provided with
message translations for several languages. Translation teams have begun to
organize, using these packages as a starting point. But there are many more
packages and many languages for which we have no volunteer translators. If
you’d like to volunteer to work at translating messages, please send mail to
‘coordinator@translationproject.org’ indicating what language(s) you can
work on.

This document should answer many questions for those who are curious about the process
or would like to contribute. Please at least skim over it, hoping to cut down a little of the
high volume of e-mail generated by this collective effort towards internationalization of free
software.

Most free programming which is widely shared is done in English, and currently, English
is used as the main communicating language between national communities collaborating
to free software. This very document is written in English. This will not change in the
foreseeable future.

However, there is a strong appetite from national communities for having more software
able to write using national language and habits, and there is an on-going effort to modify
free software in such a way that it becomes able to do so. The experiments driven so far
raised an enthusiastic response from pretesters, so we believe that internationalization of
free software is dedicated to succeed.

For suggestion clarifications, additions or corrections to this document, please e-mail to
coordinator@translationproject.org.

12.3 Discussions

NOTE: This documentation section is outdated and needs to be revised.

Facing this internationalization effort, a few users expressed their concerns. Some of
these doubts are presented and discussed, here.

• Smaller groups

Some languages are not spoken by a very large number of people, so people speaking
them sometimes consider that there may not be all that much demand such versions of
free software packages. Moreover, many people being into computers, in some countries,
generally seem to prefer English versions of their software.

On the other end, people might enjoy their own language a lot, and be very motivated
at providing to themselves the pleasure of having their beloved free software speaking
their mother tongue. They do themselves a personal favor, and do not pay that much
attention to the number of people benefiting of their work.

• Misinterpretation

Other users are shy to push forward their own language, seeing in this some kind of
misplaced propaganda. Someone thought there must be some users of the language
over the networks pestering other people with it.

But any spoken language is worth localization, because there are people behind the
language for whom the language is important and dear to their hearts.

Chapter 12: The Translator’s View 128

• Odd translations

The biggest problem is to find the right translations so that everybody can understand
the messages. Translations are usually a little odd. Some people get used to English, to
the extent they may find translations into their own language “rather pushy, obnoxious
and sometimes even hilarious.” As a French speaking man, I have the experience
of those instruction manuals for goods, so poorly translated in French in Korea or
Taiwan. . .

The fact is that we sometimes have to create a kind of national computer culture, and
this is not easy without the collaboration of many people liking their mother tongue.
This is why translations are better achieved by people knowing and loving their own
language, and ready to work together at improving the results they obtain.

• Dependencies over the GPL or LGPL

Some people wonder if using GNU gettext necessarily brings their package under the
protective wing of the GNU General Public License or the GNU Lesser General Public
License, when they do not want to make their program free, or want other kinds of
freedom. The simplest answer is “normally not”.

The gettext-runtime part of GNU gettext, i.e. the contents of libintl, is covered by
the GNU Lesser General Public License. The gettext-tools part of GNU gettext,
i.e. the rest of the GNU gettext package, is covered by the GNU General Public
License.

The mere marking of localizable strings in a package, or conditional inclusion of a
few lines for initialization, is not really including GPL’ed or LGPL’ed code. However,
since the localization routines in libintl are under the LGPL, the LGPL needs to be
considered. It gives the right to distribute the complete unmodified source of libintl
even with non-free programs. It also gives the right to use libintl as a shared library,
even for non-free programs. But it gives the right to use libintl as a static library or
to incorporate libintl into another library only to free software.

12.4 Organization

NOTE: This documentation section is outdated and needs to be revised.

On a larger scale, the true solution would be to organize some kind of fairly precise set
up in which volunteers could participate. I gave some thought to this idea lately, and realize
there will be some touchy points. I thought of writing to Richard Stallman to launch such
a project, but feel it might be good to shake out the ideas between ourselves first. Most
probably that Linux International has some experience in the field already, or would like to
orchestrate the volunteer work, maybe. Food for thought, in any case!

I guess we have to setup something early, somehow, that will help many possible contrib-
utors of the same language to interlock and avoid work duplication, and further be put in
contact for solving together problems particular to their tongue (in most languages, there
are many difficulties peculiar to translating technical English). My Swedish contributor
acknowledged these difficulties, and I’m well aware of them for French.

This is surely not a technical issue, but we should manage so the effort of locale contrib-
utors be maximally useful, despite the national team layer interface between contributors
and maintainers.

Chapter 12: The Translator’s View 129

The Translation Project needs some setup for coordinating language coordinators. Lo-
calizing evolving programs will surely become a permanent and continuous activity in
the free software community, once well started. The setup should be minimally com-
pleted and tested before GNU gettext becomes an official reality. The e-mail address
coordinator@translationproject.org has been set up for receiving offers from volun-
teers and general e-mail on these topics. This address reaches the Translation Project
coordinator.

12.4.1 Central Coordination

I also think GNU will need sooner than it thinks, that someone set up a way to organize
and coordinate these groups. Some kind of group of groups. My opinion is that it would
be good that GNU delegates this task to a small group of collaborating volunteers, shortly.
Perhaps in gnu.announce a list of this national committee’s can be published.

My role as coordinator would simply be to refer to Ulrich any German speaking volunteer
interested to localization of free software packages, and maybe helping national groups to
initially organize, while maintaining national registries for until national groups are ready
to take over. In fact, the coordinator should ease volunteers to get in contact with one
another for creating national teams, which should then select one coordinator per language,
or country (regionalized language). If well done, the coordination should be useful without
being an overwhelming task, the time to put delegations in place.

12.4.2 National Teams

I suggest we look for volunteer coordinators/editors for individual languages. These peo-
ple will scan contributions of translation files for various programs, for their own languages,
and will ensure high and uniform standards of diction.

From my current experience with other people in these days, those who provide local-
izations are very enthusiastic about the process, and are more interested in the localization
process than in the program they localize, and want to do many programs, not just one.
This seems to confirm that having a coordinator/editor for each language is a good idea.

We need to choose someone who is good at writing clear and concise prose in the language
in question. That is hard—we can’t check it ourselves. So we need to ask a few people to
judge each others’ writing and select the one who is best.

I announce my prerelease to a few dozen people, and you would not believe all the
discussions it generated already. I shudder to think what will happen when this will be
launched, for true, officially, world wide. Who am I to arbitrate between two Czekolsovak
users contradicting each other, for example?

I assume that your German is not much better than my French so that I would not be
able to judge about these formulations. What I would suggest is that for each language
there is a group for people who maintain the PO files and judge about changes. I suspect
there will be cultural differences between how such groups of people will behave. Some
will have relaxed ways, reach consensus easily, and have anyone of the group relate to the
maintainers, while others will fight to death, organize heavy administrations up to national
standards, and use strict channels.

The German team is putting out a good example. Right now, they are maybe half a
dozen people revising translations of each other and discussing the linguistic issues. I do

Chapter 12: The Translator’s View 130

not even have all the names. Ulrich Drepper is taking care of coordinating the German
team. He subscribed to all my pretest lists, so I do not even have to warn him specifically
of incoming releases.

I’m sure, that is a good idea to get teams for each language working on translations.
That will make the translations better and more consistent.

12.4.2.1 Sub-Cultures

Taking French for example, there are a few sub-cultures around computers which de-
veloped diverging vocabularies. Picking volunteers here and there without addressing this
problem in an organized way, soon in the project, might produce a distasteful mix of inter-
nationalized programs, and possibly trigger endless quarrels among those who really care.

Keeping some kind of unity in the way French localization of internationalized programs
is achieved is a difficult (and delicate) job. Knowing the latin character of French people
(:-), if we take this the wrong way, we could end up nowhere, or spoil a lot of energies.
Maybe we should begin to address this problem seriously before GNU gettext become
officially published. And I suspect that this means soon!

12.4.2.2 Organizational Ideas

I expect the next big changes after the official release. Please note that I use the German
translation of the short GPL message. We need to set a few good examples before the
localization goes out for true in the free software community. Here are a few points to
discuss:

• Each group should have one FTP server (at least one master).

• The files on the server should reflect the latest version (of course!) and it should also
contain a RCS directory with the corresponding archives (I don’t have this now).

• There should also be a ChangeLog file (this is more useful than the RCS archive but
can be generated automatically from the later by Emacs).

• A core group should judge about questionable changes (for now this group consists
solely by me but I ask some others occasionally; this also seems to work).

12.4.3 Mailing Lists

If we get any inquiries about GNU gettext, send them on to:

coordinator@translationproject.org

The *-pretest lists are quite useful to me, maybe the idea could be generalized to many
GNU, and non-GNU packages. But each maintainer his/her way!

François, we have a mechanism in place here at gnu.ai.mit.edu to track teams, support
mailing lists for them and log members. We have a slight preference that you use it. If this
is OK with you, I can get you clued in.

Things are changing! A few years ago, when Daniel Fekete and I asked for a mailing list
for GNU localization, nested at the FSF, we were politely invited to organize it anywhere
else, and so did we. For communicating with my pretesters, I later made a handful of
mailing lists located at iro.umontreal.ca and administrated by majordomo. These lists have
been very dependable so far. . .

Chapter 12: The Translator’s View 131

I suspect that the German team will organize itself a mailing list located in Germany,
and so forth for other countries. But before they organize for true, it could surely be useful
to offer mailing lists located at the FSF to each national team. So yes, please explain me
how I should proceed to create and handle them.

We should create temporary mailing lists, one per country, to help people organize.
Temporary, because once regrouped and structured, it would be fair the volunteers from
country bring back their list in there and manage it as they want. My feeling is that, in the
long run, each team should run its own list, from within their country. There also should
be some central list to which all teams could subscribe as they see fit, as long as each team
is represented in it.

12.5 Information Flow

NOTE: This documentation section is outdated and needs to be revised.

There will surely be some discussion about this messages after the packages are finally
released. If people now send you some proposals for better messages, how do you proceed?
Jim, please note that right now, as I put forward nearly a dozen of localizable programs, I
receive both the translations and the coordination concerns about them.

If I put one of my things to pretest, Ulrich receives the announcement and passes it on
to the German team, who make last minute revisions. Then he submits the translation
files to me as the maintainer. For free packages I do not maintain, I would not even hear
about it. This scheme could be made to work for the whole Translation Project, I think.
For security reasons, maybe Ulrich (national coordinators, in fact) should update central
registry kept at the Translation Project (Jim, me, or Len’s recruits) once in a while.

In December/January, I was aggressively ready to internationalize all of GNU, giving
myself the duty of one small GNU package per week or so, taking many weeks or months
for bigger packages. But it does not work this way. I first did all the things I’m responsible
for. I’ve nothing against some missionary work on other maintainers, but I’m also losing a
lot of energy over it—same debates over again.

And when the first localized packages are released we’ll get a lot of responses about ugly
translations :-). Surely, and we need to have beforehand a fairly good idea about how to
handle the information flow between the national teams and the package maintainers.

Please start saving somewhere a quick history of each PO file. I know for sure that
the file format will change, allowing for comments. It would be nice that each file has a
kind of log, and references for those who want to submit comments or gripes, or otherwise
contribute. I sent a proposal for a fast and flexible format, but it is not receiving acceptance
yet by the GNU deciders. I’ll tell you when I have more information about this.

12.6 Translating plural forms

Suppose you are translating a PO file, and it contains an entry like this:
#, c-format

msgid "One file removed"

msgid_plural "%d files removed"

msgstr[0] ""

msgstr[1] ""

What does this mean? How do you fill it in?

Chapter 12: The Translator’s View 132

Such an entry denotes a message with plural forms, that is, a message where the text
depends on a cardinal number. The general form of the message, in English, is the msgid_
plural line. The msgid line is the English singular form, that is, the form for when the
number is equal to 1. More details about plural forms are explained in Section 11.2.6 [Plural
forms], page 114.

The first thing you need to look at is the Plural-Forms line in the header entry of the
PO file. It contains the number of plural forms and a formula. If the PO file does not yet
have such a line, you have to add it. It only depends on the language into which you are
translating. You can get this info by using the msginit command (see Chapter 6 [Creating],
page 40) – it contains a database of known plural formulas – or by asking other members
of your translation team.

Suppose the line looks as follows:

"Plural-Forms: nplurals=3; plural=n%10==1 && n%100!=11 ? 0 : n%10>=2 && n"

"%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2;\n"

It’s logically one line; recall that the PO file formatting is allowed to break long lines so
that each physical line fits in 80 monospaced columns.

The value of nplurals here tells you that there are three plural forms. The first thing
you need to do is to ensure that the entry contains an msgstr line for each of the forms:

#, c-format

msgid "One file removed"

msgid_plural "%d files removed"

msgstr[0] ""

msgstr[1] ""

msgstr[2] ""

Then translate the msgid_plural line and fill it in into each msgstr line:

#, c-format

msgid "One file removed"

msgid_plural "%d files removed"

msgstr[0] "%d slika uklonjenih"

msgstr[1] "%d slika uklonjenih"

msgstr[2] "%d slika uklonjenih"

Now you can refine the translation so that it matches the plural form. According to
the formula above, msgstr[0] is used when the number ends in 1 but does not end in 11;
msgstr[1] is used when the number ends in 2, 3, 4, but not in 12, 13, 14; and msgstr[2]

is used in all other cases. With this knowledge, you can refine the translations:

#, c-format

msgid "One file removed"

msgid_plural "%d files removed"

msgstr[0] "%d slika je uklonjena"

msgstr[1] "%d datoteke uklonjenih"

msgstr[2] "%d slika uklonjenih"

You noticed that in the English singular form (msgid) the number placeholder could be
omitted and replaced by the numeral word “one”. Can you do this in your translation as
well?

msgstr[0] "jednom datotekom je uklonjen"

Well, it depends on whether msgstr[0] applies only to the number 1, or to other numbers
as well. If, according to the plural formula, msgstr[0] applies only to n == 1, then you
can use the specialized translation without the number placeholder. In our case, however,

Chapter 12: The Translator’s View 133

msgstr[0] also applies to the numbers 21, 31, 41, etc., and therefore you cannot omit the
placeholder.

12.7 Prioritizing messages: How to determine which
messages to translate first

A translator sometimes has only a limited amount of time per week to spend on a package,
and some packages have quite large message catalogs (over 1000 messages). Therefore she
wishes to translate the messages first that are the most visible to the user, or that occur
most frequently. This section describes how to determine these "most urgent" messages. It
also applies to determine the "next most urgent" messages after the message catalog has
already been partially translated.

In a first step, she uses the programs like a user would do. While she does this, the GNU
gettext library logs into a file the not yet translated messages for which a translation was
requested from the program.

In a second step, she uses the PO mode to translate precisely this set of messages.

Here a more details. The GNU libintl library (but not the corresponding functions
in GNU libc) supports an environment variable GETTEXT_LOG_UNTRANSLATED. The GNU
libintl library will log into this file the messages for which gettext() and related functions
couldn’t find the translation. If the file doesn’t exist, it will be created as needed. On
systems with GNU libc a shared library ‘preloadable_libintl.so’ is provided that can
be used with the ELF ‘LD_PRELOAD’ mechanism.

So, in the first step, the translator uses these commands on systems with GNU libc:

$ LD_PRELOAD=/usr/local/lib/preloadable_libintl.so

$ export LD_PRELOAD

$ GETTEXT_LOG_UNTRANSLATED=$HOME/gettextlogused

$ export GETTEXT_LOG_UNTRANSLATED

and these commands on other systems:

$ GETTEXT_LOG_UNTRANSLATED=$HOME/gettextlogused

$ export GETTEXT_LOG_UNTRANSLATED

Then she uses and peruses the programs. (It is a good and recommended practice to use
the programs for which you provide translations: it gives you the needed context.) When
done, she removes the environment variables:

$ unset LD_PRELOAD

$ unset GETTEXT_LOG_UNTRANSLATED

The second step starts with removing duplicates:

$ msguniq $HOME/gettextlogused > missing.po

The result is a PO file, but needs some preprocessing before a PO file editor can be used
with it. First, it is a multi-domain PO file, containing messages from many translation
domains. Second, it lacks all translator comments and source references. Here is how to
get a list of the affected translation domains:

$ sed -n -e ’s,^domain "\(.*\)"$,\1,p’ < missing.po | sort | uniq

Then the translator can handle the domains one by one. For simplicity, let’s use envi-
ronment variables to denote the language, domain and source package.

$ lang=nl # your language

$ domain=coreutils # the name of the domain to be handled

Chapter 12: The Translator’s View 134

$ package=/usr/src/gnu/coreutils-4.5.4 # the package where it comes from

She takes the latest copy of $lang.po from the Translation Project, or from the package
(in most cases, $package/po/$lang.po), or creates a fresh one if she’s the first translator
(see Chapter 6 [Creating], page 40). She then uses the following commands to mark the not
urgent messages as "obsolete". (This doesn’t mean that these messages - translated and
untranslated ones - will go away. It simply means that the PO file editor will ignore them
in the following editing session.)

$ msggrep --domain=$domain missing.po | grep -v ’^domain’ \

> $domain-missing.po

$ msgattrib --set-obsolete --ignore-file $domain-missing.po $domain.$lang.po \

> $domain.$lang-urgent.po

The she translates $domain.$lang-urgent.po by use of a PO file editor (see Chapter 8
[Editing], page 50). (FIXME: I don’t know whether KBabel and gtranslator also preserve
obsolete messages, as they should.) Finally she restores the not urgent messages (with their
earlier translations, for those which were already translated) through this command:

$ msgmerge --no-fuzzy-matching $domain.$lang-urgent.po $package/po/$domain.pot \

> $domain.$lang.po

Then she can submit $domain.$lang.po and proceed to the next domain.

Chapter 13: The Maintainer’s View 135

13 The Maintainer’s View

The maintainer of a package has many responsibilities. One of them is ensuring that the
package will install easily on many platforms, and that the magic we described earlier (see
Chapter 2 [Users], page 9) will work for installers and end users.

Of course, there are many possible ways by which GNU gettext might be integrated in
a distribution, and this chapter does not cover them in all generality. Instead, it details one
possible approach which is especially adequate for many free software distributions following
GNU standards, or even better, Gnits standards, because GNU gettext is purposely for
helping the internationalization of the whole GNU project, and as many other good free
packages as possible. So, the maintainer’s view presented here presumes that the package
already has a configure.ac file and uses GNU Autoconf.

Nevertheless, GNU gettext may surely be useful for free packages not following GNU
standards and conventions, but the maintainers of such packages might have to show imag-
ination and initiative in organizing their distributions so gettext work for them in all
situations. There are surely many, out there.

Even if gettext methods are now stabilizing, slight adjustments might be needed be-
tween successive gettext versions, so you should ideally revise this chapter in subsequent
releases, looking for changes.

13.1 Flat or Non-Flat Directory Structures

Some free software packages are distributed as tar files which unpack in a single directory,
these are said to be flat distributions. Other free software packages have a one level hierarchy
of subdirectories, using for example a subdirectory named doc/ for the Texinfo manual and
man pages, another called lib/ for holding functions meant to replace or complement C
libraries, and a subdirectory src/ for holding the proper sources for the package. These
other distributions are said to be non-flat.

We cannot say much about flat distributions. A flat directory structure has the disad-
vantage of increasing the difficulty of updating to a new version of GNU gettext. Also,
if you have many PO files, this could somewhat pollute your single directory. Also, GNU
gettext’s libintl sources consist of C sources, shell scripts, sed scripts and complicated
Makefile rules, which don’t fit well into an existing flat structure. For these reasons, we
recommend to use non-flat approach in this case as well.

Maybe because GNU gettext itself has a non-flat structure, we have more experience
with this approach, and this is what will be described in the remaining of this chapter.
Some maintainers might use this as an opportunity to unflatten their package structure.

13.2 Prerequisite Works

There are some works which are required for using GNU gettext in one of your package.
These works have some kind of generality that escape the point by point descriptions used
in the remainder of this chapter. So, we describe them here.

• Before attempting to use gettextize you should install some other packages first.
Ensure that recent versions of GNU m4, GNU Autoconf and GNU gettext are already
installed at your site, and if not, proceed to do this first. If you get to install these

Chapter 13: The Maintainer’s View 136

things, beware that GNU m4 must be fully installed before GNU Autoconf is even
configured.

To further ease the task of a package maintainer the automake package was designed
and implemented. GNU gettext now uses this tool and the Makefiles in the intl/

and po/ therefore know about all the goals necessary for using automake and libintl

in one project.

Those four packages are only needed by you, as a maintainer; the installers of your
own package and end users do not really need any of GNU m4, GNU Autoconf, GNU
gettext, or GNU automake for successfully installing and running your package, with
messages properly translated. But this is not completely true if you provide interna-
tionalized shell scripts within your own package: GNU gettext shall then be installed
at the user site if the end users want to see the translation of shell script messages.

• Your package should use Autoconf and have a configure.ac or configure.in file. If
it does not, you have to learn how. The Autoconf documentation is quite well written,
it is a good idea that you print it and get familiar with it.

• Your C sources should have already been modified according to instructions given
earlier in this manual. See Chapter 4 [Sources], page 19.

• Your po/ directory should receive all PO files submitted to you by the translator teams,
each having ll.po as a name. This is not usually easy to get translation work done
before your package gets internationalized and available! Since the cycle has to start
somewhere, the easiest for the maintainer is to start with absolutely no PO files, and
wait until various translator teams get interested in your package, and submit PO files.

It is worth adding here a few words about how the maintainer should ideally behave
with PO files submissions. As a maintainer, your role is to authenticate the origin of
the submission as being the representative of the appropriate translating teams of the
Translation Project (forward the submission to coordinator@translationproject.org in
case of doubt), to ensure that the PO file format is not severely broken and does not prevent
successful installation, and for the rest, to merely put these PO files in po/ for distribution.

As a maintainer, you do not have to take on your shoulders the responsibility of checking
if the translations are adequate or complete, and should avoid diving into linguistic matters.
Translation teams drive themselves and are fully responsible of their linguistic choices for
the Translation Project. Keep in mind that translator teams are not driven by maintainers.
You can help by carefully redirecting all communications and reports from users about
linguistic matters to the appropriate translation team, or explain users how to reach or join
their team. The simplest might be to send them the ABOUT-NLS file.

Maintainers should never ever apply PO file bug reports themselves, short-cutting trans-
lation teams. If some translator has difficulty to get some of her points through her team, it
should not be an option for her to directly negotiate translations with maintainers. Teams
ought to settle their problems themselves, if any. If you, as a maintainer, ever think there
is a real problem with a team, please never try to solve a team’s problem on your own.

13.3 Invoking the gettextize Program

The gettextize program is an interactive tool that helps the maintainer of a package
internationalized through GNU gettext. It is used for two purposes:

Chapter 13: The Maintainer’s View 137

• As a wizard, when a package is modified to use GNU gettext for the first time.

• As a migration tool, for upgrading the GNU gettext support in a package from a
previous to a newer version of GNU gettext.

This program performs the following tasks:

• It copies into the package some files that are consistently and identically needed in
every package internationalized through GNU gettext.

• It performs as many of the tasks mentioned in the next section Section 13.4 [Adjusting
Files], page 139 as can be performed automatically.

• It removes obsolete files and idioms used for previous GNU gettext versions to the
form recommended for the current GNU gettext version.

• It prints a summary of the tasks that ought to be done manually and could not be
done automatically by gettextize.

It can be invoked as follows:

gettextize [option...] [directory]

and accepts the following options:

‘-f’
‘--force’ Force replacement of files which already exist.

‘--intl’ Install the libintl sources in a subdirectory named intl/. This libintl will
be used to provide internationalization on systems that don’t have GNU libintl
installed. If this option is omitted, the call to AM_GNU_GETTEXT in configure.ac

should read: ‘AM_GNU_GETTEXT([external])’, and internationalization will not
be enabled on systems lacking GNU gettext.

‘--po-dir=dir’
Specify a directory containing PO files. Such a directory contains the trans-
lations into various languages of a particular POT file. This option can be
specified multiple times, once for each translation domain. If it is not specified,
the directory named po/ is updated.

‘--no-changelog’
Don’t update or create ChangeLog files. By default, gettextize logs all
changes (file additions, modifications and removals) in a file called ‘ChangeLog’
in each affected directory.

‘--symlink’
Make symbolic links instead of copying the needed files. This can be useful
to save a few kilobytes of disk space, but it requires extra effort to create self-
contained tarballs, it may disturb some mechanism the maintainer applies to
the sources, and it is likely to introduce bugs when a newer version of gettext
is installed on the system.

‘-n’
‘--dry-run’

Print modifications but don’t perform them. All actions that gettextize would
normally execute are inhibited and instead only listed on standard output.

Chapter 13: The Maintainer’s View 138

‘--help’ Display this help and exit.

‘--version’
Output version information and exit.

If directory is given, this is the top level directory of a package to prepare for using GNU
gettext. If not given, it is assumed that the current directory is the top level directory of
such a package.

The program gettextize provides the following files. However, no existing file will be
replaced unless the option --force (-f) is specified.

1. The ABOUT-NLS file is copied in the main directory of your package, the one being at the
top level. This file gives the main indications about how to install and use the Native
Language Support features of your program. You might elect to use a more recent
copy of this ABOUT-NLS file than the one provided through gettextize, if you have
one handy. You may also fetch a more recent copy of file ABOUT-NLS from Translation
Project sites, and from most GNU archive sites.

2. A po/ directory is created for eventually holding all translation files, but initially only
containing the file po/Makefile.in.in from the GNU gettext distribution (beware
the double ‘.in’ in the file name) and a few auxiliary files. If the po/ directory already
exists, it will be preserved along with the files it contains, and only Makefile.in.in

and the auxiliary files will be overwritten.

If ‘--po-dir’ has been specified, this holds for every directory specified through
‘--po-dir’, instead of po/.

3. Only if ‘--intl’ has been specified: A intl/ directory is created and filled with most
of the files originally in the intl/ directory of the GNU gettext distribution. Also, if
option --force (-f) is given, the intl/ directory is emptied first.

4. The file config.rpath is copied into the directory containing configuration support
files. It is needed by the AM_GNU_GETTEXT autoconf macro.

5. Only if the project is using GNU automake: A set of autoconf macro files is copied
into the package’s autoconf macro repository, usually in a directory called m4/.

If your site support symbolic links, gettextize will not actually copy the files into
your package, but establish symbolic links instead. This avoids duplicating the disk space
needed in all packages. Merely using the ‘-h’ option while creating the tar archive of your
distribution will resolve each link by an actual copy in the distribution archive. So, to insist,
you really should use ‘-h’ option with tar within your dist goal of your main Makefile.in.

Furthermore, gettextize will update all Makefile.am files in each affected directory,
as well as the top level configure.ac or configure.in file.

It is interesting to understand that most new files for supporting GNU gettext facilities
in one package go in intl/, po/ and m4/ subdirectories. One distinction between intl/ and
the two other directories is that intl/ is meant to be completely identical in all packages
using GNU gettext, while the other directories will mostly contain package dependent files.

The gettextize program makes backup files for all files it replaces or changes, and
also write ChangeLog entries about these changes. This way, the careful maintainer can
check after running gettextize whether its changes are acceptable to him, and possibly
adjust them. An exception to this rule is the intl/ directory, which is added or replaced
or removed as a whole.

Chapter 13: The Maintainer’s View 139

It is important to understand that gettextize can not do the entire job of adapting a
package for using GNU gettext. The amount of remaining work depends on whether the
package uses GNU automake or not. But in any case, the maintainer should still read the
section Section 13.4 [Adjusting Files], page 139 after invoking gettextize.

In particular, if after using ‘gettexize’, you get an error ‘AC_COMPILE_IFELSE was

called before AC_GNU_SOURCE’ or ‘AC_RUN_IFELSE was called before AC_GNU_SOURCE’,
you can fix it by modifying configure.ac, as described in Section 13.4.5 [configure.ac],
page 141.

It is also important to understand that gettextize is not part of the GNU build system,
in the sense that it should not be invoked automatically, and not be invoked by someone
who doesn’t assume the responsibilities of a package maintainer. For the latter purpose, a
separate tool is provided, see Section 13.6.3 [autopoint Invocation], page 151.

13.4 Files You Must Create or Alter

Besides files which are automatically added through gettextize, there are many files
needing revision for properly interacting with GNU gettext. If you are closely following
GNU standards for Makefile engineering and auto-configuration, the adaptations should be
easier to achieve. Here is a point by point description of the changes needed in each.

So, here comes a list of files, each one followed by a description of all alterations it needs.
Many examples are taken out from the GNU gettext 0.18.3 distribution itself, or from
the GNU hello distribution (http://www.franken.de/users/gnu/ke/hello or http://
www.gnu.franken.de/ke/hello/) You may indeed refer to the source code of the GNU
gettext and GNU hello packages, as they are intended to be good examples for using
GNU gettext functionality.

13.4.1 POTFILES.in in po/

The po/ directory should receive a file named POTFILES.in. This file tells which files,
among all program sources, have marked strings needing translation. Here is an example
of such a file:

List of source files containing translatable strings.

Copyright (C) 1995 Free Software Foundation, Inc.

Common library files

lib/error.c

lib/getopt.c

lib/xmalloc.c

Package source files

src/gettext.c

src/msgfmt.c

src/xgettext.c

Hash-marked comments and white lines are ignored. All other lines list those source files
containing strings marked for translation (see Section 4.4 [Mark Keywords], page 23), in a
notation relative to the top level of your whole distribution, rather than the location of the
POTFILES.in file itself.

http://www.franken.de/users/gnu/ke/hello
http://www.gnu.franken.de/ke/hello/
http://www.gnu.franken.de/ke/hello/

Chapter 13: The Maintainer’s View 140

When a C file is automatically generated by a tool, like flex or bison, that doesn’t
introduce translatable strings by itself, it is recommended to list in po/POTFILES.in the
real source file (ending in .l in the case of flex, or in .y in the case of bison), not the
generated C file.

13.4.2 LINGUAS in po/

The po/ directory should also receive a file named LINGUAS. This file contains the list of
available translations. It is a whitespace separated list. Hash-marked comments and white
lines are ignored. Here is an example file:

Set of available languages.

de fr

This example means that German and French PO files are available, so that these languages
are currently supported by your package. If you want to further restrict, at installation time,
the set of installed languages, this should not be done by modifying the LINGUAS file, but
rather by using the LINGUAS environment variable (see Chapter 14 [Installers], page 153).

It is recommended that you add the "languages" ‘en@quot’ and ‘en@boldquot’ to the
LINGUAS file. en@quot is a variant of English message catalogs (en) which uses real quotation
marks instead of the ugly looking asymmetric ASCII substitutes ‘‘’ and ‘’’. en@boldquot
is a variant of en@quot that additionally outputs quoted pieces of text in a bold font, when
used in a terminal emulator which supports the VT100 escape sequences (such as xterm or
the Linux console, but not Emacs in M-x shell mode).

These extra message catalogs ‘en@quot’ and ‘en@boldquot’ are constructed automat-
ically, not by translators; to support them, you need the files Rules-quot, quot.sed,
boldquot.sed, en@quot.header, en@boldquot.header, insert-header.sin in the po/

directory. You can copy them from GNU gettext’s po/ directory; they are also installed by
running gettextize.

13.4.3 Makevars in po/

The po/ directory also has a file named Makevars. It contains variables that are specific
to your project. po/Makevars gets inserted into the po/Makefile when the latter is created.
The variables thus take effect when the POT file is created or updated, and when the
message catalogs get installed.

The first three variables can be left unmodified if your package has a single message
domain and, accordingly, a single po/ directory. Only packages which have multiple po/

directories at different locations need to adjust the three first variables defined in Makevars.

As an alternative to the XGETTEXT_OPTIONS variables, it is also possible to specify
xgettext options through the AM_XGETTEXT_OPTION autoconf macro. See Section 13.5.6
[AM XGETTEXT OPTION], page 149.

13.4.4 Extending Makefile in po/

All files called Rules-* in the po/ directory get appended to the po/Makefile when it
is created. They present an opportunity to add rules for special PO files to the Makefile,
without needing to mess with po/Makefile.in.in.

GNU gettext comes with a Rules-quot file, containing rules for building catalogs
en@quot.po and en@boldquot.po. The effect of en@quot.po is that people who set

Chapter 13: The Maintainer’s View 141

their LANGUAGE environment variable to ‘en@quot’ will get messages with proper looking
symmetric Unicode quotation marks instead of abusing the ASCII grave accent and the
ASCII apostrophe for indicating quotations. To enable this catalog, simply add en@quot

to the po/LINGUAS file. The effect of en@boldquot.po is that people who set LANGUAGE

to ‘en@boldquot’ will get not only proper quotation marks, but also the quoted text
will be shown in a bold font on terminals and consoles. This catalog is useful only for
command-line programs, not GUI programs. To enable it, similarly add en@boldquot to
the po/LINGUAS file.

Similarly, you can create rules for building message catalogs for the sr@latin locale –
Serbian written with the Latin alphabet – from those for the sr locale – Serbian written
with Cyrillic letters. See Section 9.4 [msgfilter Invocation], page 76.

13.4.5 configure.ac at top level

configure.ac or configure.in - this is the source from which autoconf generates the
configure script.

1. Declare the package and version.

This is done by a set of lines like these:

PACKAGE=gettext

VERSION=0.18.3

AC_DEFINE_UNQUOTED(PACKAGE, "$PACKAGE")

AC_DEFINE_UNQUOTED(VERSION, "$VERSION")

AC_SUBST(PACKAGE)

AC_SUBST(VERSION)

or, if you are using GNU automake, by a line like this:

AM_INIT_AUTOMAKE(gettext, 0.18.3)

Of course, you replace ‘gettext’ with the name of your package, and ‘0.18.3’ by its
version numbers, exactly as they should appear in the packaged tar file name of your
distribution (gettext-0.18.3.tar.gz, here).

2. Check for internationalization support.

Here is the main m4 macro for triggering internationalization support. Just add this
line to configure.ac:

AM_GNU_GETTEXT

This call is purposely simple, even if it generates a lot of configure time checking and
actions.

If you have suppressed the intl/ subdirectory by calling gettextize without ‘--intl’
option, this call should read

AM_GNU_GETTEXT([external])

3. Have output files created.

The AC_OUTPUT directive, at the end of your configure.ac file, needs to be modified
in two ways:

AC_OUTPUT([existing configuration files intl/Makefile po/Makefile.in],

[existing additional actions])

Chapter 13: The Maintainer’s View 142

The modification to the first argument to AC_OUTPUT asks for substitution in the intl/
and po/ directories. Note the ‘.in’ suffix used for po/ only. This is because the
distributed file is really po/Makefile.in.in.

If you have suppressed the intl/ subdirectory by calling gettextize without ‘--intl’
option, then you don’t need to add intl/Makefile to the AC_OUTPUT line.

If, after doing the recommended modifications, a command like ‘aclocal -I m4’ or
‘autoconf’ or ‘autoreconf’ fails with a trace similar to this:

configure.ac:44: warning: AC_COMPILE_IFELSE was called before AC_GNU_SOURCE

../../lib/autoconf/specific.m4:335: AC_GNU_SOURCE is expanded from...

m4/lock.m4:224: gl_LOCK is expanded from...

m4/gettext.m4:571: gt_INTL_SUBDIR_CORE is expanded from...

m4/gettext.m4:472: AM_INTL_SUBDIR is expanded from...

m4/gettext.m4:347: AM_GNU_GETTEXT is expanded from...

configure.ac:44: the top level

configure.ac:44: warning: AC_RUN_IFELSE was called before AC_GNU_SOURCE

you need to add an explicit invocation of ‘AC_GNU_SOURCE’ in the configure.ac file - after
‘AC_PROG_CC’ but before ‘AM_GNU_GETTEXT’, most likely very close to the ‘AC_PROG_CC’
invocation. This is necessary because of ordering restrictions imposed by GNU autoconf.

13.4.6 config.guess, config.sub at top level

If you haven’t suppressed the intl/ subdirectory, you need to add the GNU
config.guess and config.sub files to your distribution. They are needed because the
intl/ directory has platform dependent support for determining the locale’s character
encoding and therefore needs to identify the platform.

You can obtain the newest version of config.guess and config.sub from the ‘config’
project at http://savannah.gnu.org/. The commands to fetch them are

$ wget -O config.guess ’http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD’

$ wget -O config.sub ’http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD’

Less recent versions are also contained in the GNU automake and GNU libtool packages.

Normally, config.guess and config.sub are put at the top level of a distribution. But
it is also possible to put them in a subdirectory, altogether with other configuration support
files like install-sh, ltconfig, ltmain.sh or missing. All you need to do, other than
moving the files, is to add the following line to your configure.ac.

AC_CONFIG_AUX_DIR([subdir])

13.4.7 mkinstalldirs at top level

With earlier versions of GNU gettext, you needed to add the GNU mkinstalldirs script
to your distribution. This is not needed any more. You can remove it if you not also using
an automake version older than automake 1.9.

13.4.8 aclocal.m4 at top level

If you do not have an aclocal.m4 file in your distribution, the simplest is to
concatenate the files codeset.m4, fcntl-o.m4, gettext.m4, glibc2.m4, glibc21.m4,
iconv.m4, intdiv0.m4, intl.m4, intldir.m4, intlmacosx.m4, intmax.m4, inttypes_

h.m4, inttypes-pri.m4, lcmessage.m4, lib-ld.m4, lib-link.m4, lib-prefix.m4,
lock.m4, longlong.m4, nls.m4, po.m4, printf-posix.m4, progtest.m4, size_max.m4,

Chapter 13: The Maintainer’s View 143

stdint_h.m4, threadlib.m4, uintmax_t.m4, visibility.m4, wchar_t.m4, wint_t.m4,
xsize.m4 from GNU gettext’s m4/ directory into a single file. If you have suppressed the
intl/ directory, only gettext.m4, iconv.m4, lib-ld.m4, lib-link.m4, lib-prefix.m4,
nls.m4, po.m4, progtest.m4 need to be concatenated.

If you are not using GNU automake 1.8 or newer, you will need to add a file mkdirp.m4
from a newer automake distribution to the list of files above.

If you already have an aclocal.m4 file, then you will have to merge the said macro files
into your aclocal.m4. Note that if you are upgrading from a previous release of GNU
gettext, you should most probably replace the macros (AM_GNU_GETTEXT, etc.), as they
usually change a little from one release of GNU gettext to the next. Their contents may
vary as we get more experience with strange systems out there.

If you are using GNU automake 1.5 or newer, it is enough to put these macro files into
a subdirectory named m4/ and add the line

ACLOCAL_AMFLAGS = -I m4

to your top level Makefile.am.

If you are using GNU automake 1.10 or newer, it is even easier: Add the line

ACLOCAL_AMFLAGS = --install -I m4

to your top level Makefile.am, and run ‘aclocal --install -I m4’. This will copy the
needed files to the m4/ subdirectory automatically, before updating aclocal.m4.

These macros check for the internationalization support functions and related informa-
tions. Hopefully, once stabilized, these macros might be integrated in the standard Autoconf
set, because this piece of m4 code will be the same for all projects using GNU gettext.

13.4.9 acconfig.h at top level

Earlier GNU gettext releases required to put definitions for ENABLE_NLS, HAVE_GETTEXT
and HAVE_LC_MESSAGES, HAVE_STPCPY, PACKAGE and VERSION into an acconfig.h file. This
is not needed any more; you can remove them from your acconfig.h file unless your package
uses them independently from the intl/ directory.

13.4.10 config.h.in at top level

The include file template that holds the C macros to be defined by configure is usually
called config.h.in and may be maintained either manually or automatically.

If gettextize has created an intl/ directory, this file must be called config.h.in and
must be at the top level. If, however, you have suppressed the intl/ directory by calling
gettextize without ‘--intl’ option, then you can choose the name of this file and its
location freely.

If it is maintained automatically, by use of the ‘autoheader’ program, you need to do
nothing about it. This is the case in particular if you are using GNU automake.

If it is maintained manually, and if gettextize has created an intl/ directory, you
should switch to using ‘autoheader’. The list of C macros to be added for the sake of
the intl/ directory is just too long to be maintained manually; it also changes between
different versions of GNU gettext.

If it is maintained manually, and if on the other hand you have suppressed the intl/

directory by calling gettextize without ‘--intl’ option, then you can get away by adding
the following lines to config.h.in:

Chapter 13: The Maintainer’s View 144

/* Define to 1 if translation of program messages to the user’s

native language is requested. */

#undef ENABLE_NLS

13.4.11 Makefile.in at top level

Here are a few modifications you need to make to your main, top-level Makefile.in file.

1. Add the following lines near the beginning of your Makefile.in, so the ‘dist:’ goal
will work properly (as explained further down):

PACKAGE = @PACKAGE@

VERSION = @VERSION@

2. Add file ABOUT-NLS to the DISTFILES definition, so the file gets distributed.

3. Wherever you process subdirectories in your Makefile.in, be sure you also process the
subdirectories ‘intl’ and ‘po’. Special rules in the Makefiles take care for the case
where no internationalization is wanted.

If you are using Makefiles, either generated by automake, or hand-written so they
carefully follow the GNU coding standards, the effected goals for which the new sub-
directories must be handled include ‘installdirs’, ‘install’, ‘uninstall’, ‘clean’,
‘distclean’.

Here is an example of a canonical order of processing. In this example, we also define
SUBDIRS in Makefile.in for it to be further used in the ‘dist:’ goal.

SUBDIRS = doc intl lib src po

Note that you must arrange for ‘make’ to descend into the intl directory before de-
scending into other directories containing code which make use of the libintl.h header
file. For this reason, here we mention intl before lib and src.

4. A delicate point is the ‘dist:’ goal, as both intl/Makefile and po/Makefile will
later assume that the proper directory has been set up from the main Makefile. Here
is an example at what the ‘dist:’ goal might look like:

distdir = $(PACKAGE)-$(VERSION)

dist: Makefile

rm -fr $(distdir)

mkdir $(distdir)

chmod 777 $(distdir)

for file in $(DISTFILES); do \

ln $$file $(distdir) 2>/dev/null || cp -p $$file $(distdir); \

done

for subdir in $(SUBDIRS); do \

mkdir $(distdir)/$$subdir || exit 1; \

chmod 777 $(distdir)/$$subdir; \

(cd $$subdir && $(MAKE) $@) || exit 1; \

done

tar chozf $(distdir).tar.gz $(distdir)

rm -fr $(distdir)

Note that if you are using GNU automake, Makefile.in is automatically generated
from Makefile.am, and all needed changes to Makefile.am are already made by running
‘gettextize’.

Chapter 13: The Maintainer’s View 145

13.4.12 Makefile.in in src/

Some of the modifications made in the main Makefile.in will also be needed in the
Makefile.in from your package sources, which we assume here to be in the src/ subdirec-
tory. Here are all the modifications needed in src/Makefile.in:

1. In view of the ‘dist:’ goal, you should have these lines near the beginning of
src/Makefile.in:

PACKAGE = @PACKAGE@

VERSION = @VERSION@

2. If not done already, you should guarantee that top_srcdir gets defined. This will
serve for cpp include files. Just add the line:

top_srcdir = @top_srcdir@

3. You might also want to define subdir as ‘src’, later allowing for almost uniform ‘dist:’
goals in all your Makefile.in. At list, the ‘dist:’ goal below assume that you used:

subdir = src

4. The main function of your program will normally call bindtextdomain (see see
Section 4.2 [Triggering], page 19), like this:

bindtextdomain (PACKAGE, LOCALEDIR);

textdomain (PACKAGE);

To make LOCALEDIR known to the program, add the following lines to Makefile.in

if you are using Autoconf version 2.60 or newer:

datadir = @datadir@

datarootdir= @datarootdir@

localedir = @localedir@

DEFS = -DLOCALEDIR=\"$(localedir)\" @DEFS@

or these lines if your version of Autoconf is older than 2.60:

datadir = @datadir@

localedir = $(datadir)/locale

DEFS = -DLOCALEDIR=\"$(localedir)\" @DEFS@

Note that @datadir@ defaults to ‘$(prefix)/share’, thus $(localedir) defaults to
‘$(prefix)/share/locale’.

5. You should ensure that the final linking will use @LIBINTL@ or @LTLIBINTL@ as a library.
@LIBINTL@ is for use without libtool, @LTLIBINTL@ is for use with libtool. An easy
way to achieve this is to manage that it gets into LIBS, like this:

LIBS = @LIBINTL@ @LIBS@

In most packages internationalized with GNU gettext, one will find a directory lib/

in which a library containing some helper functions will be build. (You need at least
the few functions which the GNU gettext Library itself needs.) However some of
the functions in the lib/ also give messages to the user which of course should be
translated, too. Taking care of this, the support library (say libsupport.a) should be
placed before @LIBINTL@ and @LIBS@ in the above example. So one has to write this:

LIBS = ../lib/libsupport.a @LIBINTL@ @LIBS@

Chapter 13: The Maintainer’s View 146

6. You should also ensure that directory intl/ will be searched for C preprocessor in-
clude files in all circumstances. So, you have to manage so both ‘-I../intl’ and
‘-I$(top_srcdir)/intl’ will be given to the C compiler.

7. Your ‘dist:’ goal has to conform with others. Here is a reasonable definition for it:

distdir = ../$(PACKAGE)-$(VERSION)/$(subdir)

dist: Makefile $(DISTFILES)

for file in $(DISTFILES); do \

ln $$file $(distdir) 2>/dev/null || cp -p $$file $(distdir) || exit 1; \

done

Note that if you are using GNU automake, Makefile.in is automatically generated
from Makefile.am, and the first three changes and the last change are not necessary. The
remaining needed Makefile.am modifications are the following:

1. To make LOCALEDIR known to the program, add the following to Makefile.am:

<module>_CPPFLAGS = -DLOCALEDIR=\"$(localedir)\"

for each specific module or compilation unit, or

AM_CPPFLAGS = -DLOCALEDIR=\"$(localedir)\"

for all modules and compilation units together. Furthermore, if you are using an
Autoconf version older then 2.60, add this line to define ‘localedir’:

localedir = $(datadir)/locale

2. To ensure that the final linking will use @LIBINTL@ or @LTLIBINTL@ as a library, add
the following to Makefile.am:

<program>_LDADD = @LIBINTL@

for each specific program, or

LDADD = @LIBINTL@

for all programs together. Remember that when you use libtool to link a program,
you need to use @LTLIBINTL@ instead of @LIBINTL@ for that program.

3. If you have an intl/ directory, whose contents is created by gettextize, then to
ensure that it will be searched for C preprocessor include files in all circumstances, add
something like this to Makefile.am:

AM_CPPFLAGS = -I../intl -I$(top_srcdir)/intl

13.4.13 gettext.h in lib/

Internationalization of packages, as provided by GNU gettext, is optional. It can be
turned off in two situations:

• When the installer has specified ‘./configure --disable-nls’. This can be useful
when small binaries are more important than features, for example when building
utilities for boot diskettes. It can also be useful in order to get some specific C compiler
warnings about code quality with some older versions of GCC (older than 3.0).

• When the package does not include the intl/ subdirectory, and the libintl.h header
(with its associated libintl library, if any) is not already installed on the system, it is
preferable that the package builds without internationalization support, rather than to
give a compilation error.

Chapter 13: The Maintainer’s View 147

A C preprocessor macro can be used to detect these two cases. Usually, when libintl.h

was found and not explicitly disabled, the ENABLE_NLS macro will be defined to 1 in the
autoconf generated configuration file (usually called config.h). In the two negative situa-
tions, however, this macro will not be defined, thus it will evaluate to 0 in C preprocessor
expressions.

gettext.h is a convenience header file for conditional use of <libintl.h>, depending on
the ENABLE_NLS macro. If ENABLE_NLS is set, it includes <libintl.h>; otherwise it defines
no-op substitutes for the libintl.h functions. We recommend the use of "gettext.h" over
direct use of <libintl.h>, so that portability to older systems is guaranteed and installers
can turn off internationalization if they want to. In the C code, you will then write

#include "gettext.h"

instead of

#include <libintl.h>

The location of gettext.h is usually in a directory containing auxiliary include files. In
many GNU packages, there is a directory lib/ containing helper functions; gettext.h fits
there. In other packages, it can go into the src directory.

Do not install the gettext.h file in public locations. Every package that needs it should
contain a copy of it on its own.

13.5 Autoconf macros for use in configure.ac

GNU gettext installs macros for use in a package’s configure.ac or configure.in.
See Section “Introduction” in The Autoconf Manual. The primary macro is, of course,
AM_GNU_GETTEXT.

13.5.1 AM GNU GETTEXT in gettext.m4

The AM_GNU_GETTEXT macro tests for the presence of the GNU gettext function family
in either the C library or a separate libintl library (shared or static libraries are both sup-
ported) or in the package’s intl/ directory. It also invokes AM_PO_SUBDIRS, thus preparing
the po/ directories of the package for building.

AM_GNU_GETTEXT accepts up to three optional arguments. The general syntax is

AM_GNU_GETTEXT([intlsymbol], [needsymbol], [intldir])

intlsymbol can be ‘external’ or ‘no-libtool’. The default (if it is not specified or
empty) is ‘no-libtool’. intlsymbol should be ‘external’ for packages with no intl/

directory. For packages with an intl/ directory, you can either use an intlsymbol equal to
‘no-libtool’, or you can use ‘external’ and override by using the macro AM_GNU_GETTEXT_
INTL_SUBDIR elsewhere. The two ways to specify the existence of an intl/ directory are
equivalent. At build time, a static library $(top_builddir)/intl/libintl.a will then be
created.

If needsymbol is specified and is ‘need-ngettext’, then GNU gettext implementations
(in libc or libintl) without the ngettext() function will be ignored. If needsymbol is
specified and is ‘need-formatstring-macros’, then GNU gettext implementations that
don’t support the ISO C 99 <inttypes.h> formatstring macros will be ignored. Only
one needsymbol can be specified. These requirements can also be specified by using the
macro AM_GNU_GETTEXT_NEED elsewhere. To specify more than one requirement, just specify

Chapter 13: The Maintainer’s View 148

the strongest one among them, or invoke the AM_GNU_GETTEXT_NEED macro several times.
The hierarchy among the various alternatives is as follows: ‘need-formatstring-macros’
implies ‘need-ngettext’.

intldir is used to find the intl libraries. If empty, the value ‘$(top_builddir)/intl/’ is
used.

The AM_GNU_GETTEXT macro determines whether GNU gettext is available and should be
used. If so, it sets the USE_NLS variable to ‘yes’; it defines ENABLE_NLS to 1 in the autoconf
generated configuration file (usually called config.h); it sets the variables LIBINTL and
LTLIBINTL to the linker options for use in a Makefile (LIBINTL for use without libtool,
LTLIBINTL for use with libtool); it adds an ‘-I’ option to CPPFLAGS if necessary. In the
negative case, it sets USE_NLS to ‘no’; it sets LIBINTL and LTLIBINTL to empty and doesn’t
change CPPFLAGS.

The complexities that AM_GNU_GETTEXT deals with are the following:

• Some operating systems have gettext in the C library, for example glibc. Some have
it in a separate library libintl. GNU libintl might have been installed as part of
the GNU gettext package.

• GNU libintl, if installed, is not necessarily already in the search path (CPPFLAGS for
the include file search path, LDFLAGS for the library search path).

• Except for glibc, the operating system’s native gettext cannot exploit the GNU mo
files, doesn’t have the necessary locale dependency features, and cannot convert mes-
sages from the catalog’s text encoding to the user’s locale encoding.

• GNU libintl, if installed, is not necessarily already in the run time library search
path. To avoid the need for setting an environment variable like LD_LIBRARY_PATH,
the macro adds the appropriate run time search path options to the LIBINTL and
LTLIBINTL variables. This works on most systems, but not on some operating systems
with limited shared library support, like SCO.

• GNU libintl relies on POSIX/XSI iconv. The macro checks for linker options needed
to use iconv and appends them to the LIBINTL and LTLIBINTL variables.

13.5.2 AM GNU GETTEXT VERSION in gettext.m4

The AM_GNU_GETTEXT_VERSION macro declares the version number of the GNU gettext
infrastructure that is used by the package.

The use of this macro is optional; only the autopoint program makes use of it (see
Section 13.6 [CVS Issues], page 150).

13.5.3 AM GNU GETTEXT NEED in gettext.m4

The AM_GNU_GETTEXT_NEED macro declares a constraint regarding the GNU gettext im-
plementation. The syntax is

AM_GNU_GETTEXT_NEED([needsymbol])

If needsymbol is ‘need-ngettext’, then GNU gettext implementations (in libc
or libintl) without the ngettext() function will be ignored. If needsymbol is
‘need-formatstring-macros’, then GNU gettext implementations that don’t support the
ISO C 99 <inttypes.h> formatstring macros will be ignored.

The optional second argument of AM_GNU_GETTEXT is also taken into account.

Chapter 13: The Maintainer’s View 149

The AM_GNU_GETTEXT_NEED invocations can occur before or after the AM_GNU_GETTEXT

invocation; the order doesn’t matter.

13.5.4 AM GNU GETTEXT INTL SUBDIR in intldir.m4

The AM_GNU_GETTEXT_INTL_SUBDIR macro specifies that the AM_GNU_GETTEXT macro,
although invoked with the first argument ‘external’, should also prepare for building the
intl/ subdirectory.

The AM_GNU_GETTEXT_INTL_SUBDIR invocation can occur before or after the AM_GNU_

GETTEXT invocation; the order doesn’t matter.

The use of this macro requires GNU automake 1.10 or newer and GNU autoconf 2.61 or
newer.

13.5.5 AM PO SUBDIRS in po.m4

The AM_PO_SUBDIRS macro prepares the po/ directories of the package for building. This
macro should be used in internationalized programs written in other programming languages
than C, C++, Objective C, for example sh, Python, Lisp. See Chapter 15 [Programming
Languages], page 154 for a list of programming languages that support localization through
PO files.

The AM_PO_SUBDIRS macro determines whether internationalization should be used. If
so, it sets the USE_NLS variable to ‘yes’, otherwise to ‘no’. It also determines the right
values for Makefile variables in each po/ directory.

13.5.6 AM XGETTEXT OPTION in po.m4

The AM_XGETTEXT_OPTION macro registers a command-line option to be used in the
invocations of xgettext in the po/ directories of the package.

For example, if you have a source file that defines a function ‘error_at_line’ whose
fifth argument is a format string, you can use

AM_XGETTEXT_OPTION([--flag=error_at_line:5:c-format])

to instruct xgettext to mark all translatable strings in ‘gettext’ invocations that occur
as fifth argument to this function as ‘c-format’.

See Section 5.1 [xgettext Invocation], page 33 for the list of options that xgettext

accepts.

The use of this macro is an alternative to the use of the ‘XGETTEXT_OPTIONS’ variable in
po/Makevars.

13.5.7 AM ICONV in iconv.m4

The AM_ICONV macro tests for the presence of the POSIX/XSI iconv function family in
either the C library or a separate libiconv library. If found, it sets the am_cv_func_iconv
variable to ‘yes’; it defines HAVE_ICONV to 1 in the autoconf generated configuration file
(usually called config.h); it defines ICONV_CONST to ‘const’ or to empty, depending on
whether the second argument of iconv() is of type ‘const char **’ or ‘char **’; it sets the
variables LIBICONV and LTLIBICONV to the linker options for use in a Makefile (LIBICONV
for use without libtool, LTLIBICONV for use with libtool); it adds an ‘-I’ option to CPPFLAGS
if necessary. If not found, it sets LIBICONV and LTLIBICONV to empty and doesn’t change
CPPFLAGS.

Chapter 13: The Maintainer’s View 150

The complexities that AM_ICONV deals with are the following:

• Some operating systems have iconv in the C library, for example glibc. Some have
it in a separate library libiconv, for example OSF/1 or FreeBSD. Regardless of the
operating system, GNU libiconv might have been installed. In that case, it should
be used instead of the operating system’s native iconv.

• GNU libiconv, if installed, is not necessarily already in the search path (CPPFLAGS
for the include file search path, LDFLAGS for the library search path).

• GNU libiconv is binary incompatible with some operating system’s native iconv,
for example on FreeBSD. Use of an iconv.h and libiconv.so that don’t fit together
would produce program crashes.

• GNU libiconv, if installed, is not necessarily already in the run time library search
path. To avoid the need for setting an environment variable like LD_LIBRARY_PATH,
the macro adds the appropriate run time search path options to the LIBICONV variable.
This works on most systems, but not on some operating systems with limited shared
library support, like SCO.

iconv.m4 is distributed with the GNU gettext package because gettext.m4 relies on it.

13.6 Integrating with CVS

Many projects use CVS for distributed development, version control and source backup.
This section gives some advice how to manage the uses of cvs, gettextize, autopoint and
autoconf.

13.6.1 Avoiding version mismatch in distributed development

In a project development with multiple developers, using CVS, there should be a single
developer who occasionally - when there is desire to upgrade to a new gettext version - runs
gettextize and performs the changes listed in Section 13.4 [Adjusting Files], page 139, and
then commits his changes to the CVS.

It is highly recommended that all developers on a project use the same version of GNU
gettext in the package. In other words, if a developer runs gettextize, he should go the
whole way, make the necessary remaining changes and commit his changes to the CVS.
Otherwise the following damages will likely occur:

• Apparent version mismatch between developers. Since some gettext specific portions
in configure.ac, configure.in and Makefile.am, Makefile.in files depend on the
gettext version, the use of infrastructure files belonging to different gettext versions
can easily lead to build errors.

• Hidden version mismatch. Such version mismatch can also lead to malfunctioning of
the package, that may be undiscovered by the developers. The worst case of hidden
version mismatch is that internationalization of the package doesn’t work at all.

• Release risks. All developers implicitly perform constant testing on a package. This is
important in the days and weeks before a release. If the guy who makes the release tar
files uses a different version of GNU gettext than the other developers, the distribution
will be less well tested than if all had been using the same gettext version. For example,
it is possible that a platform specific bug goes undiscovered due to this constellation.

Chapter 13: The Maintainer’s View 151

13.6.2 Files to put under CVS version control

There are basically three ways to deal with generated files in the context of a CVS
repository, such as configure generated from configure.ac, parser.c generated from
parser.y, or po/Makefile.in.in autoinstalled by gettextize or autopoint.

1. All generated files are always committed into the repository.

2. All generated files are committed into the repository occasionally, for example each
time a release is made.

3. Generated files are never committed into the repository.

Each of these three approaches has different advantages and drawbacks.

1. The advantage is that anyone can check out the CVS at any moment and gets a working
build. The drawbacks are: 1a. It requires some frequent "cvs commit" actions by the
maintainers. 1b. The repository grows in size quite fast.

2. The advantage is that anyone can check out the CVS, and the usual "./configure;
make" will work. The drawbacks are: 2a. The one who checks out the repository needs
tools like GNU automake, GNU autoconf, GNU m4 installed in his PATH; sometimes
he even needs particular versions of them. 2b. When a release is made and a commit
is made on the generated files, the other developers get conflicts on the generated
files after doing "cvs update". Although these conflicts are easy to resolve, they are
annoying.

3. The advantage is less work for the maintainers. The drawback is that anyone who
checks out the CVS not only needs tools like GNU automake, GNU autoconf, GNU
m4 installed in his PATH, but also that he needs to perform a package specific pre-build
step before being able to "./configure; make".

For the first and second approach, all files modified or brought in by the occasional
gettextize invocation and update should be committed into the CVS.

For the third approach, the maintainer can omit from the CVS repository all the files that
gettextize mentions as "copy". Instead, he adds to the configure.ac or configure.in
a line of the form

AM_GNU_GETTEXT_VERSION(0.18.3)

and adds to the package’s pre-build script an invocation of ‘autopoint’. For everyone who
checks out the CVS, this autopoint invocation will copy into the right place the gettext

infrastructure files that have been omitted from the CVS.

The version number used as argument to AM_GNU_GETTEXT_VERSION is the version of the
gettext infrastructure that the package wants to use. It is also the minimum version num-
ber of the ‘autopoint’ program. So, if you write AM_GNU_GETTEXT_VERSION(0.11.5) then
the developers can have any version >= 0.11.5 installed; the package will work with the 0.11.5
infrastructure in all developers’ builds. When the maintainer then runs gettextize from, say,
version 0.12.1 on the package, the occurrence of AM_GNU_GETTEXT_VERSION(0.11.5) will
be changed into AM_GNU_GETTEXT_VERSION(0.12.1), and all other developers that use the
CVS will henceforth need to have GNU gettext 0.12.1 or newer installed.

13.6.3 Invoking the autopoint Program

autopoint [option]...

Chapter 13: The Maintainer’s View 152

The autopoint program copies standard gettext infrastructure files into a source pack-
age. It extracts from a macro call of the form AM_GNU_GETTEXT_VERSION(version), found
in the package’s configure.in or configure.ac file, the gettext version used by the pack-
age, and copies the infrastructure files belonging to this version into the package.

13.6.3.1 Options

‘-f’
‘--force’ Force overwriting of files that already exist.

‘-n’
‘--dry-run’

Print modifications but don’t perform them. All file copying actions that
autopoint would normally execute are inhibited and instead only listed on
standard output.

13.6.3.2 Informative output

‘--help’ Display this help and exit.

‘--version’
Output version information and exit.

autopoint supports the GNU gettext versions from 0.10.35 to the current one, 0.18.3.
In order to apply autopoint to a package using a gettext version newer than 0.18.3, you
need to install this same version of GNU gettext at least.

In packages using GNU automake, an invocation of autopoint should be followed by
invocations of aclocal and then autoconf and autoheader. The reason is that autopoint
installs some autoconf macro files, which are used by aclocal to create aclocal.m4, and
the latter is used by autoconf to create the package’s configure script and by autoheader

to create the package’s config.h.in include file template.

The name ‘autopoint’ is an abbreviation of ‘auto-po-intl-m4’; the tool copies or
updates mostly files in the po, intl, m4 directories.

13.7 Creating a Distribution Tarball

In projects that use GNU automake, the usual commands for creating a distribution
tarball, ‘make dist’ or ‘make distcheck’, automatically update the PO files as needed.

If GNU automake is not used, the maintainer needs to perform this update before making
a release:

$./configure

$ (cd po; make update-po)

$ make distclean

Chapter 14: The Installer’s and Distributor’s View 153

14 The Installer’s and Distributor’s View

By default, packages fully using GNU gettext, internally, are installed in such a way
that they to allow translation of messages. At configuration time, those packages should au-
tomatically detect whether the underlying host system already provides the GNU gettext

functions. If not, the GNU gettext library should be automatically prepared and used.
Installers may use special options at configuration time for changing this behavior. The
command ‘./configure --with-included-gettext’ bypasses system gettext to use the
included GNU gettext instead, while ‘./configure --disable-nls’ produces programs
totally unable to translate messages.

Internationalized packages have usually many ll.po files. Unless translations are dis-
abled, all those available are installed together with the package. However, the environment
variable LINGUAS may be set, prior to configuration, to limit the installed set. LINGUAS

should then contain a space separated list of two-letter codes, stating which languages are
allowed.

Chapter 15: Other Programming Languages 154

15 Other Programming Languages

While the presentation of gettext focuses mostly on C and implicitly applies to C++ as
well, its scope is far broader than that: Many programming languages, scripting languages
and other textual data like GUI resources or package descriptions can make use of the
gettext approach.

15.1 The Language Implementor’s View

All programming and scripting languages that have the notion of strings are eligible to
supporting gettext. Supporting gettext means the following:

1. You should add to the language a syntax for translatable strings. In principle, a
function call of gettext would do, but a shorthand syntax helps keeping the legibility
of internationalized programs. For example, in C we use the syntax _("string"), and
in GNU awk we use the shorthand _"string".

2. You should arrange that evaluation of such a translatable string at runtime calls the
gettext function, or performs equivalent processing.

3. Similarly, you should make the functions ngettext, dcgettext, dcngettext avail-
able from within the language. These functions are less often used, but are never-
theless necessary for particular purposes: ngettext for correct plural handling, and
dcgettext and dcngettext for obeying other locale-related environment variables than
LC_MESSAGES, such as LC_TIME or LC_MONETARY. For these latter functions, you need
to make the LC_* constants, available in the C header <locale.h>, referenceable from
within the language, usually either as enumeration values or as strings.

4. You should allow the programmer to designate a message domain, either by making
the textdomain function available from within the language, or by introducing a magic
variable called TEXTDOMAIN. Similarly, you should allow the programmer to designate
where to search for message catalogs, by providing access to the bindtextdomain func-
tion.

5. You should either perform a setlocale (LC_ALL, "") call during the startup of your
language runtime, or allow the programmer to do so. Remember that gettext will act
as a no-op if the LC_MESSAGES and LC_CTYPE locale categories are not both set.

6. A programmer should have a way to extract translatable strings from a program into
a PO file. The GNU xgettext program is being extended to support very different
programming languages. Please contact the GNU gettext maintainers to help them
doing this. If the string extractor is best integrated into your language’s parser, GNU
xgettext can function as a front end to your string extractor.

7. The language’s library should have a string formatting facility where the arguments of
a format string are denoted by a positional number or a name. This is needed because
for some languages and some messages with more than one substitutable argument,
the translation will need to output the substituted arguments in different order. See
Section 4.6 [c-format Flag], page 27.

8. If the language has more than one implementation, and not all of the implementations
use gettext, but the programs should be portable across implementations, you should
provide a no-i18n emulation, that makes the other implementations accept programs
written for yours, without actually translating the strings.

Chapter 15: Other Programming Languages 155

9. To help the programmer in the task of marking translatable strings, which is sometimes
performed using the Emacs PO mode (see Section 4.5 [Marking], page 24), you are
welcome to contact the GNU gettext maintainers, so they can add support for your
language to po-mode.el.

On the implementation side, three approaches are possible, with different effects on
portability and copyright:

• You may integrate the GNU gettext’s intl/ directory in your package, as described
in Chapter 13 [Maintainers], page 135. This allows you to have internationalization on
all kinds of platforms. Note that when you then distribute your package, it legally falls
under the GNU General Public License, and the GNU project will be glad about your
contribution to the Free Software pool.

• You may link against GNU gettext functions if they are found in the C library. For
example, an autoconf test for gettext() and ngettext() will detect this situation.
For the moment, this test will succeed on GNU systems and not on other platforms.
No severe copyright restrictions apply.

• You may emulate or reimplement the GNU gettext functionality. This has the ad-
vantage of full portability and no copyright restrictions, but also the drawback that
you have to reimplement the GNU gettext features (such as the LANGUAGE environ-
ment variable, the locale aliases database, the automatic charset conversion, and plural
handling).

15.2 The Programmer’s View

For the programmer, the general procedure is the same as for the C language. The
Emacs PO mode marking supports other languages, and the GNU xgettext string extractor
recognizes other languages based on the file extension or a command-line option. In some
languages, setlocale is not needed because it is already performed by the underlying
language runtime.

15.3 The Translator’s View

The translator works exactly as in the C language case. The only difference is that
when translating format strings, she has to be aware of the language’s particular syntax for
positional arguments in format strings.

15.3.1 C Format Strings

C format strings are described in POSIX (IEEE P1003.1 2001), section XSH 3 fprintf(),
http://www.opengroup.org/onlinepubs/007904975/functions/fprintf.html. See
also the fprintf() manual page, http: / /www .linuxvalley .it /encyclopedia /ldp /

manpage/man3/printf.3.php, http://informatik.fh-wuerzburg.de/student/i510/
man/printf.html.

Although format strings with positions that reorder arguments, such as

"Only %2$d bytes free on ’%1$s’."

which is semantically equivalent to

"’%s’ has only %d bytes free."

http://www.opengroup.org/onlinepubs/007904975/functions/fprintf.html
http://www.linuxvalley.it/encyclopedia/ldp/manpage/man3/printf.3.php
http://www.linuxvalley.it/encyclopedia/ldp/manpage/man3/printf.3.php
http://informatik.fh-wuerzburg.de/student/i510/man/printf.html
http://informatik.fh-wuerzburg.de/student/i510/man/printf.html

Chapter 15: Other Programming Languages 156

are a POSIX/XSI feature and not specified by ISO C 99, translators can rely on this
reordering ability: On the few platforms where printf(), fprintf() etc. don’t support
this feature natively, libintl.a or libintl.so provides replacement functions, and GNU
<libintl.h> activates these replacement functions automatically.

As a special feature for Farsi (Persian) and maybe Arabic, translators can insert an ‘I’
flag into numeric format directives. For example, the translation of "%d" can be "%Id". The
effect of this flag, on systems with GNU libc, is that in the output, the ASCII digits are
replaced with the ‘outdigits’ defined in the LC_CTYPE locale category. On other systems,
the gettext function removes this flag, so that it has no effect.

Note that the programmer should not put this flag into the untranslated string. (Putting
the ‘I’ format directive flag into an msgid string would lead to undefined behaviour on
platforms without glibc when NLS is disabled.)

15.3.2 Objective C Format Strings

Objective C format strings are like C format strings. They support an additional format
directive: "%@", which when executed consumes an argument of type Object *.

15.3.3 Shell Format Strings

Shell format strings, as supported by GNU gettext and the ‘envsubst’ program, are
strings with references to shell variables in the form $variable or ${variable}. References
of the form ${variable-default}, ${variable:-default}, ${variable=default},
${variable:=default}, ${variable+replacement}, ${variable:+replacement},
${variable?ignored}, ${variable:?ignored}, that would be valid inside shell scripts,
are not supported. The variable names must consist solely of alphanumeric or underscore
ASCII characters, not start with a digit and be nonempty; otherwise such a variable
reference is ignored.

15.3.4 Python Format Strings

There are two kinds of format strings in Python: those acceptable to the Python built-in
format operator %, labelled as ‘python-format’, and those acceptable to the format method
of the ‘str’ object.

Python % format strings are described in Python Library reference /
2. Built-in Types, Exceptions and Functions / 2.2. Built-in Types / 2.2.6. Sequence Types
/ 2.2.6.2. String Formatting Operations. http://www.python.org/doc/2.2.1/lib/

typesseq-strings.html.

Python brace format strings are described in PEP 3101 – Advanced String Formatting,
http://www.python.org/dev/peps/pep-3101/.

15.3.5 Lisp Format Strings

Lisp format strings are described in the Common Lisp HyperSpec, chapter 22.3
Formatted Output, http://www.lisp.org/HyperSpec/Body/sec_22-3.html.

15.3.6 Emacs Lisp Format Strings

Emacs Lisp format strings are documented in the Emacs Lisp reference, sec-
tion Formatting Strings, http: / / www . gnu . org / manual / elisp-manual-21-2 . 8 /

http://www.python.org/doc/2.2.1/lib/typesseq-strings.html
http://www.python.org/doc/2.2.1/lib/typesseq-strings.html
http://www.python.org/dev/peps/pep-3101/
http://www.lisp.org/HyperSpec/Body/sec_22-3.html
http://www.gnu.org/manual/elisp-manual-21-2.8/html_chapter/elisp_4.html#SEC75

Chapter 15: Other Programming Languages 157

html_chapter /elisp_4 .html #SEC75. Note that as of version 21, XEmacs supports
numbered argument specifications in format strings while FSF Emacs doesn’t.

15.3.7 librep Format Strings

librep format strings are documented in the librep manual, section Formatted Output,
http://librep.sourceforge.net/librep-manual.html#Formatted%20Output, http://
www.gwinnup.org/research/docs/librep.html#SEC122.

15.3.8 Scheme Format Strings

Scheme format strings are documented in the SLIB manual, section Format Specification.

15.3.9 Smalltalk Format Strings

Smalltalk format strings are described in the GNU Smalltalk documentation, class
CharArray, methods ‘bindWith:’ and ‘bindWithArguments:’. http://www.gnu.org/

software/smalltalk/gst-manual/gst_68.html#SEC238. In summary, a directive starts
with ‘%’ and is followed by ‘%’ or a nonzero digit (‘1’ to ‘9’).

15.3.10 Java Format Strings

Java format strings are described in the JDK documentation for class
java.text.MessageFormat, http: / / java . sun . com / j2se / 1 . 4 / docs / api / java /

text/MessageFormat.html. See also the ICU documentation http://oss.software.

ibm.com/icu/apiref/classMessageFormat.html.

15.3.11 C# Format Strings

C# format strings are described in the .NET documentation for class System.String
and in http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

cpguide/html/cpConFormattingOverview.asp.

15.3.12 awk Format Strings

awk format strings are described in the gawk documentation, section Printf, http://
www.gnu.org/manual/gawk/html_node/Printf.html#Printf.

15.3.13 Object Pascal Format Strings

Object Pascal format strings are described in the documentation of the Free Pascal run-
time library, section Format, http://www.freepascal.org/docs-html/rtl/sysutils/
format.html.

15.3.14 YCP Format Strings

YCP sformat strings are described in the libycp documentation file:/usr/share/doc/

packages/libycp/YCP-builtins.html. In summary, a directive starts with ‘%’ and is
followed by ‘%’ or a nonzero digit (‘1’ to ‘9’).

15.3.15 Tcl Format Strings

Tcl format strings are described in the format.n manual page, http://www.scriptics.
com/man/tcl8.3/TclCmd/format.htm.

http://www.gnu.org/manual/elisp-manual-21-2.8/html_chapter/elisp_4.html#SEC75
http://www.gnu.org/manual/elisp-manual-21-2.8/html_chapter/elisp_4.html#SEC75
http://librep.sourceforge.net/librep-manual.html#Formatted%20Output
http://www.gwinnup.org/research/docs/librep.html#SEC122
http://www.gwinnup.org/research/docs/librep.html#SEC122
http://www.gnu.org/software/smalltalk/gst-manual/gst_68.html#SEC238
http://www.gnu.org/software/smalltalk/gst-manual/gst_68.html#SEC238
http://java.sun.com/j2se/1.4/docs/api/java/text/MessageFormat.html
http://java.sun.com/j2se/1.4/docs/api/java/text/MessageFormat.html
http://oss.software.ibm.com/icu/apiref/classMessageFormat.html
http://oss.software.ibm.com/icu/apiref/classMessageFormat.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpConFormattingOverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpConFormattingOverview.asp
http://www.gnu.org/manual/gawk/html_node/Printf.html#Printf
http://www.gnu.org/manual/gawk/html_node/Printf.html#Printf
http://www.freepascal.org/docs-html/rtl/sysutils/format.html
http://www.freepascal.org/docs-html/rtl/sysutils/format.html
file:/usr/share/doc/packages/libycp/YCP-builtins.html
file:/usr/share/doc/packages/libycp/YCP-builtins.html
http://www.scriptics.com/man/tcl8.3/TclCmd/format.htm
http://www.scriptics.com/man/tcl8.3/TclCmd/format.htm

Chapter 15: Other Programming Languages 158

15.3.16 Perl Format Strings

There are two kinds format strings in Perl: those acceptable to the Perl built-in function
printf, labelled as ‘perl-format’, and those acceptable to the libintl-perl function __x,
labelled as ‘perl-brace-format’.

Perl printf format strings are described in the sprintf section of ‘man perlfunc’.

Perl brace format strings are described in the Locale::TextDomain(3pm) manual page
of the CPAN package libintl-perl. In brief, Perl format uses placeholders put between braces
(‘{’ and ‘}’). The placeholder must have the syntax of simple identifiers.

15.3.17 PHP Format Strings

PHP format strings are described in the documentation of the PHP function sprintf,
in phpdoc/manual/function.sprintf.html or http: / / www . php . net / manual / en /

function.sprintf.php.

15.3.18 GCC internal Format Strings

These format strings are used inside the GCC sources. In such a format string, a directive
starts with ‘%’, is optionally followed by a size specifier ‘l’, an optional flag ‘+’, another
optional flag ‘#’, and is finished by a specifier: ‘%’ denotes a literal percent sign, ‘c’ denotes
a character, ‘s’ denotes a string, ‘i’ and ‘d’ denote an integer, ‘o’, ‘u’, ‘x’ denote an unsigned
integer, ‘.*s’ denotes a string preceded by a width specification, ‘H’ denotes a ‘location_t
*’ pointer, ‘D’ denotes a general declaration, ‘F’ denotes a function declaration, ‘T’ denotes
a type, ‘A’ denotes a function argument, ‘C’ denotes a tree code, ‘E’ denotes an expression,
‘L’ denotes a programming language, ‘O’ denotes a binary operator, ‘P’ denotes a function
parameter, ‘Q’ denotes an assignment operator, ‘V’ denotes a const/volatile qualifier.

15.3.19 GFC internal Format Strings

These format strings are used inside the GNU Fortran Compiler sources, that is, the
Fortran frontend in the GCC sources. In such a format string, a directive starts with ‘%’
and is finished by a specifier: ‘%’ denotes a literal percent sign, ‘C’ denotes the current source
location, ‘L’ denotes a source location, ‘c’ denotes a character, ‘s’ denotes a string, ‘i’ and
‘d’ denote an integer, ‘u’ denotes an unsigned integer. ‘i’, ‘d’, and ‘u’ may be preceded by
a size specifier ‘l’.

15.3.20 Qt Format Strings

Qt format strings are described in the documentation of the QString class file:/usr/
lib/qt-4.3.0/doc/html/qstring.html. In summary, a directive consists of a ‘%’ followed
by a digit. The same directive cannot occur more than once in a format string.

15.3.21 Qt Format Strings

Qt format strings are described in the documentation of the QObject::tr method file:/

usr/lib/qt-4.3.0/doc/html/qobject.html. In summary, the only allowed directive is
‘%n’.

http://www.php.net/manual/en/function.sprintf.php
http://www.php.net/manual/en/function.sprintf.php
file:/usr/lib/qt-4.3.0/doc/html/qstring.html
file:/usr/lib/qt-4.3.0/doc/html/qstring.html
file:/usr/lib/qt-4.3.0/doc/html/qobject.html
file:/usr/lib/qt-4.3.0/doc/html/qobject.html

Chapter 15: Other Programming Languages 159

15.3.22 KDE Format Strings

KDE 4 format strings are defined as follows: A directive consists of a ‘%’ followed by a
non-zero decimal number. If a ‘%n’ occurs in a format strings, all of ‘%1’, ..., ‘%(n-1)’ must
occur as well, except possibly one of them.

15.3.23 Boost Format Strings

Boost format strings are described in the documentation of the boost::format class,
at http://www.boost.org/libs/format/doc/format.html. In summary, a directive has
either the same syntax as in a C format string, such as ‘%1$+5d’, or may be surrounded
by vertical bars, such as ‘%|1$+5d|’ or ‘%|1$+5|’, or consists of just an argument number
between percent signs, such as ‘%1%’.

15.3.24 Lua Format Strings

Lua format strings are described in the Lua reference manual, section
String Manipulation, http: / / www . lua . org / manual / 5 . 1 / manual . html #

pdf-string.format.

15.3.25 JavaScript Format Strings

Although JavaScript specification itself does not define any format strings, many
JavaScript implementations provide printf-like functions. xgettext understands a set of
common format strings used in popular JavaScript implementations including Gjs, Seed,
and Node.JS. In such a format string, a directive starts with ‘%’ and is finished by a
specifier: ‘%’ denotes a literal percent sign, ‘c’ denotes a character, ‘s’ denotes a string, ‘b’,
‘d’, ‘o’, ‘x’, ‘X’ denote an integer, ‘f’ denotes floating-point number, ‘j’ denotes a JSON
object.

15.4 The Maintainer’s View

For the maintainer, the general procedure differs from the C language case in two ways.

• For those languages that don’t use GNU gettext, the intl/ directory is not needed
and can be omitted. This means that the maintainer calls the gettextize program
without the ‘--intl’ option, and that he invokes the AM_GNU_GETTEXT autoconf macro
via ‘AM_GNU_GETTEXT([external])’.

• If only a single programming language is used, the XGETTEXT_OPTIONS variable in
po/Makevars (see Section 13.4.3 [po/Makevars], page 140) should be adjusted to match
the xgettext options for that particular programming language. If the package uses
more than one programming language with gettext support, it becomes necessary
to change the POT file construction rule in po/Makefile.in.in. It is recommended
to make one xgettext invocation per programming language, each with the options
appropriate for that language, and to combine the resulting files using msgcat.

15.5 Individual Programming Languages

15.5.1 C, C++, Objective C

RPMs gcc, gpp, gobjc, glibc, gettext

http://www.boost.org/libs/format/doc/format.html
http://www.lua.org/manual/5.1/manual.html#pdf-string.format
http://www.lua.org/manual/5.1/manual.html#pdf-string.format

Chapter 15: Other Programming Languages 160

File extension
For C: c, h.
For C++: C, c++, cc, cxx, cpp, hpp.
For Objective C: m.

String syntax
"abc"

gettext shorthand
_("abc")

gettext/ngettext functions
gettext, dgettext, dcgettext, ngettext, dngettext, dcngettext

textdomain
textdomain function

bindtextdomain
bindtextdomain function

setlocale Programmer must call setlocale (LC_ALL, "")

Prerequisite
#include <libintl.h>

#include <locale.h>

#define _(string) gettext (string)

Use or emulate GNU gettext
Use

Extractor xgettext -k_

Formatting with positions
fprintf "%2$d %1$d"

In C++: autosprintf "%2$d %1$d" (see Section “Introduction” in GNU au-
tosprintf)

Portability
autoconf (gettext.m4) and #if ENABLE NLS

po-mode marking
yes

The following examples are available in the examples directory: hello-c,
hello-c-gnome, hello-c++, hello-c++-qt, hello-c++-kde, hello-c++-gnome,
hello-c++-wxwidgets, hello-objc, hello-objc-gnustep, hello-objc-gnome.

15.5.2 sh - Shell Script

RPMs bash, gettext

File extension
sh

String syntax
"abc", ’abc’, abc

Chapter 15: Other Programming Languages 161

gettext shorthand
"‘gettext \"abc\"‘"

gettext/ngettext functions
gettext, ngettext programs
eval_gettext, eval_ngettext shell functions

textdomain
environment variable TEXTDOMAIN

bindtextdomain
environment variable TEXTDOMAINDIR

setlocale automatic

Prerequisite
. gettext.sh

Use or emulate GNU gettext
use

Extractor xgettext

Formatting with positions
—

Portability
fully portable

po-mode marking
—

An example is available in the examples directory: hello-sh.

15.5.2.1 Preparing Shell Scripts for Internationalization

Preparing a shell script for internationalization is conceptually similar to the steps de-
scribed in Chapter 4 [Sources], page 19. The concrete steps for shell scripts are as follows.

1. Insert the line
. gettext.sh

near the top of the script. gettext.sh is a shell function library that provides the
functions eval_gettext (see Section 15.5.2.6 [eval gettext Invocation], page 165) and
eval_ngettext (see Section 15.5.2.7 [eval ngettext Invocation], page 165). You have
to ensure that gettext.sh can be found in the PATH.

2. Set and export the TEXTDOMAIN and TEXTDOMAINDIR environment variables. Usually
TEXTDOMAIN is the package or program name, and TEXTDOMAINDIR is the absolute path-
name corresponding to $prefix/share/locale, where $prefix is the installation lo-
cation.

TEXTDOMAIN=@PACKAGE@

export TEXTDOMAIN

TEXTDOMAINDIR=@LOCALEDIR@

export TEXTDOMAINDIR

3. Prepare the strings for translation, as described in Section 4.3 [Preparing Strings],
page 20.

Chapter 15: Other Programming Languages 162

4. Simplify translatable strings so that they don’t contain command substitution ("‘...‘"
or "$(...)"), variable access with defaulting (like ${variable-default}), access to
positional arguments (like $0, $1, ...) or highly volatile shell variables (like $?). This
can always be done through simple local code restructuring. For example,

echo "Usage: $0 [OPTION] FILE..."

becomes
program_name=$0

echo "Usage: $program_name [OPTION] FILE..."

Similarly,
echo "Remaining files: ‘ls | wc -l‘"

becomes
filecount="‘ls | wc -l‘"

echo "Remaining files: $filecount"

5. For each translatable string, change the output command ‘echo’ or ‘$echo’ to ‘gettext’
(if the string contains no references to shell variables) or to ‘eval_gettext’ (if it refers
to shell variables), followed by a no-argument ‘echo’ command (to account for the
terminating newline). Similarly, for cases with plural handling, replace a conditional
‘echo’ command with an invocation of ‘ngettext’ or ‘eval_ngettext’, followed by a
no-argument ‘echo’ command.

When doing this, you also need to add an extra backslash before the dollar sign in ref-
erences to shell variables, so that the ‘eval_gettext’ function receives the translatable
string before the variable values are substituted into it. For example,

echo "Remaining files: $filecount"

becomes
eval_gettext "Remaining files: \$filecount"; echo

If the output command is not ‘echo’, you can make it use ‘echo’ nevertheless, through
the use of backquotes. However, note that inside backquotes, backslashes must be
doubled to be effective (because the backquoting eats one level of backslashes). For
example, assuming that ‘error’ is a shell function that signals an error,

error "file not found: $filename"

is first transformed into
error "‘echo \"file not found: \$filename\"‘"

which then becomes
error "‘eval_gettext \"file not found: \\\$filename\"‘"

15.5.2.2 Contents of gettext.sh

gettext.sh, contained in the run-time package of GNU gettext, provides the following:

• $echo The variable echo is set to a command that outputs its first argument and a
newline, without interpreting backslashes in the argument string.

• eval gettext See Section 15.5.2.6 [eval gettext Invocation], page 165.

• eval ngettext See Section 15.5.2.7 [eval ngettext Invocation], page 165.

15.5.2.3 Invoking the gettext program

gettext [option] [[textdomain] msgid]

Chapter 15: Other Programming Languages 163

gettext [option] -s [msgid]...

The gettext program displays the native language translation of a textual message.

Arguments

‘-d textdomain’
‘--domain=textdomain’

Retrieve translated messages from textdomain. Usually a textdomain corre-
sponds to a package, a program, or a module of a program.

‘-e’ Enable expansion of some escape sequences. This option is for compatibility
with the ‘echo’ program or shell built-in. The escape sequences ‘\a’, ‘\b’, ‘\c’,
‘\f’, ‘\n’, ‘\r’, ‘\t’, ‘\v’, ‘\\’, and ‘\’ followed by one to three octal digits, are
interpreted like the System V ‘echo’ program did.

‘-E’ This option is only for compatibility with the ‘echo’ program or shell built-in.
It has no effect.

‘-h’
‘--help’ Display this help and exit.

‘-n’ Suppress trailing newline. By default, gettext adds a newline to the output.

‘-V’
‘--version’

Output version information and exit.

‘[textdomain] msgid’
Retrieve translated message corresponding to msgid from textdomain.

If the textdomain parameter is not given, the domain is determined from the environment
variable TEXTDOMAIN. If the message catalog is not found in the regular directory, another
location can be specified with the environment variable TEXTDOMAINDIR.

When used with the -s option the program behaves like the ‘echo’ command. But it
does not simply copy its arguments to stdout. Instead those messages found in the selected
catalog are translated.

Note: xgettext supports only the one-argument form of the gettext invocation, where
no options are present and the textdomain is implicit, from the environment.

15.5.2.4 Invoking the ngettext program

ngettext [option] [textdomain] msgid msgid-plural count

The ngettext program displays the native language translation of a textual message
whose grammatical form depends on a number.

Arguments

‘-d textdomain’
‘--domain=textdomain’

Retrieve translated messages from textdomain. Usually a textdomain corre-
sponds to a package, a program, or a module of a program.

‘-e’ Enable expansion of some escape sequences. This option is for compatibility
with the ‘gettext’ program. The escape sequences ‘\a’, ‘\b’, ‘\c’, ‘\f’, ‘\n’,

Chapter 15: Other Programming Languages 164

‘\r’, ‘\t’, ‘\v’, ‘\\’, and ‘\’ followed by one to three octal digits, are interpreted
like the System V ‘echo’ program did.

‘-E’ This option is only for compatibility with the ‘gettext’ program. It has no
effect.

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

‘textdomain’
Retrieve translated message from textdomain.

‘msgid msgid-plural’
Translate msgid (English singular) / msgid-plural (English plural).

‘count’ Choose singular/plural form based on this value.

If the textdomain parameter is not given, the domain is determined from the environment
variable TEXTDOMAIN. If the message catalog is not found in the regular directory, another
location can be specified with the environment variable TEXTDOMAINDIR.

Note: xgettext supports only the three-arguments form of the ngettext invocation,
where no options are present and the textdomain is implicit, from the environment.

15.5.2.5 Invoking the envsubst program

envsubst [option] [shell-format]

The envsubst program substitutes the values of environment variables.

Operation mode

‘-v’
‘--variables’

Output the variables occurring in shell-format.

Informative output

‘-h’
‘--help’ Display this help and exit.

‘-V’
‘--version’

Output version information and exit.

In normal operation mode, standard input is copied to standard output, with references
to environment variables of the form $VARIABLE or ${VARIABLE} being replaced with the
corresponding values. If a shell-format is given, only those environment variables that are
referenced in shell-format are substituted; otherwise all environment variables references
occurring in standard input are substituted.

These substitutions are a subset of the substitutions that a shell performs on un-
quoted and double-quoted strings. Other kinds of substitutions done by a shell, such as

Chapter 15: Other Programming Languages 165

${variable-default} or $(command-list) or ‘command-list‘, are not performed by the
envsubst program, due to security reasons.

When --variables is used, standard input is ignored, and the output consists of the
environment variables that are referenced in shell-format, one per line.

15.5.2.6 Invoking the eval_gettext function

eval_gettext msgid

This function outputs the native language translation of a textual message, performing
dollar-substitution on the result. Note that only shell variables mentioned in msgid will be
dollar-substituted in the result.

15.5.2.7 Invoking the eval_ngettext function

eval_ngettext msgid msgid-plural count

This function outputs the native language translation of a textual message whose gram-
matical form depends on a number, performing dollar-substitution on the result. Note that
only shell variables mentioned in msgid or msgid-plural will be dollar-substituted in the
result.

15.5.3 bash - Bourne-Again Shell Script

GNU bash 2.0 or newer has a special shorthand for translating a string and substituting
variable values in it: $"msgid". But the use of this construct is discouraged, due to the
security holes it opens and due to its portability problems.

The security holes of $"..." come from the fact that after looking up the translation of
the string, bash processes it like it processes any double-quoted string: dollar and backquote
processing, like ‘eval’ does.

1. In a locale whose encoding is one of BIG5, BIG5-HKSCS, GBK, GB18030, SHIFT JIS,
JOHAB, some double-byte characters have a second byte whose value is 0x60. For
example, the byte sequence \xe0\x60 is a single character in these locales. Many
versions of bash (all versions up to bash-2.05, and newer versions on platforms without
mbsrtowcs() function) don’t know about character boundaries and see a backquote
character where there is only a particular Chinese character. Thus it can start executing
part of the translation as a command list. This situation can occur even without
the translator being aware of it: if the translator provides translations in the UTF-
8 encoding, it is the gettext() function which will, during its conversion from the
translator’s encoding to the user’s locale’s encoding, produce the dangerous \x60 bytes.

2. A translator could - voluntarily or inadvertently - use backquotes "‘...‘" or dollar-
parentheses "$(...)" in her translations. The enclosed strings would be executed as
command lists by the shell.

The portability problem is that bash must be built with internationalization support;
this is normally not the case on systems that don’t have the gettext() function in libc.

15.5.4 Python

RPMs python

Chapter 15: Other Programming Languages 166

File extension
py

String syntax
’abc’, u’abc’, r’abc’, ur’abc’,
"abc", u"abc", r"abc", ur"abc",
’’’abc’’’, u’’’abc’’’, r’’’abc’’’, ur’’’abc’’’,
"""abc""", u"""abc""", r"""abc""", ur"""abc"""

gettext shorthand
_(’abc’) etc.

gettext/ngettext functions
gettext.gettext, gettext.dgettext, gettext.ngettext, gettext.dngettext,
also ugettext, ungettext

textdomain
gettext.textdomain function, or gettext.install(domain) function

bindtextdomain
gettext.bindtextdomain function, or gettext.install(domain,localedir)
function

setlocale not used by the gettext emulation

Prerequisite
import gettext

Use or emulate GNU gettext
emulate

Extractor xgettext

Formatting with positions
’...%(ident)d...’ % { ’ident’: value }

Portability
fully portable

po-mode marking
—

An example is available in the examples directory: hello-python.

A note about format strings: Python supports format strings with unnamed
arguments, such as ’...%d...’, and format strings with named arguments, such as
’...%(ident)d...’. The latter are preferable for internationalized programs, for two
reasons:

• When a format string takes more than one argument, the translator can provide a
translation that uses the arguments in a different order, if the format string uses named
arguments. For example, the translator can reformulate

"’%(volume)s’ has only %(freespace)d bytes free."

to
"Only %(freespace)d bytes free on ’%(volume)s’."

Additionally, the identifiers also provide some context to the translator.

Chapter 15: Other Programming Languages 167

• In the context of plural forms, the format string used for the singular form does not
use the numeric argument in many languages. Even in English, one prefers to write
"one hour" instead of "1 hour". Omitting individual arguments from format strings
like this is only possible with the named argument syntax. (With unnamed arguments,
Python – unlike C – verifies that the format string uses all supplied arguments.)

15.5.5 GNU clisp - Common Lisp

RPMs clisp 2.28 or newer

File extension
lisp

String syntax
"abc"

gettext shorthand
(_ "abc"), (ENGLISH "abc")

gettext/ngettext functions
i18n:gettext, i18n:ngettext

textdomain
i18n:textdomain

bindtextdomain
i18n:textdomaindir

setlocale automatic

Prerequisite
—

Use or emulate GNU gettext
use

Extractor xgettext -k_ -kENGLISH

Formatting with positions
format "~1@*~D ~0@*~D"

Portability
On platforms without gettext, no translation.

po-mode marking
—

An example is available in the examples directory: hello-clisp.

15.5.6 GNU clisp C sources

RPMs clisp

File extension
d

String syntax
"abc"

Chapter 15: Other Programming Languages 168

gettext shorthand
ENGLISH ? "abc" : ""

GETTEXT("abc")

GETTEXTL("abc")

gettext/ngettext functions
clgettext, clgettextl

textdomain
—

bindtextdomain
—

setlocale automatic

Prerequisite
#include "lispbibl.c"

Use or emulate GNU gettext
use

Extractor clisp-xgettext

Formatting with positions
fprintf "%2$d %1$d"

Portability
On platforms without gettext, no translation.

po-mode marking
—

15.5.7 Emacs Lisp

RPMs emacs, xemacs

File extension
el

String syntax
"abc"

gettext shorthand
(_"abc")

gettext/ngettext functions
gettext, dgettext (xemacs only)

textdomain
domain special form (xemacs only)

bindtextdomain
bind-text-domain function (xemacs only)

setlocale automatic

Chapter 15: Other Programming Languages 169

Prerequisite
—

Use or emulate GNU gettext
use

Extractor xgettext

Formatting with positions
format "%2$d %1$d"

Portability
Only XEmacs. Without I18N3 defined at build time, no translation.

po-mode marking
—

15.5.8 librep

RPMs librep 0.15.3 or newer

File extension
jl

String syntax
"abc"

gettext shorthand
(_"abc")

gettext/ngettext functions
gettext

textdomain
textdomain function

bindtextdomain
bindtextdomain function

setlocale —

Prerequisite
(require ’rep.i18n.gettext)

Use or emulate GNU gettext
use

Extractor xgettext

Formatting with positions
format "%2$d %1$d"

Portability
On platforms without gettext, no translation.

po-mode marking
—

An example is available in the examples directory: hello-librep.

Chapter 15: Other Programming Languages 170

15.5.9 GNU guile - Scheme

RPMs guile

File extension
scm

String syntax
"abc"

gettext shorthand
(_ "abc")

gettext/ngettext functions
gettext, ngettext

textdomain
textdomain

bindtextdomain
bindtextdomain

setlocale (catch #t (lambda () (setlocale LC_ALL "")) (lambda args #f))

Prerequisite
(use-modules (ice-9 format))

Use or emulate GNU gettext
use

Extractor xgettext -k_

Formatting with positions
—

Portability
On platforms without gettext, no translation.

po-mode marking
—

An example is available in the examples directory: hello-guile.

15.5.10 GNU Smalltalk

RPMs smalltalk

File extension
st

String syntax
’abc’

gettext shorthand
NLS ? ’abc’

gettext/ngettext functions
LcMessagesDomain>>#at:, LcMessagesDomain>>#at:plural:with:

Chapter 15: Other Programming Languages 171

textdomain
LcMessages>>#domain:localeDirectory: (returns a LcMessagesDomain

object).
Example: I18N Locale default messages domain: ’gettext’

localeDirectory: /usr/local/share/locale’

bindtextdomain
LcMessages>>#domain:localeDirectory:, see above.

setlocale Automatic if you use I18N Locale default.

Prerequisite
PackageLoader fileInPackage: ’I18N’!

Use or emulate GNU gettext
emulate

Extractor xgettext

Formatting with positions
’%1 %2’ bindWith: ’Hello’ with: ’world’

Portability
fully portable

po-mode marking
—

An example is available in the examples directory: hello-smalltalk.

15.5.11 Java

RPMs java, java2

File extension
java

String syntax
"abc"

gettext shorthand
("abc")

gettext/ngettext functions
GettextResource.gettext, GettextResource.ngettext, GettextResource.pgettext,
GettextResource.npgettext

textdomain
—, use ResourceBundle.getResource instead

bindtextdomain
—, use CLASSPATH instead

setlocale automatic

Prerequisite
—

Chapter 15: Other Programming Languages 172

Use or emulate GNU gettext
—, uses a Java specific message catalog format

Extractor xgettext -k_

Formatting with positions
MessageFormat.format "{1,number} {0,number}"

Portability
fully portable

po-mode marking
—

Before marking strings as internationalizable, uses of the string concatenation operator
need to be converted to MessageFormat applications. For example, "file "+filename+"

not found" becomes MessageFormat.format("file {0} not found", new Object[] {

filename }). Only after this is done, can the strings be marked and extracted.

GNU gettext uses the native Java internationalization mechanism, namely
ResourceBundles. There are two formats of ResourceBundles: .properties files and
.class files. The .properties format is a text file which the translators can directly
edit, like PO files, but which doesn’t support plural forms. Whereas the .class format
is compiled from .java source code and can support plural forms (provided it is accessed
through an appropriate API, see below).

To convert a PO file to a .properties file, the msgcat program can be used with the
option --properties-output. To convert a .properties file back to a PO file, the msgcat
program can be used with the option --properties-input. All the tools that manipulate
PO files can work with .properties files as well, if given the --properties-input and/or
--properties-output option.

To convert a PO file to a ResourceBundle class, the msgfmt program can be used with the
option --java or --java2. To convert a ResourceBundle back to a PO file, the msgunfmt

program can be used with the option --java.

Two different programmatic APIs can be used to access ResourceBundles. Note that
both APIs work with all kinds of ResourceBundles, whether GNU gettext generated classes,
or other .class or .properties files.

1. The java.util.ResourceBundle API.

In particular, its getString function returns a string translation. Note that a missing
translation yields a MissingResourceException.

This has the advantage of being the standard API. And it does not require any addi-
tional libraries, only the msgcat generated .properties files or the msgfmt generated
.class files. But it cannot do plural handling, even if the resource was generated by
msgfmt from a PO file with plural handling.

2. The gnu.gettext.GettextResource API.

Reference documentation in Javadoc 1.1 style format is in the javadoc2 directory.

Its gettext function returns a string translation. Note that when a translation is
missing, the msgid argument is returned unchanged.

This has the advantage of having the ngettext function for plural handling and the
pgettext and npgettext for strings constraint to a particular context.

javadoc2/index.html

Chapter 15: Other Programming Languages 173

To use this API, one needs the libintl.jar file which is part of the GNU gettext
package and distributed under the LGPL.

Four examples, using the second API, are available in the examples directory:
hello-java, hello-java-awt, hello-java-swing, hello-java-qtjambi.

Now, to make use of the API and define a shorthand for ‘getString’, there are three
idioms that you can choose from:

• (This one assumes Java 1.5 or newer.) In a unique class of your project, say ‘Util’,
define a static variable holding the ResourceBundle instance and the shorthand:

private static ResourceBundle myResources =

ResourceBundle.getBundle("domain-name");

public static String _(String s) {

return myResources.getString(s);

}

All classes containing internationalized strings then contain

import static Util._;

and the shorthand is used like this:

System.out.println(_("Operation completed."));

• In a unique class of your project, say ‘Util’, define a static variable holding the
ResourceBundle instance:

public static ResourceBundle myResources =

ResourceBundle.getBundle("domain-name");

All classes containing internationalized strings then contain

private static ResourceBundle res = Util.myResources;

private static String _(String s) { return res.getString(s); }

and the shorthand is used like this:

System.out.println(_("Operation completed."));

• You add a class with a very short name, say ‘S’, containing just the definition of the
resource bundle and of the shorthand:

public class S {

public static ResourceBundle myResources =

ResourceBundle.getBundle("domain-name");

public static String _(String s) {

return myResources.getString(s);

}

}

and the shorthand is used like this:

System.out.println(S._("Operation completed."));

Which of the three idioms you choose, will depend on whether your project requires
portability to Java versions prior to Java 1.5 and, if so, whether copying two lines of codes
into every class is more acceptable in your project than a class with a single-letter name.

15.5.12 C#

RPMs pnet, pnetlib 0.6.2 or newer, or mono 0.29 or newer

File extension
cs

Chapter 15: Other Programming Languages 174

String syntax
"abc", @"abc"

gettext shorthand
("abc")

gettext/ngettext functions
GettextResourceManager.GetString, GettextResourceManager.GetPluralString
GettextResourceManager.GetParticularString GettextResourceManager.GetParticularPluralString

textdomain
new GettextResourceManager(domain)

bindtextdomain
—, compiled message catalogs are located in subdirectories of the directory
containing the executable

setlocale automatic

Prerequisite
—

Use or emulate GNU gettext
—, uses a C# specific message catalog format

Extractor xgettext -k_

Formatting with positions
String.Format "{1} {0}"

Portability
fully portable

po-mode marking
—

Before marking strings as internationalizable, uses of the string concatenation operator
need to be converted to String.Format invocations. For example, "file "+filename+"

not found" becomes String.Format("file {0} not found", filename). Only after this
is done, can the strings be marked and extracted.

GNU gettext uses the native C#/.NET internationalization mechanism, namely the
classes ResourceManager and ResourceSet. Applications use the ResourceManager meth-
ods to retrieve the native language translation of strings. An instance of ResourceSet is
the in-memory representation of a message catalog file. The ResourceManager loads and
accesses ResourceSet instances as needed to look up the translations.

There are two formats of ResourceSets that can be directly loaded by the C# runtime:
.resources files and .dll files.

• The .resources format is a binary file usually generated through the resgen or
monoresgen utility, but which doesn’t support plural forms. .resources files can
also be embedded in .NET .exe files. This only affects whether a file system access
is performed to load the message catalog; it doesn’t affect the contents of the message
catalog.

Chapter 15: Other Programming Languages 175

• On the other hand, the .dll format is a binary file that is compiled from .cs source
code and can support plural forms (provided it is accessed through the GNU gettext
API, see below).

Note that these .NET .dll and .exe files are not tied to a particular platform; their file
format and GNU gettext for C# can be used on any platform.

To convert a PO file to a .resources file, the msgfmt program can be used with the
option ‘--csharp-resources’. To convert a .resources file back to a PO file, the msgunfmt
program can be used with the option ‘--csharp-resources’. You can also, in some cases,
use the resgen program (from the pnet package) or the monoresgen program (from the
mono/mcs package). These programs can also convert a .resources file back to a PO file.
But beware: as of this writing (January 2004), the monoresgen converter is quite buggy
and the resgen converter ignores the encoding of the PO files.

To convert a PO file to a .dll file, the msgfmt program can be used with the option
--csharp. The result will be a .dll file containing a subclass of GettextResourceSet,
which itself is a subclass of ResourceSet. To convert a .dll file containing a
GettextResourceSet subclass back to a PO file, the msgunfmt program can be used with
the option --csharp.

The advantages of the .dll format over the .resources format are:

1. Freedom to localize: Users can add their own translations to an application after it has
been built and distributed. Whereas when the programmer uses a ResourceManager

constructor provided by the system, the set of .resources files for an application must
be specified when the application is built and cannot be extended afterwards.

2. Plural handling: A message catalog in .dll format supports the plural handling func-
tion GetPluralString. Whereas .resources files can only contain data and only
support lookups that depend on a single string.

3. Context handling: A message catalog in .dll format supports the query-with-context
functions GetParticularString and GetParticularPluralString. Whereas
.resources files can only contain data and only support lookups that depend on a
single string.

4. The GettextResourceManager that loads the message catalogs in .dll format also
provides for inheritance on a per-message basis. For example, in Austrian (de_AT)
locale, translations from the German (de) message catalog will be used for messages
not found in the Austrian message catalog. This has the consequence that the Aus-
trian translators need only translate those few messages for which the translation into
Austrian differs from the German one. Whereas when working with .resources files,
each message catalog must provide the translations of all messages by itself.

5. The GettextResourceManager that loads the message catalogs in .dll format also
provides for a fallback: The English msgid is returned when no translation can be
found. Whereas when working with .resources files, a language-neutral .resources
file must explicitly be provided as a fallback.

On the side of the programmatic APIs, the programmer can use either the standard
ResourceManager API and the GNU GettextResourceManager API. The latter is an ex-
tension of the former, because GettextResourceManager is a subclass of ResourceManager.

Chapter 15: Other Programming Languages 176

1. The System.Resources.ResourceManager API.

This API works with resources in .resources format.

The creation of the ResourceManager is done through

new ResourceManager(domainname, Assembly.GetExecutingAssembly())

The GetString function returns a string’s translation. Note that this function returns
null when a translation is missing (i.e. not even found in the fallback resource file).

2. The GNU.Gettext.GettextResourceManager API.

This API works with resources in .dll format.

Reference documentation is in the csharpdoc directory.

The creation of the ResourceManager is done through

new GettextResourceManager(domainname)

The GetString function returns a string’s translation. Note that when a translation
is missing, the msgid argument is returned unchanged.

The GetPluralString function returns a string translation with plural handling, like
the ngettext function in C.

The GetParticularString function returns a string’s translation, specific to a partic-
ular context, like the pgettext function in C. Note that when a translation is missing,
the msgid argument is returned unchanged.

The GetParticularPluralString function returns a string translation, specific to a
particular context, with plural handling, like the npgettext function in C.

To use this API, one needs the GNU.Gettext.dll file which is part of the GNU gettext
package and distributed under the LGPL.

You can also mix both approaches: use the GNU.Gettext.GettextResourceManager

constructor, but otherwise use only the ResourceManager type and only the GetString

method. This is appropriate when you want to profit from the tools for PO files, but don’t
want to change an existing source code that uses ResourceManager and don’t (yet) need
the GetPluralString method.

Two examples, using the second API, are available in the examples directory:
hello-csharp, hello-csharp-forms.

Now, to make use of the API and define a shorthand for ‘GetString’, there are two
idioms that you can choose from:

• In a unique class of your project, say ‘Util’, define a static variable holding the
ResourceManager instance:

public static GettextResourceManager MyResourceManager =

new GettextResourceManager("domain-name");

All classes containing internationalized strings then contain

private static GettextResourceManager Res = Util.MyResourceManager;

private static String _(String s) { return Res.GetString(s); }

and the shorthand is used like this:

Console.WriteLine(_("Operation completed."));

• You add a class with a very short name, say ‘S’, containing just the definition of the
resource manager and of the shorthand:

csharpdoc/index.html

Chapter 15: Other Programming Languages 177

public class S {

public static GettextResourceManager MyResourceManager =

new GettextResourceManager("domain-name");

public static String _(String s) {

return MyResourceManager.GetString(s);

}

}

and the shorthand is used like this:

Console.WriteLine(S._("Operation completed."));

Which of the two idioms you choose, will depend on whether copying two lines of codes
into every class is more acceptable in your project than a class with a single-letter name.

15.5.13 GNU awk

RPMs gawk 3.1 or newer

File extension
awk

String syntax
"abc"

gettext shorthand
_"abc"

gettext/ngettext functions
dcgettext, missing dcngettext in gawk-3.1.0

textdomain
TEXTDOMAIN variable

bindtextdomain
bindtextdomain function

setlocale automatic, but missing setlocale (LC_MESSAGES, "") in gawk-3.1.0

Prerequisite
—

Use or emulate GNU gettext
use

Extractor xgettext

Formatting with positions
printf "%2$d %1$d" (GNU awk only)

Portability
On platforms without gettext, no translation. On non-GNU awks, you must
define dcgettext, dcngettext and bindtextdomain yourself.

po-mode marking
—

An example is available in the examples directory: hello-gawk.

Chapter 15: Other Programming Languages 178

15.5.14 Pascal - Free Pascal Compiler

RPMs fpk

File extension
pp, pas

String syntax
’abc’

gettext shorthand
automatic

gettext/ngettext functions
—, use ResourceString data type instead

textdomain
—, use TranslateResourceStrings function instead

bindtextdomain
—, use TranslateResourceStrings function instead

setlocale automatic, but uses only LANG, not LC MESSAGES or LC ALL

Prerequisite
{$mode delphi} or {$mode objfpc}

uses gettext;

Use or emulate GNU gettext
emulate partially

Extractor ppc386 followed by xgettext or rstconv

Formatting with positions
uses sysutils;

format "%1:d %0:d"

Portability
?

po-mode marking
—

The Pascal compiler has special support for the ResourceString data type. It generates
a .rst file. This is then converted to a .pot file by use of xgettext or rstconv. At
runtime, a .mo file corresponding to translations of this .pot file can be loaded using the
TranslateResourceStrings function in the gettext unit.

An example is available in the examples directory: hello-pascal.

15.5.15 wxWidgets library

RPMs wxGTK, gettext

File extension
cpp

Chapter 15: Other Programming Languages 179

String syntax
"abc"

gettext shorthand
_("abc")

gettext/ngettext functions
wxLocale::GetString, wxGetTranslation

textdomain
wxLocale::AddCatalog

bindtextdomain
wxLocale::AddCatalogLookupPathPrefix

setlocale wxLocale::Init, wxSetLocale

Prerequisite
#include <wx/intl.h>

Use or emulate GNU gettext
emulate, see include/wx/intl.h and src/common/intl.cpp

Extractor xgettext

Formatting with positions
wxString::Format supports positions if and only if the system has wprintf(),
vswprintf() functions and they support positions according to POSIX.

Portability
fully portable

po-mode marking
yes

15.5.16 YCP - YaST2 scripting language

RPMs libycp, libycp-devel, yast2-core, yast2-core-devel

File extension
ycp

String syntax
"abc"

gettext shorthand
_("abc")

gettext/ngettext functions
_() with 1 or 3 arguments

textdomain
textdomain statement

bindtextdomain
—

setlocale —

Chapter 15: Other Programming Languages 180

Prerequisite
—

Use or emulate GNU gettext
use

Extractor xgettext

Formatting with positions
sformat "%2 %1"

Portability
fully portable

po-mode marking
—

An example is available in the examples directory: hello-ycp.

15.5.17 Tcl - Tk’s scripting language

RPMs tcl

File extension
tcl

String syntax
"abc"

gettext shorthand
[_ "abc"]

gettext/ngettext functions
::msgcat::mc

textdomain
—

bindtextdomain
—, use ::msgcat::mcload instead

setlocale automatic, uses LANG, but ignores LC MESSAGES and LC ALL

Prerequisite
package require msgcat

proc _ {s} {return [::msgcat::mc $s]}

Use or emulate GNU gettext
—, uses a Tcl specific message catalog format

Extractor xgettext -k_

Formatting with positions
format "%2\$d %1\$d"

Portability
fully portable

Chapter 15: Other Programming Languages 181

po-mode marking
—

Two examples are available in the examples directory: hello-tcl, hello-tcl-tk.

Before marking strings as internationalizable, substitutions of variables into the string
need to be converted to format applications. For example, "file $filename not found"

becomes [format "file %s not found" $filename]. Only after this is done, can the
strings be marked and extracted. After marking, this example becomes [format [_ "file

%s not found"] $filename] or [msgcat::mc "file %s not found" $filename]. Note
that the msgcat::mc function implicitly calls format when more than one argument is
given.

15.5.18 Perl

RPMs perl

File extension
pl, PL, pm, perl, cgi

String syntax
• "abc"

• ’abc’

• qq (abc)

• q (abc)

• qr /abc/

• qx (/bin/date)

• /pattern match/

• ?pattern match?

• s/substitution/operators/

• $tied_hash{"message"}

• $tied_hash_reference->{"message"}

• etc., issue the command ‘man perlsyn’ for details

gettext shorthand
__ (double underscore)

gettext/ngettext functions
gettext, dgettext, dcgettext, ngettext, dngettext, dcngettext

textdomain
textdomain function

bindtextdomain
bindtextdomain function

bind textdomain codeset
bind_textdomain_codeset function

setlocale Use setlocale (LC_ALL, "");

Chapter 15: Other Programming Languages 182

Prerequisite
use POSIX;

use Locale::TextDomain; (included in the package libintl-perl which
is available on the Comprehensive Perl Archive Network CPAN,
http://www.cpan.org/).

Use or emulate GNU gettext
platform dependent: gettext pp emulates, gettext xs uses GNU gettext

Extractor xgettext -k__ -k\$__ -k%__ -k__x -k__n:1,2 -k__nx:1,2 -k__xn:1,2

-kN__ -k

Formatting with positions
Both kinds of format strings support formatting with positions.
printf "%2\$d %1\$d", ... (requires Perl 5.8.0 or newer)
__expand("[new] replaces [old]", old => $oldvalue, new => $newvalue)

Portability
The libintl-perl package is platform independent but is not part of the Perl
core. The programmer is responsible for providing a dummy implementation
of the required functions if the package is not installed on the target system.

po-mode marking
—

Documentation
Included in libintl-perl, available on CPAN (http://www.cpan.org/).

An example is available in the examples directory: hello-perl.

The xgettext parser backend for Perl differs significantly from the parser backends for
other programming languages, just as Perl itself differs significantly from other programming
languages. The Perl parser backend offers many more string marking facilities than the
other backends but it also has some Perl specific limitations, the worst probably being its
imperfectness.

15.5.18.1 General Problems Parsing Perl Code

It is often heard that only Perl can parse Perl. This is not true. Perl cannot be parsed at
all, it can only be executed. Perl has various built-in ambiguities that can only be resolved
at runtime.

The following example may illustrate one common problem:

print gettext "Hello World!";

Although this example looks like a bullet-proof case of a function invocation, it is not:

open gettext, ">testfile" or die;

print gettext "Hello world!"

In this context, the string gettext looks more like a file handle. But not necessarily:

use Locale::Messages qw (:libintl_h);

open gettext ">testfile" or die;

print gettext "Hello world!";

Chapter 15: Other Programming Languages 183

Now, the file is probably syntactically incorrect, provided that the module
Locale::Messages found first in the Perl include path exports a function gettext. But
what if the module Locale::Messages really looks like this?

use vars qw (*gettext);

1;

In this case, the string gettext will be interpreted as a file handle again, and the above
example will create a file testfile and write the string “Hello world!” into it. Even
advanced control flow analysis will not really help:

if (0.5 < rand) {

eval "use Sane";

} else {

eval "use InSane";

}

print gettext "Hello world!";

If the module Sane exports a function gettext that does what we expect, and the module
InSane opens a file for writing and associates the handle gettext with this output stream,
we are clueless again about what will happen at runtime. It is completely unpredictable.
The truth is that Perl has so many ways to fill its symbol table at runtime that it is
impossible to interpret a particular piece of code without executing it.

Of course, xgettext will not execute your Perl sources while scanning for translatable
strings, but rather use heuristics in order to guess what you meant.

Another problem is the ambiguity of the slash and the question mark. Their interpreta-
tion depends on the context:

A pattern match.

print "OK\n" if /foobar/;

A division.

print 1 / 2;

Another pattern match.

print "OK\n" if ?foobar?;

Conditional.

print $x ? "foo" : "bar";

The slash may either act as the division operator or introduce a pattern match, whereas
the question mark may act as the ternary conditional operator or as a pattern match, too.
Other programming languages like awk present similar problems, but the consequences of a
misinterpretation are particularly nasty with Perl sources. In awk for instance, a statement
can never exceed one line and the parser can recover from a parsing error at the next newline
and interpret the rest of the input stream correctly. Perl is different, as a pattern match
is terminated by the next appearance of the delimiter (the slash or the question mark) in
the input stream, regardless of the semantic context. If a slash is really a division sign
but mis-interpreted as a pattern match, the rest of the input file is most probably parsed
incorrectly.

Chapter 15: Other Programming Languages 184

There are certain cases, where the ambiguity cannot be resolved at all:

$x = wantarray ? 1 : 0;

The Perl built-in function wantarray does not accept any arguments. The Perl parser
therefore knows that the question mark does not start a regular expression but is the ternary
conditional operator.

sub wantarrays {}

$x = wantarrays ? 1 : 0;

Now the situation is different. The function wantarrays takes a variable number of
arguments (like any non-prototyped Perl function). The question mark is now the delimiter
of a pattern match, and hence the piece of code does not compile.

sub wantarrays() {}

$x = wantarrays ? 1 : 0;

Now the function is prototyped, Perl knows that it does not accept any arguments,
and the question mark is therefore interpreted as the ternaray operator again. But that
unfortunately outsmarts xgettext.

The Perl parser in xgettext cannot know whether a function has a prototype and what
that prototype would look like. It therefore makes an educated guess. If a function is
known to be a Perl built-in and this function does not accept any arguments, a following
question mark or slash is treated as an operator, otherwise as the delimiter of a following
regular expression. The Perl built-ins that do not accept arguments are wantarray,
fork, time, times, getlogin, getppid, getpwent, getgrent, gethostent, getnetent,
getprotoent, getservent, setpwent, setgrent, endpwent, endgrent, endhostent,
endnetent, endprotoent, and endservent.

If you find that xgettext fails to extract strings from portions of your sources, you
should therefore look out for slashes and/or question marks preceding these sections. You
may have come across a bug in xgettext’s Perl parser (and of course you should report
that bug). In the meantime you should consider to reformulate your code in a manner less
challenging to xgettext.

In particular, if the parser is too dumb to see that a function does not accept arguments,
use parentheses:

$x = somefunc() ? 1 : 0;

$y = (somefunc) ? 1 : 0;

In fact the Perl parser itself has similar problems and warns you about such constructs.

15.5.18.2 Which keywords will xgettext look for?

Unless you instruct xgettext otherwise by invoking it with one of the options --keyword
or -k, it will recognize the following keywords in your Perl sources:

• gettext

• dgettext

• dcgettext

• ngettext:1,2

The first (singular) and the second (plural) argument will be extracted.

Chapter 15: Other Programming Languages 185

• dngettext:1,2

The first (singular) and the second (plural) argument will be extracted.

• dcngettext:1,2

The first (singular) and the second (plural) argument will be extracted.

• gettext_noop

• %gettext

The keys of lookups into the hash %gettext will be extracted.

• $gettext

The keys of lookups into the hash reference $gettext will be extracted.

15.5.18.3 How to Extract Hash Keys

Translating messages at runtime is normally performed by looking up the original string
in the translation database and returning the translated version. The “natural” Perl im-
plementation is a hash lookup, and, of course, xgettext supports such practice.

print __"Hello world!";

print $__{"Hello world!"};

print $__->{"Hello world!"};

print $$__{"Hello world!"};

The above four lines all do the same thing. The Perl module Locale::TextDomain

exports by default a hash %__ that is tied to the function __(). It also exports a reference
$__ to %__.

If an argument to the xgettext option --keyword, resp. -k starts with a percent sign,
the rest of the keyword is interpreted as the name of a hash. If it starts with a dollar sign,
the rest of the keyword is interpreted as a reference to a hash.

Note that you can omit the quotation marks (single or double) around the hash key
(almost) whenever Perl itself allows it:

print $gettext{Error};

The exact rule is: You can omit the surrounding quotes, when the hash key is a valid C
(!) identifier, i.e. when it starts with an underscore or an ASCII letter and is followed by
an arbitrary number of underscores, ASCII letters or digits. Other Unicode characters are
not allowed, regardless of the use utf8 pragma.

15.5.18.4 What are Strings And Quote-like Expressions?

Perl offers a plethora of different string constructs. Those that can be used either
as arguments to functions or inside braces for hash lookups are generally supported by
xgettext.

• double-quoted strings

print gettext "Hello World!";

• single-quoted strings

print gettext ’Hello World!’;

Chapter 15: Other Programming Languages 186

• the operator qq

print gettext qq |Hello World!|;

print gettext qq <E-mail: <guido\@imperia.net>>;

The operator qq is fully supported. You can use arbitrary delimiters, including the
four bracketing delimiters (round, angle, square, curly) that nest.

• the operator q

print gettext q |Hello World!|;

print gettext q <E-mail: <guido@imperia.net>>;

The operator q is fully supported. You can use arbitrary delimiters, including the four
bracketing delimiters (round, angle, square, curly) that nest.

• the operator qx

print gettext qx ;LANGUAGE=C /bin/date;

print gettext qx [/usr/bin/ls | grep ’^[A-Z]*’];

The operator qx is fully supported. You can use arbitrary delimiters, including the
four bracketing delimiters (round, angle, square, curly) that nest.

The example is actually a useless use of gettext. It will invoke the gettext function on
the output of the command specified with the qx operator. The feature was included in
order to make the interface consistent (the parser will extract all strings and quote-like
expressions).

• here documents

print gettext <<’EOF’;

program not found in $PATH

EOF

print ngettext <<EOF, <<"EOF";

one file deleted

EOF

several files deleted

EOF

Here-documents are recognized. If the delimiter is enclosed in single quotes, the string
is not interpolated. If it is enclosed in double quotes or has no quotes at all, the string
is interpolated.

Delimiters that start with a digit are not supported!

15.5.18.5 Invalid Uses Of String Interpolation

Perl is capable of interpolating variables into strings. This offers some nice features in
localized programs but can also lead to problems.

A common error is a construct like the following:

print gettext "This is the program $0!\n";

Chapter 15: Other Programming Languages 187

Perl will interpolate at runtime the value of the variable $0 into the argument of the
gettext() function. Hence, this argument is not a string constant but a variable argu-
ment ($0 is a global variable that holds the name of the Perl script being executed). The
interpolation is performed by Perl before the string argument is passed to gettext() and
will therefore depend on the name of the script which can only be determined at runtime.
Consequently, it is almost impossible that a translation can be looked up at runtime (except
if, by accident, the interpolated string is found in the message catalog).

The xgettext program will therefore terminate parsing with a fatal error if it encounters
a variable inside of an extracted string. In general, this will happen for all kinds of string
interpolations that cannot be safely performed at compile time. If you absolutely know
what you are doing, you can always circumvent this behavior:

my $know_what_i_am_doing = "This is program $0!\n";

print gettext $know_what_i_am_doing;

Since the parser only recognizes strings and quote-like expressions, but not variables
or other terms, the above construct will be accepted. You will have to find another way,
however, to let your original string make it into your message catalog.

If invoked with the option --extract-all, resp. -a, variable interpolation will be ac-
cepted. Rationale: You will generally use this option in order to prepare your sources for
internationalization.

Please see the manual page ‘man perlop’ for details of strings and quote-like expressions
that are subject to interpolation and those that are not. Safe interpolations (that will not
lead to a fatal error) are:

• the escape sequences \t (tab, HT, TAB), \n (newline, NL), \r (return, CR), \f (form
feed, FF), \b (backspace, BS), \a (alarm, bell, BEL), and \e (escape, ESC).

• octal chars, like \033
Note that octal escapes in the range of 400-777 are translated into a UTF-8 represen-
tation, regardless of the presence of the use utf8 pragma.

• hex chars, like \x1b

• wide hex chars, like \x{263a}
Note that this escape is translated into a UTF-8 representation, regardless of the pres-
ence of the use utf8 pragma.

• control chars, like \c[(CTRL-[)

• named Unicode chars, like \N{LATIN CAPITAL LETTER C WITH CEDILLA}

Note that this escape is translated into a UTF-8 representation, regardless of the pres-
ence of the use utf8 pragma.

The following escapes are considered partially safe:

• \l lowercase next char

• \u uppercase next char

• \L lowercase till \E

• \U uppercase till \E

• \E end case modification

• \Q quote non-word characters till \E

Chapter 15: Other Programming Languages 188

These escapes are only considered safe if the string consists of ASCII characters only.
Translation of characters outside the range defined by ASCII is locale-dependent and can
actually only be performed at runtime; xgettext doesn’t do these locale-dependent trans-
lations at extraction time.

Except for the modifier \Q, these translations, albeit valid, are generally useless and only
obfuscate your sources. If a translation can be safely performed at compile time you can
just as well write what you mean.

15.5.18.6 Valid Uses Of String Interpolation

Perl is often used to generate sources for other programming languages or arbitrary file
formats. Web applications that output HTML code make a prominent example for such
usage.

You will often come across situations where you want to intersperse code written in
the target (programming) language with translatable messages, like in the following HTML
example:

print gettext <<EOF;

<h1>My Homepage</h1>

<script language="JavaScript"><!--

for (i = 0; i < 100; ++i) {

alert ("Thank you so much for visiting my homepage!");

}

//--></script>

EOF

The parser will extract the entire here document, and it will appear entirely in the
resulting PO file, including the JavaScript snippet embedded in the HTML code. If you
exaggerate with constructs like the above, you will run the risk that the translators of your
package will look out for a less challenging project. You should consider an alternative
expression here:

print <<EOF;

<h1>$gettext{"My Homepage"}</h1>

<script language="JavaScript"><!--

for (i = 0; i < 100; ++i) {

alert ("$gettext{’Thank you so much for visiting my homepage!’}");

}

//--></script>

EOF

Only the translatable portions of the code will be extracted here, and the resulting PO
file will begrudgingly improve in terms of readability.

You can interpolate hash lookups in all strings or quote-like expressions that are subject
to interpolation (see the manual page ‘man perlop’ for details). Double interpolation is
invalid, however:

TRANSLATORS: Replace "the earth" with the name of your planet.

print gettext qq{Welcome to $gettext->{"the earth"}};

Chapter 15: Other Programming Languages 189

The qq-quoted string is recognized as an argument to xgettext in the first place, and
checked for invalid variable interpolation. The dollar sign of hash-dereferencing will there-
fore terminate the parser with an “invalid interpolation” error.

It is valid to interpolate hash lookups in regular expressions:

if ($var =~ /$gettext{"the earth"}/) {

print gettext "Match!\n";

}

s/$gettext{"U. S. A."}/$gettext{"U. S. A."} $gettext{"(dial +0)"}/g;

15.5.18.7 When To Use Parentheses

In Perl, parentheses around function arguments are mostly optional. xgettext will
always assume that all recognized keywords (except for hashes and hash references) are
names of properly prototyped functions, and will (hopefully) only require parentheses where
Perl itself requires them. All constructs in the following example are therefore ok to use:

print gettext ("Hello World!\n");

print gettext "Hello World!\n";

print dgettext ($package => "Hello World!\n");

print dgettext $package, "Hello World!\n";

The "fat comma" => turns the left-hand side argument into a

single-quoted string!

print dgettext smellovision => "Hello World!\n";

The following assignment only works with prototyped functions.

Otherwise, the functions will act as "greedy" list operators and

eat up all following arguments.

my $anonymous_hash = {

planet => gettext "earth",

cakes => ngettext "one cake", "several cakes", $n,

still => $works,

};

The same without fat comma:

my $other_hash = {

’planet’, gettext "earth",

’cakes’, ngettext "one cake", "several cakes", $n,

’still’, $works,

};

Parentheses are only significant for the first argument.

print dngettext ’package’, ("one cake", "several cakes", $n), $discarded;

15.5.18.8 How To Grok with Long Lines

The necessity of long messages can often lead to a cumbersome or unreadable coding
style. Perl has several options that may prevent you from writing unreadable code, and
xgettext does its best to do likewise. This is where the dot operator (the string concate-
nation operator) may come in handy:

Chapter 15: Other Programming Languages 190

print gettext ("This is a very long"

. " message that is still"

. " readable, because"

. " it is split into"

. " multiple lines.\n");

Perl is smart enough to concatenate these constant string fragments into one long string
at compile time, and so is xgettext. You will only find one long message in the resulting
POT file.

Note that the future Perl 6 will probably use the underscore (‘_’) as the string concate-
nation operator, and the dot (‘.’) for dereferencing. This new syntax is not yet supported
by xgettext.

If embedded newline characters are not an issue, or even desired, you may also insert
newline characters inside quoted strings wherever you feel like it:

print gettext ("In HTML output

embedded newlines are generally no

problem, since adjacent whitespace

is always rendered into a single

space character.");

You may also consider to use here documents:

print gettext <<EOF;

In HTML output

embedded newlines are generally no

problem, since adjacent whitespace

is always rendered into a single

space character.

EOF

Please do not forget that the line breaks are real, i.e. they translate into newline char-
acters that will consequently show up in the resulting POT file.

15.5.18.9 Bugs, Pitfalls, And Things That Do Not Work

The foregoing sections should have proven that xgettext is quite smart in extracting
translatable strings from Perl sources. Yet, some more or less exotic constructs that could
be expected to work, actually do not work.

One of the more relevant limitations can be found in the implementation of variable
interpolation inside quoted strings. Only simple hash lookups can be used there:

print <<EOF;

$gettext{"The dot operator"

. " does not work"

. "here!"}

Likewise, you cannot @{[gettext ("interpolate function calls")]}

inside quoted strings or quote-like expressions.

EOF

This is valid Perl code and will actually trigger invocations of the gettext function at
runtime. Yet, the Perl parser in xgettext will fail to recognize the strings. A less obvious
example can be found in the interpolation of regular expressions:

Chapter 15: Other Programming Languages 191

s/<!--START_OF_WEEK-->/gettext ("Sunday")/e;

The modifier e will cause the substitution to be interpreted as an evaluable statement.
Consequently, at runtime the function gettext() is called, but again, the parser fails to
extract the string “Sunday”. Use a temporary variable as a simple workaround if you really
happen to need this feature:

my $sunday = gettext "Sunday";

s/<!--START_OF_WEEK-->/$sunday/;

Hash slices would also be handy but are not recognized:

my @weekdays = @gettext{’Sunday’, ’Monday’, ’Tuesday’, ’Wednesday’,

’Thursday’, ’Friday’, ’Saturday’};

Or even:

@weekdays = @gettext{qw (Sunday Monday Tuesday Wednesday Thursday

Friday Saturday) };

This is perfectly valid usage of the tied hash %gettext but the strings are not recognized
and therefore will not be extracted.

Another caveat of the current version is its rudimentary support for non-ASCII charac-
ters in identifiers. You may encounter serious problems if you use identifiers with characters
outside the range of ’A’-’Z’, ’a’-’z’, ’0’-’9’ and the underscore ’ ’.

Maybe some of these missing features will be implemented in future versions, but since
you can always make do without them at minimal effort, these todos have very low priority.

A nasty problem are brace format strings that already contain braces as part of the
normal text, for example the usage strings typically encountered in programs:

die "usage: $0 {OPTIONS} FILENAME...\n";

If you want to internationalize this code with Perl brace format strings, you will run into
a problem:

die __x ("usage: {program} {OPTIONS} FILENAME...\n", program => $0);

Whereas ‘{program}’ is a placeholder, ‘{OPTIONS}’ is not and should probably be trans-
lated. Yet, there is no way to teach the Perl parser in xgettext to recognize the first one,
and leave the other one alone.

There are two possible work-arounds for this problem. If you are sure that your program
will run under Perl 5.8.0 or newer (these Perl versions handle positional parameters in
printf()) or if you are sure that the translator will not have to reorder the arguments in
her translation – for example if you have only one brace placeholder in your string, or if it
describes a syntax, like in this one –, you can mark the string as no-perl-brace-format
and use printf():

xgettext: no-perl-brace-format

die sprintf ("usage: %s {OPTIONS} FILENAME...\n", $0);

If you want to use the more portable Perl brace format, you will have to do put place-
holders in place of the literal braces:

die __x ("usage: {program} {[}OPTIONS{]} FILENAME...\n",

program => $0, ’[’ => ’{’, ’]’ => ’}’);

Perl brace format strings know no escaping mechanism. No matter how this escaping
mechanism looked like, it would either give the programmer a hard time, make translating

Chapter 15: Other Programming Languages 192

Perl brace format strings heavy-going, or result in a performance penalty at runtime, when
the format directives get executed. Most of the time you will happily get along with
printf() for this special case.

15.5.19 PHP Hypertext Preprocessor

RPMs mod php4, mod php4-core, phpdoc

File extension
php, php3, php4

String syntax
"abc", ’abc’

gettext shorthand
_("abc")

gettext/ngettext functions
gettext, dgettext, dcgettext; starting with PHP 4.2.0 also ngettext,
dngettext, dcngettext

textdomain
textdomain function

bindtextdomain
bindtextdomain function

setlocale Programmer must call setlocale (LC_ALL, "")

Prerequisite
—

Use or emulate GNU gettext
use

Extractor xgettext

Formatting with positions
printf "%2\$d %1\$d"

Portability
On platforms without gettext, the functions are not available.

po-mode marking
—

An example is available in the examples directory: hello-php.

15.5.20 Pike

RPMs roxen

File extension
pike

String syntax
"abc"

Chapter 15: Other Programming Languages 193

gettext shorthand
—

gettext/ngettext functions
gettext, dgettext, dcgettext

textdomain
textdomain function

bindtextdomain
bindtextdomain function

setlocale setlocale function

Prerequisite
import Locale.Gettext;

Use or emulate GNU gettext
use

Extractor —

Formatting with positions
—

Portability
On platforms without gettext, the functions are not available.

po-mode marking
—

15.5.21 GNU Compiler Collection sources

RPMs gcc

File extension
c, h.

String syntax
"abc"

gettext shorthand
_("abc")

gettext/ngettext functions
gettext, dgettext, dcgettext, ngettext, dngettext, dcngettext

textdomain
textdomain function

bindtextdomain
bindtextdomain function

setlocale Programmer must call setlocale (LC_ALL, "")

Prerequisite
#include "intl.h"

Chapter 15: Other Programming Languages 194

Use or emulate GNU gettext
Use

Extractor xgettext -k_

Formatting with positions
—

Portability
Uses autoconf macros

po-mode marking
yes

15.5.22 Lua

RPMs lua

File extension
lua

String syntax
• "abc"

• ’abc’

• [[abc]]

• [=[abc]=]

• [==[abc]==]

• ...

gettext shorthand
_("abc")

gettext/ngettext functions
gettext.gettext, gettext.dgettext, gettext.dcgettext,
gettext.ngettext, gettext.dngettext, gettext.dcngettext

textdomain
textdomain function

bindtextdomain
bindtextdomain function

setlocale automatic

Prerequisite
require ’gettext’ or running lua interpreter with -l gettext option

Use or emulate GNU gettext
use

Extractor xgettext

Formatting with positions
—

Chapter 15: Other Programming Languages 195

Portability
On platforms without gettext, the functions are not available.

po-mode marking
—

15.5.23 JavaScript

RPMs js

File extension
js

String syntax
• "abc"

• ’abc’

gettext shorthand
_("abc")

gettext/ngettext functions
gettext, dgettext, dcgettext, ngettext, dngettext

textdomain
textdomain function

bindtextdomain
bindtextdomain function

setlocale automatic

Prerequisite
—

Use or emulate GNU gettext
use, or emulate

Extractor xgettext

Formatting with positions
—

Portability
On platforms without gettext, the functions are not available.

po-mode marking
—

15.6 Internationalizable Data

Here is a list of other data formats which can be internationalized using GNU gettext.

15.6.1 POT - Portable Object Template

RPMs gettext

File extension
pot, po

Extractor xgettext

Chapter 15: Other Programming Languages 196

15.6.2 Resource String Table

RPMs fpk

File extension
rst

Extractor xgettext, rstconv

15.6.3 Glade - GNOME user interface description

RPMs glade, libglade, glade2, libglade2, intltool

File extension
glade, glade2, ui

Extractor xgettext, libglade-xgettext, xml-i18n-extract, intltool-extract

Chapter 16: Concluding Remarks 197

16 Concluding Remarks

We would like to conclude this GNU gettext manual by presenting an history of the
Translation Project so far. We finally give a few pointers for those who want to do further
research or readings about Native Language Support matters.

16.1 History of GNU gettext

Internationalization concerns and algorithms have been informally and casually discussed
for years in GNU, sometimes around GNU libc, maybe around the incoming Hurd, or
otherwise (nobody clearly remembers). And even then, when the work started for real, this
was somewhat independently of these previous discussions.

This all began in July 1994, when Patrick D’Cruze had the idea and initiative of interna-
tionalizing version 3.9.2 of GNU fileutils. He then asked Jim Meyering, the maintainer,
how to get those changes folded into an official release. That first draft was full of #ifdefs
and somewhat disconcerting, and Jim wanted to find nicer ways. Patrick and Jim shared
some tries and experimentations in this area. Then, feeling that this might eventually have
a deeper impact on GNU, Jim wanted to know what standards were, and contacted Richard
Stallman, who very quickly and verbally described an overall design for what was meant to
become glocale, at that time.

Jim implemented glocale and got a lot of exhausting feedback from Patrick and Richard,
of course, but also from Mitchum DSouza (who wrote a catgets-like package), Roland
McGrath, maybe David MacKenzie, François Pinard, and Paul Eggert, all pushing and
pulling in various directions, not always compatible, to the extent that after a couple of
test releases, glocale was torn apart. In particular, Paul Eggert – always keeping an
eye on developments in Solaris – advocated the use of the gettext API over glocale’s
catgets-based API.

While Jim took some distance and time and became dad for a second time, Roland
wanted to get GNU libc internationalized, and got Ulrich Drepper involved in that project.
Instead of starting from glocale, Ulrich rewrote something from scratch, but more con-
forming to the set of guidelines who emerged out of the glocale effort. Then, Ulrich got
people from the previous forum to involve themselves into this new project, and the switch
from glocale to what was first named msgutils, renamed nlsutils, and later gettext,
became officially accepted by Richard in May 1995 or so.

Let’s summarize by saying that Ulrich Drepper wrote GNU gettext in April 1995. The
first official release of the package, including PO mode, occurred in July 1995, and was
numbered 0.7. Other people contributed to the effort by providing a discussion forum
around Ulrich, writing little pieces of code, or testing. These are quoted in the THANKS file
which comes with the GNU gettext distribution.

While this was being done, François adapted half a dozen of GNU packages to glocale

first, then later to gettext, putting them in pretest, so providing along the way an effective
user environment for fine tuning the evolving tools. He also took the responsibility of orga-
nizing and coordinating the Translation Project. After nearly a year of informal exchanges
between people from many countries, translator teams started to exist in May 1995, through
the creation and support by Patrick D’Cruze of twenty unmoderated mailing lists for that

Chapter 16: Concluding Remarks 198

many native languages, and two moderated lists: one for reaching all teams at once, the
other for reaching all willing maintainers of internationalized free software packages.

François also wrote PO mode in June 1995 with the collaboration of Greg McGary, as
a kind of contribution to Ulrich’s package. He also gave a hand with the GNU gettext

Texinfo manual.

In 1997, Ulrich Drepper released the GNU libc 2.0, which included the gettext,
textdomain and bindtextdomain functions.

In 2000, Ulrich Drepper added plural form handling (the ngettext function) to GNU
libc. Later, in 2001, he released GNU libc 2.2.x, which is the first free C library with full
internationalization support.

Ulrich being quite busy in his role of General Maintainer of GNU libc, he handed over
the GNU gettext maintenance to Bruno Haible in 2000. Bruno added the plural form
handling to the tools as well, added support for UTF-8 and CJK locales, and wrote a few
new tools for manipulating PO files.

16.2 Related Readings

NOTE: This documentation section is outdated and needs to be revised.

Eugene H. Dorr (dorre@well.com) maintains an interesting bibliography on interna-
tionalization matters, called Internationalization Reference List, which is available as:

ftp://ftp.ora.com/pub/examples/nutshell/ujip/doc/i18n-books.txt

Michael Gschwind (mike@vlsivie.tuwien.ac.at) maintains a Frequently Asked
Questions (FAQ) list, entitled Programming for Internationalisation. This FAQ
discusses writing programs which can handle different language conventions, character
sets, etc.; and is applicable to all character set encodings, with particular emphasis
on ISO 8859-1. It is regularly published in Usenet groups comp.unix.questions,
comp.std.internat, comp.software.international, comp.lang.c, comp.windows.x,
comp.std.c, comp.answers and news.answers. The home location of this document is:

ftp://ftp.vlsivie.tuwien.ac.at/pub/8bit/ISO-programming

Patrick D’Cruze (pdcruze@li.org) wrote a tutorial about NLS matters, and Jochen
Hein (Hein@student.tu-clausthal.de) took over the responsibility of maintaining it. It
may be found as:

ftp://sunsite.unc.edu/pub/Linux/utils/nls/catalogs/Incoming/...

...locale-tutorial-0.8.txt.gz

This site is mirrored in:

ftp://ftp.ibp.fr/pub/linux/sunsite/

A French version of the same tutorial should be findable at:

ftp://ftp.ibp.fr/pub/linux/french/docs/

together with French translations of many Linux-related documents.

Appendix A: Language Codes 199

Appendix A Language Codes

The ISO 639 standard defines two-letter codes for many languages, and three-letter codes
for more rarely used languages. All abbreviations for languages used in the Translation
Project should come from this standard.

A.1 Usual Language Codes

For the commonly used languages, the ISO 639-1 standard defines two-letter codes.

‘aa’ Afar.

‘ab’ Abkhazian.

‘ae’ Avestan.

‘af’ Afrikaans.

‘ak’ Akan.

‘am’ Amharic.

‘an’ Aragonese.

‘ar’ Arabic.

‘as’ Assamese.

‘av’ Avaric.

‘ay’ Aymara.

‘az’ Azerbaijani.

‘ba’ Bashkir.

‘be’ Belarusian.

‘bg’ Bulgarian.

‘bh’ Bihari.

‘bi’ Bislama.

‘bm’ Bambara.

‘bn’ Bengali; Bangla.

‘bo’ Tibetan.

‘br’ Breton.

‘bs’ Bosnian.

‘ca’ Catalan.

‘ce’ Chechen.

‘ch’ Chamorro.

‘co’ Corsican.

Appendix A: Language Codes 200

‘cr’ Cree.

‘cs’ Czech.

‘cu’ Church Slavic.

‘cv’ Chuvash.

‘cy’ Welsh.

‘da’ Danish.

‘de’ German.

‘dv’ Divehi; Maldivian.

‘dz’ Dzongkha; Bhutani.

‘ee’ Éwé.

‘el’ Greek.

‘en’ English.

‘eo’ Esperanto.

‘es’ Spanish.

‘et’ Estonian.

‘eu’ Basque.

‘fa’ Persian.

‘ff’ Fulah.

‘fi’ Finnish.

‘fj’ Fijian; Fiji.

‘fo’ Faroese.

‘fr’ French.

‘fy’ Western Frisian.

‘ga’ Irish.

‘gd’ Scottish Gaelic.

‘gl’ Galician.

‘gn’ Guarani.

‘gu’ Gujarati.

‘gv’ Manx.

‘ha’ Hausa.

‘he’ Hebrew (formerly iw).

‘hi’ Hindi.

‘ho’ Hiri Motu.

Appendix A: Language Codes 201

‘hr’ Croatian.

‘ht’ Haitian; Haitian Creole.

‘hu’ Hungarian.

‘hy’ Armenian.

‘hz’ Herero.

‘ia’ Interlingua.

‘id’ Indonesian (formerly in).

‘ie’ Interlingue; Occidental.

‘ig’ Igbo.

‘ii’ Sichuan Yi; Nuosu.

‘ik’ Inupiak; Inupiaq.

‘io’ Ido.

‘is’ Icelandic.

‘it’ Italian.

‘iu’ Inuktitut.

‘ja’ Japanese.

‘jv’ Javanese.

‘ka’ Georgian.

‘kg’ Kongo.

‘ki’ Kikuyu; Gikuyu.

‘kj’ Kuanyama; Kwanyama.

‘kk’ Kazakh.

‘kl’ Kalaallisut; Greenlandic.

‘km’ Central Khmer; Cambodian.

‘kn’ Kannada.

‘ko’ Korean.

‘kr’ Kanuri.

‘ks’ Kashmiri.

‘ku’ Kurdish.

‘kv’ Komi.

‘kw’ Cornish.

‘ky’ Kirghiz.

‘la’ Latin.

Appendix A: Language Codes 202

‘lb’ Letzeburgesch; Luxembourgish.

‘lg’ Ganda.

‘li’ Limburgish; Limburger; Limburgan.

‘ln’ Lingala.

‘lo’ Lao; Laotian.

‘lt’ Lithuanian.

‘lu’ Luba-Katanga.

‘lv’ Latvian; Lettish.

‘mg’ Malagasy.

‘mh’ Marshallese.

‘mi’ Maori.

‘mk’ Macedonian.

‘ml’ Malayalam.

‘mn’ Mongolian.

‘mo’ Moldavian.

‘mr’ Marathi.

‘ms’ Malay.

‘mt’ Maltese.

‘my’ Burmese.

‘na’ Nauru.

‘nb’ Norwegian Bokm̊al.

‘nd’ Ndebele, North.

‘ne’ Nepali.

‘ng’ Ndonga.

‘nl’ Dutch.

‘nn’ Norwegian Nynorsk.

‘no’ Norwegian.

‘nr’ Ndebele, South.

‘nv’ Navajo; Navaho.

‘ny’ Chichewa; Nyanja.

‘oc’ Occitan; Provençal.

‘oj’ Ojibwa.

‘om’ (Afan) Oromo.

Appendix A: Language Codes 203

‘or’ Oriya.

‘os’ Ossetian; Ossetic.

‘pa’ Panjabi; Punjabi.

‘pi’ Pali.

‘pl’ Polish.

‘ps’ Pashto; Pushto.

‘pt’ Portuguese.

‘qu’ Quechua.

‘rm’ Romansh.

‘rn’ Rundi; Kirundi.

‘ro’ Romanian.

‘ru’ Russian.

‘rw’ Kinyarwanda.

‘sa’ Sanskrit.

‘sc’ Sardinian.

‘sd’ Sindhi.

‘se’ Northern Sami.

‘sg’ Sango; Sangro.

‘si’ Sinhala; Sinhalese.

‘sk’ Slovak.

‘sl’ Slovenian.

‘sm’ Samoan.

‘sn’ Shona.

‘so’ Somali.

‘sq’ Albanian.

‘sr’ Serbian.

‘ss’ Swati; Siswati.

‘st’ Sesotho; Sotho, Southern.

‘su’ Sundanese.

‘sv’ Swedish.

‘sw’ Swahili.

‘ta’ Tamil.

‘te’ Telugu.

Appendix A: Language Codes 204

‘tg’ Tajik.

‘th’ Thai.

‘ti’ Tigrinya.

‘tk’ Turkmen.

‘tl’ Tagalog.

‘tn’ Tswana; Setswana.

‘to’ Tonga.

‘tr’ Turkish.

‘ts’ Tsonga.

‘tt’ Tatar.

‘tw’ Twi.

‘ty’ Tahitian.

‘ug’ Uighur.

‘uk’ Ukrainian.

‘ur’ Urdu.

‘uz’ Uzbek.

‘ve’ Venda.

‘vi’ Vietnamese.

‘vo’ Volapük; Volapuk.

‘wa’ Walloon.

‘wo’ Wolof.

‘xh’ Xhosa.

‘yi’ Yiddish (formerly ji).

‘yo’ Yoruba.

‘za’ Zhuang.

‘zh’ Chinese.

‘zu’ Zulu.

Appendix A: Language Codes 205

A.2 Rare Language Codes

For rarely used languages, the ISO 639-2 standard defines three-letter codes. Here is the
current list, reduced to only living languages with at least one million of speakers.

‘ace’ Achinese.

‘awa’ Awadhi.

‘bal’ Baluchi.

‘ban’ Balinese.

‘bej’ Beja; Bedawiyet.

‘bem’ Bemba.

‘bho’ Bhojpuri.

‘bik’ Bikol.

‘bin’ Bini; Edo.

‘bug’ Buginese.

‘ceb’ Cebuano.

‘din’ Dinka.

‘doi’ Dogri.

‘fil’ Filipino; Pilipino.

‘fon’ Fon.

‘gon’ Gondi.

‘gsw’ Swiss German; Alemannic; Alsatian.

‘hil’ Hiligaynon.

‘hmn’ Hmong.

‘ilo’ Iloko.

‘kab’ Kabyle.

‘kam’ Kamba.

‘kbd’ Kabardian.

‘kmb’ Kimbundu.

‘kok’ Konkani.

‘kru’ Kurukh.

‘lua’ Luba-Lulua.

‘luo’ Luo (Kenya and Tanzania).

‘mad’ Madurese.

‘mag’ Magahi.

Appendix A: Language Codes 206

‘mai’ Maithili.

‘mak’ Makasar.

‘man’ Mandingo.

‘men’ Mende.

‘min’ Minangkabau.

‘mni’ Manipuri.

‘mos’ Mossi.

‘mwr’ Marwari.

‘nap’ Neapolitan.

‘nso’ Pedi; Sepedi; Northern Sotho.

‘nym’ Nyamwezi.

‘nyn’ Nyankole.

‘pag’ Pangasinan.

‘pam’ Pampanga; Kapampangan.

‘raj’ Rajasthani.

‘sas’ Sasak.

‘sat’ Santali.

‘scn’ Sicilian.

‘shn’ Shan.

‘sid’ Sidamo.

‘srr’ Serer.

‘suk’ Sukuma.

‘sus’ Susu.

‘tem’ Timne.

‘tiv’ Tiv.

‘tum’ Tumbuka.

‘umb’ Umbundu.

‘wal’ Walamo.

‘war’ Waray.

‘yao’ Yao.

Appendix B: Country Codes 207

Appendix B Country Codes

The ISO 3166 standard defines two character codes for many countries and territories.
All abbreviations for countries used in the Translation Project should come from this stan-
dard.

‘AD’ Andorra.

‘AE’ United Arab Emirates.

‘AF’ Afghanistan.

‘AG’ Antigua and Barbuda.

‘AI’ Anguilla.

‘AL’ Albania.

‘AM’ Armenia.

‘AN’ Netherlands Antilles.

‘AO’ Angola.

‘AQ’ Antarctica.

‘AR’ Argentina.

‘AS’ Samoa (American).

‘AT’ Austria.

‘AU’ Australia.

‘AW’ Aruba.

‘AX’ Aaland Islands.

‘AZ’ Azerbaijan.

‘BA’ Bosnia and Herzegovina.

‘BB’ Barbados.

‘BD’ Bangladesh.

‘BE’ Belgium.

‘BF’ Burkina Faso.

‘BG’ Bulgaria.

‘BH’ Bahrain.

‘BI’ Burundi.

‘BJ’ Benin.

‘BM’ Bermuda.

‘BN’ Brunei.

‘BO’ Bolivia.

Appendix B: Country Codes 208

‘BR’ Brazil.

‘BS’ Bahamas.

‘BT’ Bhutan.

‘BV’ Bouvet Island.

‘BW’ Botswana.

‘BY’ Belarus.

‘BZ’ Belize.

‘CA’ Canada.

‘CC’ Cocos (Keeling) Islands.

‘CD’ Congo (Dem. Rep.).

‘CF’ Central African Republic.

‘CG’ Congo (Rep.).

‘CH’ Switzerland.

‘CI’ Côte d’Ivoire.

‘CK’ Cook Islands.

‘CL’ Chile.

‘CM’ Cameroon.

‘CN’ China.

‘CO’ Colombia.

‘CR’ Costa Rica.

‘CU’ Cuba.

‘CV’ Cape Verde.

‘CX’ Christmas Island.

‘CY’ Cyprus.

‘CZ’ Czech Republic.

‘DE’ Germany.

‘DJ’ Djibouti.

‘DK’ Denmark.

‘DM’ Dominica.

‘DO’ Dominican Republic.

‘DZ’ Algeria.

‘EC’ Ecuador.

‘EE’ Estonia.

Appendix B: Country Codes 209

‘EG’ Egypt.

‘EH’ Western Sahara.

‘ER’ Eritrea.

‘ES’ Spain.

‘ET’ Ethiopia.

‘FI’ Finland.

‘FJ’ Fiji.

‘FK’ Falkland Islands.

‘FM’ Micronesia.

‘FO’ Faeroe Islands.

‘FR’ France.

‘GA’ Gabon.

‘GB’ Britain (United Kingdom).

‘GD’ Grenada.

‘GE’ Georgia.

‘GF’ French Guiana.

‘GG’ Guernsey.

‘GH’ Ghana.

‘GI’ Gibraltar.

‘GL’ Greenland.

‘GM’ Gambia.

‘GN’ Guinea.

‘GP’ Guadeloupe.

‘GQ’ Equatorial Guinea.

‘GR’ Greece.

‘GS’ South Georgia and the South Sandwich Islands.

‘GT’ Guatemala.

‘GU’ Guam.

‘GW’ Guinea-Bissau.

‘GY’ Guyana.

‘HK’ Hong Kong.

‘HM’ Heard Island and McDonald Islands.

‘HN’ Honduras.

Appendix B: Country Codes 210

‘HR’ Croatia.

‘HT’ Haiti.

‘HU’ Hungary.

‘ID’ Indonesia.

‘IE’ Ireland.

‘IL’ Israel.

‘IM’ Isle of Man.

‘IN’ India.

‘IO’ British Indian Ocean Territory.

‘IQ’ Iraq.

‘IR’ Iran.

‘IS’ Iceland.

‘IT’ Italy.

‘JE’ Jersey.

‘JM’ Jamaica.

‘JO’ Jordan.

‘JP’ Japan.

‘KE’ Kenya.

‘KG’ Kyrgyzstan.

‘KH’ Cambodia.

‘KI’ Kiribati.

‘KM’ Comoros.

‘KN’ St Kitts and Nevis.

‘KP’ Korea (North).

‘KR’ Korea (South).

‘KW’ Kuwait.

‘KY’ Cayman Islands.

‘KZ’ Kazakhstan.

‘LA’ Laos.

‘LB’ Lebanon.

‘LC’ St Lucia.

‘LI’ Liechtenstein.

‘LK’ Sri Lanka.

Appendix B: Country Codes 211

‘LR’ Liberia.

‘LS’ Lesotho.

‘LT’ Lithuania.

‘LU’ Luxembourg.

‘LV’ Latvia.

‘LY’ Libya.

‘MA’ Morocco.

‘MC’ Monaco.

‘MD’ Moldova.

‘ME’ Montenegro.

‘MG’ Madagascar.

‘MH’ Marshall Islands.

‘MK’ Macedonia.

‘ML’ Mali.

‘MM’ Myanmar (Burma).

‘MN’ Mongolia.

‘MO’ Macao.

‘MP’ Northern Mariana Islands.

‘MQ’ Martinique.

‘MR’ Mauritania.

‘MS’ Montserrat.

‘MT’ Malta.

‘MU’ Mauritius.

‘MV’ Maldives.

‘MW’ Malawi.

‘MX’ Mexico.

‘MY’ Malaysia.

‘MZ’ Mozambique.

‘NA’ Namibia.

‘NC’ New Caledonia.

‘NE’ Niger.

‘NF’ Norfolk Island.

‘NG’ Nigeria.

Appendix B: Country Codes 212

‘NI’ Nicaragua.

‘NL’ Netherlands.

‘NO’ Norway.

‘NP’ Nepal.

‘NR’ Nauru.

‘NU’ Niue.

‘NZ’ New Zealand.

‘OM’ Oman.

‘PA’ Panama.

‘PE’ Peru.

‘PF’ French Polynesia.

‘PG’ Papua New Guinea.

‘PH’ Philippines.

‘PK’ Pakistan.

‘PL’ Poland.

‘PM’ St Pierre and Miquelon.

‘PN’ Pitcairn.

‘PR’ Puerto Rico.

‘PS’ Palestine.

‘PT’ Portugal.

‘PW’ Palau.

‘PY’ Paraguay.

‘QA’ Qatar.

‘RE’ Reunion.

‘RO’ Romania.

‘RS’ Serbia.

‘RU’ Russia.

‘RW’ Rwanda.

‘SA’ Saudi Arabia.

‘SB’ Solomon Islands.

‘SC’ Seychelles.

‘SD’ Sudan.

‘SE’ Sweden.

Appendix B: Country Codes 213

‘SG’ Singapore.

‘SH’ St Helena.

‘SI’ Slovenia.

‘SJ’ Svalbard and Jan Mayen.

‘SK’ Slovakia.

‘SL’ Sierra Leone.

‘SM’ San Marino.

‘SN’ Senegal.

‘SO’ Somalia.

‘SR’ Suriname.

‘ST’ Sao Tome and Principe.

‘SV’ El Salvador.

‘SY’ Syria.

‘SZ’ Swaziland.

‘TC’ Turks and Caicos Islands.

‘TD’ Chad.

‘TF’ French Southern and Antarctic Lands.

‘TG’ Togo.

‘TH’ Thailand.

‘TJ’ Tajikistan.

‘TK’ Tokelau.

‘TL’ Timor-Leste.

‘TM’ Turkmenistan.

‘TN’ Tunisia.

‘TO’ Tonga.

‘TR’ Turkey.

‘TT’ Trinidad and Tobago.

‘TV’ Tuvalu.

‘TW’ Taiwan.

‘TZ’ Tanzania.

‘UA’ Ukraine.

‘UG’ Uganda.

‘UM’ US minor outlying islands.

Appendix B: Country Codes 214

‘US’ United States.

‘UY’ Uruguay.

‘UZ’ Uzbekistan.

‘VA’ Vatican City.

‘VC’ St Vincent and the Grenadines.

‘VE’ Venezuela.

‘VG’ Virgin Islands (UK).

‘VI’ Virgin Islands (US).

‘VN’ Vietnam.

‘VU’ Vanuatu.

‘WF’ Wallis and Futuna.

‘WS’ Samoa (Western).

‘YE’ Yemen.

‘YT’ Mayotte.

‘ZA’ South Africa.

‘ZM’ Zambia.

‘ZW’ Zimbabwe.

Appendix C: Licenses 215

Appendix C Licenses

The files of this package are covered by the licenses indicated in each particular file or
directory. Here is a summary:

• The libintl and libasprintf libraries are covered by the GNU Lesser General Public
License (LGPL). A copy of the license is included in Section C.2 [GNU LGPL], page 222.

• The executable programs of this package and the libgettextpo library are covered by
the GNU General Public License (GPL). A copy of the license is included in Section C.1
[GNU GPL], page 216.

• This manual is free documentation. It is dually licensed under the GNU FDL and the
GNU GPL. This means that you can redistribute this manual under either of these two
licenses, at your choice.
This manual is covered by the GNU FDL. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation Li-
cense (FDL), either version 1.2 of the License, or (at your option) any later version
published by the Free Software Foundation (FSF); with no Invariant Sections, with no
Front-Cover Text, and with no Back-Cover Texts. A copy of the license is included in
Section C.3 [GNU FDL], page 231.
This manual is covered by the GNU GPL. You can redistribute it and/or modify it
under the terms of the GNU General Public License (GPL), either version 2 of the Li-
cense, or (at your option) any later version published by the Free Software Foundation
(FSF). A copy of the license is included in Section C.1 [GNU GPL], page 216.

Appendix C: Licenses 216

C.1 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General

Appendix C: Licenses 217

Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

Appendix C: Licenses 218

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose

Appendix C: Licenses 219

any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two

Appendix C: Licenses 220

goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM ISWITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix C: Licenses 221

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Appendix C: Licenses 222

C.2 GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright c© 1991, 1999 Free Software Foundation, Inc.
51 Franklin St – Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software—typically libraries—of the Free Software Foundation and other authors who decide
to use it. You can use it too, but we suggest you first think carefully about whether this
license or the ordinary General Public License is the better strategy to use in any particular
case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our
General Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish); that you receive source code
or can get it if you want it; that you can change the software and use pieces of it in new
free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for
the free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program.
We wish to make sure that a company cannot effectively restrict the users of a free program

Appendix C: Licenses 223

by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library,
the combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.

We call this license the Lesser General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest
possible use of a certain library, so that it becomes a de-facto standard. To achieve this,
non-free programs must be allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this case, there is little to
gain by limiting the free library to free software only, so we use the Lesser General Public
License.

In other cases, permission to use a particular library in non-free programs enables a
greater number of people to use a large body of free software. For example, permission to
use the GNU C Library in non-free programs enables many more people to use the whole
GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it
does ensure that the user of a program that is linked with the Library has the freedom and
the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a “work based on the library” and a “work that
uses the library”. The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains
a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called “this
License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

Appendix C: Licenses 224

The “Library”, below, refers to any such software library or work which has been
distributed under these terms. A “work based on the Library” means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is
not restricted, and output from such a program is covered only if its contents constitute
a work based on the Library (independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does and what the program
that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of data to
be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must
still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered indepen-
dent and separate works in themselves, then this License, and its terms, do not apply

Appendix C: Licenses 225

to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Library, the distri-
bution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who
wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled
to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather
than a “work that uses the library”. The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.

Appendix C: Licenses 226

If such an object file uses only numerical parameters, data structure layouts and ac-
cessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still
fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also
fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that
uses the Library” with the Library to produce a work containing portions of the Li-
brary, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply
a copy of this License. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which must
be distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable “work that uses the
Library”, as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present
on the user’s computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

e. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include
any data and utility programs needed for reproducing the executable from it. However,
as a special exception, the materials to be distributed need not include anything that
is normally distributed (in either source or binary form) with the major components

Appendix C: Licenses 227

(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other pro-
prietary libraries that do not normally accompany the operating system. Such a con-
tradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in
a single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with
or modify the Library subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Library.

Appendix C: Licenses 228

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free soft-
ware and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Appendix C: Licenses 229

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix C: Licenses 230

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and change.
You can do so by permitting redistribution under these terms (or, alternatively, under the
terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the full notice
is found.

one line to give the library’s name and an idea of what it does.

Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,

USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

Appendix C: Licenses 231

C.3 GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix C: Licenses 232

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix C: Licenses 233

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix C: Licenses 234

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix C: Licenses 235

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix C: Licenses 236

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix C: Licenses 237

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Program Index 238

Program Index

A
autopoint . 151

E
envsubst . 164

G
gettext . 161, 163
gettextize . 137

M
msgattrib . 85
msgcat . 68
msgcmp . 84
msgcomm . 81
msgconv . 70
msgen . 88

msgexec . 90
msgfilter . 76
msgfmt . 99
msggrep . 72
msginit . 40
msgmerge . 46
msgunfmt . 102
msguniq . 79

N
ngettext . 161, 163

R
recode-sr-latin . 77

X
xgettext . 33

Option Index 239

Option Index

--add-comments, xgettext option 34
--add-location, msgattrib option 87
--add-location, msgcat option 69
--add-location, msgcomm option 83
--add-location, msgconv option 71
--add-location, msgen option 89
--add-location, msgfilter option 78
--add-location, msggrep option 75
--add-location, msgmerge option 48
--add-location, msguniq option 81
--add-location, xgettext option 37
--alignment, msgfmt option 102
--backup, msgmerge option . 46
--boost, xgettext option . 37
--c++, xgettext option . 34
--check, msgfmt option . 101
--check-accelerators, msgfmt option 101
--check-compatibility, msgfmt option 101
--check-domain, msgfmt option 101
--check-format, msgfmt option 101
--check-header, msgfmt option 101
--clear-fuzzy, msgattrib option 86
--clear-obsolete, msgattrib option 86
--clear-previous, msgattrib option 86
--color, msgattrib option . 87
--color, msgcat option . 69, 91
--color, msgcomm option . 83
--color, msgconv option . 71
--color, msgen option . 89
--color, msgfilter option . 78
--color, msggrep option . 74
--color, msginit option . 41
--color, msgmerge option . 48
--color, msgunfmt option . 104
--color, msguniq option . 80
--color, xgettext option . 37
--comment, msggrep option . 74
--compendium, msgmerge option 46
--copyright-holder, xgettext option 38
--csharp, msgfmt option . 99
--csharp, msgunfmt option 103
--csharp-resources, msgfmt option 99
--csharp-resources, msgunfmt option 103
--debug, xgettext option . 37
--default-domain, xgettext option 33
--directory, msgattrib option 85
--directory, msgcat option 68
--directory, msgcmp option 84
--directory, msgcomm option 82
--directory, msgconv option 70
--directory, msgen option . 88
--directory, msgexec option 91
--directory, msgfilter option 76
--directory, msgfmt option 99

--directory, msggrep option 73
--directory, msgmerge option 46
--directory, msguniq option 79
--directory, xgettext option 33
--domain, gettext option . 163
--domain, msggrep option . 73
--domain, ngettext option 163
--dry-run, autopoint option 152
--dry-run, gettextize option 137
--endianness, msgfmt option 102
--exclude-file, xgettext option 34
--expression, msgfilter option 77
--extended-regexp, msggrep option 74
--extract-all, xgettext option 34
--extracted-comment, msggrep option 74
--file, msgfilter option . 77
--file, msggrep option . 74
--files-from, msgcat option 68
--files-from, msgcomm option 82
--files-from, xgettext option 33
--fixed-strings, msggrep option 74
--flag, xgettext option . 36
--force, autopoint option 152
--force, gettextize option 137
--force-po, msgattrib option 87
--force-po, msgcat option . 69
--force-po, msgcomm option 83
--force-po, msgconv option 71
--force-po, msgen option . 89
--force-po, msgfilter option 78
--force-po, msggrep option 75
--force-po, msgmerge option 48
--force-po, msgunfmt option 104
--force-po, msguniq option 80
--force-po, xgettext option 37
--foreign-user, xgettext option 39
--from-code, xgettext option 34
--fuzzy, msgattrib option . 86
--help, autopoint option . 152
--help, envsubst option . 164
--help, gettext option . 163
--help, gettextize option 138
--help, msgattrib option . 88
--help, msgcat option . 70
--help, msgcmp option . 85
--help, msgcomm option . 84
--help, msgconv option . 72
--help, msgen option . 90
--help, msgexec option . 91
--help, msgfilter option . 79
--help, msgfmt option . 102
--help, msggrep option . 75
--help, msginit option . 41
--help, msgmerge option . 49

Option Index 240

--help, msgunfmt option . 105
--help, msguniq option . 81
--help, ngettext option . 164
--help, xgettext option . 39
--ignore-case, msggrep option 74
--ignore-file, msgattrib option 86
--indent, msgattrib option 87
--indent, msgcat option . 69
--indent, msgcomm option . 83
--indent, msgconv option . 71
--indent, msgen option . 89
--indent, msgfilter option 78
--indent, msggrep option . 75
--indent, msgmerge option . 48
--indent, msgunfmt option 104
--indent, msguniq option . 80
--indent, xgettext option . 37
--input, msgexec option . 91
--input, msgfilter option . 76
--input, msginit option . 40
--intl, gettextize option 137
--invert-match, msggrep option 74
--java, msgfmt option . 99
--java, msgunfmt option . 103
--java2, msgfmt option . 99
--join-existing, xgettext option 34
--kde, xgettext option . 37
--keep-header, msgfilter option 78
--keyword, xgettext option 34
--lang, msgcat option . 69
--lang, msgen option . 89
--lang, msgmerge option . 47
--language, xgettext option 34
--less-than, msgcat option 68
--less-than, msgcomm option 82
--locale, msgfmt option . 100
--locale, msginit option . 41
--locale, msgunfmt option 103
--location, msggrep option 73
--more-than, msgcat option 68
--more-than, msgcomm option 82
--msgctxt, msggrep option . 73
--msgid, msggrep option . 73
--msgid-bugs-address, xgettext option 39
--msgstr, msggrep option . 74
--msgstr-prefix, xgettext option 39
--msgstr-suffix, xgettext option 39
--multi-domain, msgcmp option 84
--multi-domain, msgmerge option 47
--no-changelog, gettextize option 137
--no-fuzzy, msgattrib option 86
--no-fuzzy-matching, msgcmp option 84
--no-fuzzy-matching, msgmerge option 47
--no-hash, msgfmt option . 102
--no-location, msgattrib option 87
--no-location, msgcat option 69
--no-location, msgcomm option 83
--no-location, msgconv option 71

--no-location, msgen option 89
--no-location, msgfilter option 78
--no-location, msggrep option 75
--no-location, msgmerge option 48
--no-location, msguniq option 81
--no-location, xgettext option 37
--no-obsolete, msgattrib option 86
--no-translator, msginit option 41
--no-wrap, msgattrib option 88
--no-wrap, msgcat option . 70
--no-wrap, msgcomm option . 83
--no-wrap, msgconv option . 72
--no-wrap, msgen option . 90
--no-wrap, msgfilter option 78
--no-wrap, msggrep option . 75
--no-wrap, msginit option . 41
--no-wrap, msgmerge option 48
--no-wrap, msgunfmt option 104
--no-wrap, msguniq option . 81
--no-wrap, xgettext option 38
--obsolete, msgattrib option 87
--omit-header, msgcomm option 84
--omit-header, xgettext option 38
--only-file, msgattrib option 86
--only-fuzzy, msgattrib option 86
--only-obsolete, msgattrib option 86
--output, xgettext option . 33
--output-dir, xgettext option 33
--output-file, msgattrib option 85
--output-file, msgcat option 68
--output-file, msgcomm option 82
--output-file, msgconv option 71
--output-file, msgen option 89
--output-file, msgfilter option 76
--output-file, msgfmt option 99
--output-file, msggrep option 73
--output-file, msginit option 40
--output-file, msgmerge option 46
--output-file, msgunfmt option 104
--output-file, msguniq option 80
--package-name, xgettext option 39
--package-version, xgettext option 39
--po-dir, gettextize option 137
--previous, msgattrib option 86
--previous, msgmerge option 47
--properties-input, msgattrib option 87
--properties-input, msgcat option 69
--properties-input, msgcmp option 85
--properties-input, msgcomm option 82
--properties-input, msgconv option 71
--properties-input, msgen option 89
--properties-input, msgexec option 91
--properties-input, msgfilter option 77
--properties-input, msgfmt option 100
--properties-input, msggrep option 74
--properties-input, msginit option 40
--properties-input, msgmerge option 47
--properties-input, msguniq option 80

Option Index 241

--properties-output, msgattrib option 87
--properties-output, msgcat option 70
--properties-output, msgcomm option 83
--properties-output, msgconv option 72
--properties-output, msgen option 89
--properties-output, msgfilter option 78
--properties-output, msggrep option 75
--properties-output, msginit option 41
--properties-output, msgmerge option 48
--properties-output, msgunfmt option 104
--properties-output, msguniq option 81
--properties-output, xgettext option 38
--qt, msgfmt option . 99
--qt, xgettext option . 37
--quiet, msgfilter option . 77
--quiet, msgmerge option . 49
--regexp=, msggrep option . 74
--repeated, msguniq option 80
--resource, msgfmt option 100
--resource, msgunfmt option 103
--set-fuzzy, msgattrib option 86
--set-obsolete, msgattrib option 86
--silent, msgfilter option 77
--silent, msgmerge option . 49
--sort-by-file, msgattrib option 88
--sort-by-file, msgcat option 70
--sort-by-file, msgcomm option 84
--sort-by-file, msgconv option 72
--sort-by-file, msgen option 90
--sort-by-file, msgfilter option 79
--sort-by-file, msggrep option 75
--sort-by-file, msgmerge option 49
--sort-by-file, msguniq option 81
--sort-by-file, xgettext option 38
--sort-output, msgattrib option 88
--sort-output, msgcat option 70
--sort-output, msgcomm option 84
--sort-output, msgconv option 72
--sort-output, msgen option 90
--sort-output, msgfilter option 79
--sort-output, msggrep option 75
--sort-output, msgmerge option 48
--sort-output, msgunfmt option 105
--sort-output, msguniq option 81
--sort-output, xgettext option 38
--statistics, msgfmt option 102
--strict, msgattrib option 87
--strict, msgcat option . 69
--strict, msgcomm option . 83
--strict, msgconv option . 71
--strict, msgen option . 89
--strict, msgfilter option 78
--strict, msgfmt option . 99
--strict, msggrep option . 75
--strict, msgmerge option . 48
--strict, msgunfmt option 104
--strict, msguniq option . 81
--strict, xgettext option . 38

--stringtable-input, msgattrib option 87
--stringtable-input, msgcat option 69
--stringtable-input, msgcmp option 85
--stringtable-input, msgcomm option 83
--stringtable-input, msgen option 89
--stringtable-input, msgexec option 91
--stringtable-input, msgfilter option 77
--stringtable-input, msgfmt option 101
--stringtable-input, msggrep option 74
--stringtable-input, msginit option 40
--stringtable-input, msgmerge option 47
--stringtable-input, msgonv option 71
--stringtable-input, msguniq option 80
--stringtable-output, msgattrib option 87
--stringtable-output, msgcat option 70
--stringtable-output, msgcomm option 83
--stringtable-output, msgconv option 72
--stringtable-output, msgen option 90
--stringtable-output, msgfilter option 78
--stringtable-output, msggrep option 75
--stringtable-output, msginit option 41
--stringtable-output, msgmerge option 48
--stringtable-output, msgunfmt option 104
--stringtable-output, msguniq option 81
--stringtable-output, xgettext option 38
--style, msgattrib option . 87
--style, msgcat option . 69, 93
--style, msgcomm option . 83
--style, msgconv option . 71
--style, msgen option . 89
--style, msgfilter option . 78
--style, msggrep option . 75
--style, msginit option . 41
--style, msgmerge option . 48
--style, msgunfmt option . 104
--style, msguniq option . 80
--style, xgettext option . 37
--suffix, msgmerge option . 47
--symlink, gettextize option 137
--tcl, msgfmt option . 99
--tcl, msgunfmt option . 103
--to-code, msgcat option . 69
--to-code, msgconv option . 71
--to-code, msguniq option . 80
--translated, msgattrib option 86
--trigraphs, xgettext option 37
--unique, msgcat option . 68
--unique, msgcomm option . 82
--unique, msguniq option . 80
--untranslated, msgattrib option 86
--update, msgmerge option . 46
--use-first, msgcat option 69
--use-first, msguniq option 80
--use-fuzzy, msgcmp option 85
--use-fuzzy, msgfmt option 102
--use-untranslated, msgcmp option 85
--variables, envsubst option 164
--verbose, msgfmt option . 102

Option Index 242

--verbose, msgmerge option 49
--verbose, msgunfmt option 105
--version, autopoint option 152
--version, envsubst option 164
--version, gettext option 163
--version, gettextize option 138
--version, msgattrib option 88
--version, msgcat option . 70
--version, msgcmp option . 85
--version, msgcomm option . 84
--version, msgconv option . 72
--version, msgen option . 90
--version, msgexec option . 91
--version, msgfilter option 79
--version, msgfmt option . 102
--version, msggrep option . 75
--version, msginit option . 41
--version, msgmerge option 49
--version, msgunfmt option 105
--version, msguniq option . 81
--version, ngettext option 164
--version, xgettext option 39
--width, msgattrib option . 88
--width, msgcat option . 70
--width, msgcomm option . 83
--width, msgconv option . 72
--width, msgen option . 90
--width, msgfilter option . 78
--width, msggrep option . 75
--width, msginit option . 41
--width, msgmerge option . 48
--width, msgunfmt option . 104
--width, msguniq option . 81
--width, xgettext option . 38
-<, msgcat option . 68
-<, msgcomm option . 82
->, msgcat option . 68
->, msgcomm option . 82
-a, msgfmt option . 102
-a, xgettext option . 34
-c, msgfmt option . 101
-C, msgfmt option . 101
-C, msggrep option . 74
-C, msgmerge option . 46
-c, xgettext option . 34
-C, xgettext option . 34
-d, autopoint option . 152
-d, gettext option . 163
-d, gettextize option . 137
-D, msgattrib option . 85
-D, msgcat option . 68
-D, msgcmp option . 84
-D, msgcomm option . 82
-D, msgconv option . 70
-D, msgen option . 88
-D, msgexec option . 91
-D, msgfilter option . 76
-d, msgfmt option . 100

-D, msgfmt option . 99
-D, msggrep option . 73
-D, msgmerge option . 46
-d, msgunfmt option . 103, 104
-d, msguniq option . 80
-D, msguniq option . 79
-d, ngettext option . 163
-d, xgettext option . 33
-D, xgettext option . 33
-e, gettext option . 163
-E, gettext option . 163
-e, msgfilter option . 77
-e, msggrep option . 74
-E, msggrep option . 74
-e, ngettext option . 164
-E, ngettext option . 164
-f, autopoint option . 152
-f, gettextize option . 137
-F, msgattrib option . 88
-f, msgcat option . 68
-F, msgcat option . 70
-f, msgcomm option . 82
-F, msgcomm option . 84
-F, msgconv option . 72
-F, msgen option . 90
-f, msgfilter option . 77
-F, msgfilter option . 79
-f, msgfmt option . 102
-f, msggrep option . 74
-F, msggrep option . 74
-F, msgmerge option . 49
-F, msguniq option . 81
-f, xgettext option . 33
-F, xgettext option . 38
-h, envsubst option . 164
-h, gettext option . 163
-h, msgattrib option . 88
-h, msgcat option . 70
-h, msgcmp option . 85
-h, msgcomm option . 84
-h, msgconv option . 72
-h, msgen option . 90
-h, msgexec option . 91
-h, msgfilter option . 79
-h, msgfmt option . 102
-h, msggrep option . 75
-h, msginit option . 41
-h, msgmerge option . 49
-h, msgunfmt option . 105
-h, msguniq option . 81
-h, ngettext option . 164
-h, xgettext option . 39
-i, msgattrib option . 87
-i, msgcat option . 69
-i, msgcomm option . 83
-i, msgconv option . 71
-i, msgen option . 89
-i, msgexec option . 91

Option Index 243

-i, msgfilter option . 76
-i, msggrep option . 74
-i, msginit option . 40
-i, msgmerge option . 48
-i, msgunfmt option . 104
-i, msguniq option . 80
-i, xgettext option . 37
-j, msgfmt option . 99
-J, msggrep option . 73
-j, msgunfmt option . 103
-j, xgettext option . 34
-K, msggrep option . 73
-k, xgettext option . 34
-l, msgfmt option . 100
-l, msginit option . 41
-l, msgunfmt option . 103
-L, xgettext option . 34
-m, msgcmp option . 84
-M, msggrep option . 73
-m, msgmerge option . 47
-m, xgettext option . 39
-M, xgettext option . 39
-n, gettext option . 163
-n, msgattrib option . 87
-n, msgcat option . 69
-N, msgcmp option . 84
-n, msgcomm option . 83
-n, msgfilter option . 77
-N, msggrep option . 73
-N, msgmerge option . 47
-n, msguniq option . 81
-n, xgettext option . 37
-o, msgattrib option . 85
-o, msgcat option . 68
-o, msgcomm option . 82
-o, msgconv option . 71
-o, msgen option . 89
-o, msgfilter option . 76
-o, msgfmt option . 99
-o, msggrep option . 73
-o, msginit option . 40
-o, msgmerge option . 46
-o, msgunfmt option . 104
-o, msguniq option . 80
-o, xgettext option . 33
-p, msgattrib option . 87
-P, msgattrib option . 87
-p, msgcat option . 70
-P, msgcat option . 69
-P, msgcmp option . 85
-p, msgcomm option . 83
-P, msgcomm option . 82
-p, msgconv option . 72
-P, msgconv option . 71
-p, msgen option . 89
-P, msgen option . 89
-P, msgexec option . 91
-p, msgfilter option . 78

-P, msgfilter option . 77
-P, msgfmt option . 100
-p, msggrep option . 75
-P, msggrep option . 74
-p, msginit option . 41
-P, msginit option . 40
-p, msgmerge option . 48
-P, msgmerge option . 47
-p, msgunfmt option . 104
-p, msguniq option . 81
-P, msguniq option . 80
-p, xgettext option . 33
-q, msgmerge option . 49
-r, msgfmt option . 100
-r, msgunfmt option . 103
-s, msgattrib option . 88
-s, msgcat option . 70
-s, msgcomm option . 84
-s, msgconv option . 72
-s, msgen option . 90
-s, msgfilter option . 79
-s, msgmerge option . 48
-s, msgunfmt option . 105
-s, msguniq option . 81
-s, xgettext option . 38
-t, msgcat option . 69
-t, msgconv option . 71
-T, msggrep option . 74
-t, msguniq option . 80
-T, xgettext option . 37
-u, msgcat option . 68
-u, msgcomm option . 82
-U, msgmerge option . 46
-u, msguniq option . 80
-v, envsubst option . 164
-V, envsubst option . 164
-V, gettext option . 163
-V, msgattrib option . 88
-V, msgcat option . 70
-V, msgcmp option . 85
-V, msgcomm option . 84
-V, msgconv option . 72
-V, msgen option . 90
-V, msgexec option . 91
-V, msgfilter option . 79
-v, msgfmt option . 102
-V, msgfmt option . 102
-v, msggrep option . 74
-V, msggrep option . 75
-V, msginit option . 41
-v, msgmerge option . 49
-V, msgmerge option . 49
-v, msgunfmt option . 105
-V, msgunfmt option . 105
-V, msguniq option . 81
-V, ngettext option . 164
-V, xgettext option . 39
-w, msgattrib option . 88

Option Index 244

-w, msgcat option . 70
-w, msgcomm option . 83
-w, msgconv option . 72
-w, msgen option . 90
-w, msgfilter option . 78
-w, msggrep option . 75
-w, msginit option . 41

-w, msgmerge option . 48

-w, msgunfmt option . 104

-w, msguniq option . 81

-w, xgettext option . 38

-X, msggrep option . 74

-x, xgettext option . 34

Variable Index 245

Variable Index

G
GETTEXT_LOG_UNTRANSLATED, environment variable

. 133

L
LANG, environment variable 11, 122
LANGUAGE, environment variable 10, 122, 140
LC_ALL, environment variable 10, 122
LC_COLLATE, environment variable 10, 122
LC_CTYPE, environment variable 10, 122
LC_MESSAGES, environment variable 10, 122
LC_MONETARY, environment variable 10, 122
LC_NUMERIC, environment variable 10, 122
LC_TIME, environment variable 10, 122
LINGUAS, environment variable 153

M
MSGEXEC_LOCATION, environment variable 90
MSGEXEC_MSGCTXT, environment variable 90
MSGEXEC_MSGID, environment variable 90
MSGFILTER_LOCATION, environment variable 76
MSGFILTER_MSGCTXT, environment variable 76
MSGFILTER_MSGID, environment variable 76

P
PO_STYLE, environment variable 93

T
TERM, environment variable . 92
TEXTDOMAIN, environment variable 161
TEXTDOMAINDIR, environment variable 161

PO Mode Index 246

PO Mode Index

#
#, PO Mode command . 60, 61

,
,, PO Mode command . 25

.

., PO Mode command . 52, 53

.emacs customizations . 50

<
<, PO Mode command . 52, 53

=
=, PO Mode command . 51, 52

>
>, PO Mode command . 52, 53

?
?, PO Mode command . 51, 52

_, PO Mode command . 51

0
0, PO Mode command . 51

A
a, PO Mode command . 64
A, PO Mode command . 64
auxiliary PO file . 64

C
C-c C-a, PO Mode command 62, 64, 65
C-c C-c, PO Mode command 62
C-c C-k, PO Mode command 62
C-j, PO Mode command 58, 59
commands . 51
comment out PO file entry . 58
consulting program sources . 63
consulting translations to other languages 64
current entry of a PO file . 52
cut and paste for translated strings 59

D
DEL, PO Mode command 56, 57, 58

E
editing comments . 60
editing multiple entries . 62
editing translations . 58
etags, using for marking strings 25
exiting PO subedit . 62

F
f, PO Mode command . 56
F, PO Mode command . 56
find source fragment for a PO file entry 63

H
h, PO Mode command . 51, 52

I
installing PO mode . 50

K
k, PO Mode command 57, 58, 59
K, PO Mode command . 61

L
LFD, PO Mode command 58, 59
looking at the source to aid translation 63

M
m, PO Mode command . 52, 53
M-,, PO Mode command . 25
M-., PO Mode command . 25
M-A, PO Mode command . 64
M-s, PO Mode command . 63
M-S, PO Mode command 63, 64
marking strings for translation 24
moving by fuzzy entries . 56
moving by obsolete entries . 57
moving by translated entries 55
moving by untranslated entries 57
moving through a PO file . 52

N
n, PO Mode command . 52, 53

PO Mode Index 247

next-error, stepping through PO file validation
results . 52

normalize, PO Mode command 65

O
o, PO Mode command . 57
O, PO Mode command . 57
obsolete active entry . 58

P
p, PO Mode command . 52, 53
pending subedits . 62
po-auto-edit-with-msgid, PO Mode variable

. 59
po-auto-fuzzy-on-edit, PO Mode variable 55
po-auto-select-on-unfuzzy, PO Mode variable

. 56
po-confirm-and-quit, PO Mode command 51
po-consider-as-auxiliary, PO Mode command

. 64
po-consider-source-path, PO Mode command

. 64
po-current-entry, PO Mode command 53
po-cycle-auxiliary, PO Mode command 64
po-cycle-source-reference, PO Mode command

. 63
po-edit-comment, PO Mode command 61
po-edit-msgstr, PO Mode command 58
po-exchange-location, PO Mode command . . . 53
po-fade-out-entry, PO Mode command . . . 56, 58
po-first-entry, PO Mode command 53
po-help, PO Mode command 52
po-ignore-as-auxiliary, PO Mode command

. 64
po-ignore-source-path, PO Mode command . . 64
po-kill-comment, PO Mode command 61
po-kill-msgstr, PO Mode command 57, 59
po-kill-ring-save-comment, PO Mode command

. 61
po-kill-ring-save-msgstr, PO Mode command

. 59
po-last-entry, PO Mode command 53
po-mark-translatable, PO Mode command . . . 26
po-msgid-to-msgstr, PO Mode command 59
po-next-entry, PO Mode command 53
po-next-fuzzy-entry, PO Mode command 56
po-next-obsolete-entry, PO Mode command

. 57
po-next-translated-entry, PO Mode command

. 55
po-next-untranslated-entry, PO Mode

command . 57
po-normalize, PO Mode command 54
po-other-window, PO Mode command 51
po-pop-location, PO Mode command 53
po-previous-entry, PO Mode command 53

po-previous-fuzzy-entry, PO Mode command
. 56

po-previous-obsolete-entry, PO Mode
command . 57

po-previous-translated-entry, PO Mode
command . 55

po-previous-untransted-entry, PO Mode
command . 57

po-push-location, PO Mode command 53
po-quit, PO Mode command 51
po-select-auxiliary, PO Mode command 65
po-select-mark-and-mark, PO Mode command

. 26
po-select-source-reference, PO Mode

command . 63
po-statistics, PO Mode command 52
po-subedit-abort, PO Mode command 62
po-subedit-cycle-auxiliary, PO Mode

command . 62
po-subedit-exit, PO Mode command 62
po-subedit-mode-hook, PO Mode variable 61
po-tags-search, PO Mode command 25
po-undo, PO Mode command 51
po-unfuzzy, PO Mode command 56
po-validate, PO Mode command 52
po-yank-comment, PO Mode command 61
po-yank-msgstr, PO Mode command 59

Q
q, PO Mode command . 51
Q, PO Mode command . 51

R
r, PO Mode command . 52, 53
RET, PO Mode command . 58

S
s, PO Mode command . 63
S, PO Mode command . 63, 64
starting a string translation . 59
string normalization in entries 54
subedit minor mode . 62

T
t, PO Mode command . 55
T, PO Mode command . 55
TAB, PO Mode command . 56
TAGS, and marking translatable strings 25

U
u, PO Mode command . 57
U, PO Mode command . 57
use the source, Luke . 63

PO Mode Index 248

using obsolete translations to make new entries
. 60

using translation compendia 65

V
V, PO Mode command . 51, 52

W
w, PO Mode command . 58, 59

W, PO Mode command . 61

X
x, PO Mode command . 52, 53

Y
y, PO Mode command . 58, 59
Y, PO Mode command . 61

Autoconf Macro Index 249

Autoconf Macro Index

AM_GNU_GETTEXT . 147
AM_GNU_GETTEXT_INTL_SUBDIR 149
AM_GNU_GETTEXT_NEED . 148
AM_GNU_GETTEXT_VERSION . 148

AM_ICONV . 149

AM_PO_SUBDIRS . 149

AM_XGETTEXT_OPTION . 149

General Index 250

General Index

_, a macro to mark strings for translation 24
_nl_msg_cat_cntr . 123

A
ABOUT-NLS file . 12
acconfig.h file . 143
accumulating translations . 65
aclocal.m4 file . 142
adding keywords, xgettext . 34
ambiguities . 21
apply a filter to translations 76
apply command to all translations in a catalog

. 90
Arabic digits . 156
attribute manipulation . 85
attribute, fuzzy . 56
attributes of a PO file entry 56
attributes, manipulating . 67
autoconf macros for gettext 147
autopoint program, usage . 151
auxiliary PO file . 64
available translations . 12
awk . 177
awk-format flag . 15

B
backup old file, and msgmerge program 46
bash . 165
bibliography . 198
big picture . 5
bind_textdomain_codeset 112
Boost format strings . 37
boost-format flag . 16
bug report address . 1

C
C and C-like languages . 159
C trigraphs . 37
C# . 173
C# mode, and msgfmt program 99
C# mode, and msgunfmt program 103
C# resources mode, and msgfmt program 99
C# resources mode, and msgunfmt program . . . 103
C#, string concatenation . 22
c-format flag . 14
c-format, and xgettext . 27
catalog encoding and msgexec output 90
catclose, a catgets function 109
catgets, a catgets function 108
catgets, X/Open specification 108

catopen, a catgets function 108
character encoding . 4
charset conversion at runtime 111
charset of PO files . 43
check format strings . 101
checking of translations . 67
clisp . 167
clisp C sources . 167
codeset . 4
comments in PO files . 18
comments, automatic . 13
comments, extracted . 13
comments, translator . 13
Common Lisp . 167
compare PO files . 84
comparison of interfaces . 121
compatibility with X/Open msgfmt 101
compendium . 65
compendium, creating . 65
concatenate PO files . 68
concatenating PO files into a compendium 65
concatenation of strings . 22
config.h.in file . 143
context . 112
context, argument specification in xgettext 34
context, in MO files . 106
context, in PO files . 16
control characters . 23
convert binary message catalog into PO file . . . 102
convert translations to a different encoding 70
converting a package to use gettext 135
country codes . 207
create new PO file . 40
creating a new PO file . 40
creating compendia . 65
csharp-format flag . 15
currency symbols . 4

D
date format . 4
dcngettext . 116
dcpgettext . 113
dcpgettext_expr . 113
debugging messages marked as format strings . . 37
dialect . 67
disabling NLS . 146
distribution tarball . 152
dngettext . 116
dollar substitution . 164
domain ambiguities . 110
dpgettext . 113
dpgettext_expr . 113
duplicate elimination . 67

General Index 251

duplicate removal . 79

E
editing comments in PO files 60
Editing PO Files . 50
editing translations . 58
elisp-format flag . 15
Emacs Lisp . 168
Emacs PO Mode . 50
encoding . 4
encoding conversion . 67
encoding conversion at runtime 111
encoding for your language . 44
encoding list . 43
encoding of PO files . 43
environment variables . 164
envsubst program, usage . 164
eval_gettext function, usage 165
eval_ngettext function, usage 165
evolution of packages . 7
extracting parts of a PO file into a compendium

. 66

F
FDL, GNU Free Documentation License 231
file format, .mo . 105
file format, .po . 13
files, .po and .mo . 5
files, .pot . 6
filter messages according to attributes 85
find common messages . 81
force use of fuzzy entries . 102
format strings . 27
Free Pascal . 178
function attribute, format 36
function attribute, format arg 36
fuzzy entries . 56
fuzzy flag . 14

G
gawk . 177
gcc-internal-format flag . 16
GCC-source . 193
generate binary message catalog from PO file . . 99
generate translation catalog in English 88
gettext files . 139
gettext installation . 50
gettext interface . 109
gettext program, usage . 163
gettext vs catgets . 121
gettext, a programmer’s view 109
gettext.h file . 146
gettextize program, usage 137
gfc-internal-format flag . 16
GNOME PO file editor . 50

GPL, GNU General Public License 216
GUI programs . 112
guile . 170

H
hash table, inside MO files . 106
he, she, and they . 1
header entry of a PO file . 42
help option . 22
history of GNU gettext . 197

I
i18n . 2
importing PO files . 54
include file libintl.h 6, 19, 121, 147
initialization . 19
initialize new PO file . 40
initialize translations from a compendium 66
installing gettext . 50
interface to catgets . 108
internationalization . 2
inttypes.h . 22
ISO 3166 . 207
ISO 639 . 199

J
Java . 171
Java mode, and msgfmt program 99
Java mode, and msgunfmt program 103
Java, string concatenation . 22
java-format flag . 15
javascript-format flag . 16

K
KDE format strings . 37
KDE PO file editor . 50
kde-format flag . 16
keyboard accelerator checking 101

L
l10n . 2
language codes . 199
language selection . 10
language selection at runtime 122
large package . 110
LGPL, GNU Lesser General Public License . . . 222
libiconv library . 150
libintl for C# . 176
libintl for Java . 173
libintl library . 148
librep Lisp . 169
librep-format flag . 15
License, GNU FDL . 231

General Index 252

License, GNU GPL . 216
License, GNU LGPL . 222
Licenses . 215
LINGUAS file . 140
link with libintl . 6
Linux . 5, 6, 43
Lisp . 167
lisp-format flag . 15
list of translation teams, where to find 42
locale categories . 4, 5
locale category, LC ALL . 19
locale category, LC COLLATE 20
locale category, LC CTYPE 4, 19, 20
locale category, LC MESSAGES 4, 20
locale category, LC MONETARY 4, 20
locale category, LC NUMERIC 4, 20
locale category, LC RESPONSES 20
locale category, LC TIME 4, 20
locale program . 43
localization . 2
lookup message translation 163, 165
lookup plural message translation 163, 165
lua-format flag . 16

M
magic signature of MO files 105
Makefile.in.in extensions 140
Makevars file . 140
manipulating PO files . 67
marking Perl sources . 182
marking string initializers . 28
marking strings that require translation 23
marking strings, preparations 20
marking translatable strings . 6
markup . 23
menu entries . 112
menu, keyboard accelerator support 101
merge PO files . 68
merging two PO files . 67
message catalog files location 111
messages . 4
migration from earlier versions of gettext 135
mkinstalldirs file . 142
mnemonics of menu entries 101
MO file’s format . 105
modify message attributes . 86
msgattrib program, usage . 85
msgcat program, usage . 68
msgcmp program, usage . 84
msgcomm program, usage . 81
msgconv program, usage . 70
msgctxt . 16
msgen program, usage . 88
msgexec program, usage . 90
msgfilter filter and catalog encoding 76
msgfilter program, usage . 76
msgfmt program, usage . 99

msggrep program, usage . 72
msgid . 13
msgid_plural . 17
msginit program, usage . 40
msgmerge program, usage . 46
msgstr . 13
msgunfmt program, usage . 102
msguniq program, usage . 79
multi-line strings . 54

N
N_, a convenience macro . 121
Native Language Support . 3
Natural Language Support . 3
newlines in PO files . 18
ngettext . 115
ngettext program, usage . 163
NLS . 3
no-awk-format flag . 15
no-boost-format flag . 16
no-c-format flag . 14
no-c-format, and xgettext 27
no-csharp-format flag . 15
no-elisp-format flag . 15
no-gcc-internal-format flag 16
no-gfc-internal-format flag 16
no-java-format flag . 15
no-javascript-format flag . 16
no-kde-format flag . 16
no-librep-format flag . 15
no-lisp-format flag . 15
no-lua-format flag . 16
no-objc-format flag . 14
no-object-pascal-format flag 15
no-perl-brace-format flag . 15
no-perl-format flag . 15
no-php-format flag . 16
no-python-brace-format flag 14
no-python-format flag . 14
no-qt-format flag . 16
no-qt-plural-format flag . 16
no-scheme-format flag . 15
no-sh-format flag . 14
no-smalltalk-format flag . 15
no-tcl-format flag . 15
no-ycp-format flag . 15
nplurals, in a PO file header 116
number format . 4

O
objc-format flag . 14
Object Pascal . 178
object-pascal-format flag . 15
obsolete entries . 57
optimization of gettext functions 120
orthography . 67

General Index 253

outdigits . 156
output to stdout, xgettext . 33
overview of gettext . 5

P
package and version declaration in configure.ac

. 141
package build and installation options 153
package distributor’s view of gettext 153
package installer’s view of gettext 153
package maintainer’s view of gettext 135
paragraphs . 21
Pascal . 178
Perl . 181
Perl default keywords . 184
Perl invalid string interpolation 186
Perl long lines . 189
Perl parentheses . 189
Perl pitfalls . 190
Perl quote-like expressions . 185
Perl special keywords for hash-lookups 185
Perl valid string interpolation 188
perl-brace-format flag . 15
perl-format flag . 15
pgettext . 112
pgettext_expr . 113
PHP . 192
php-format flag . 16
Pike . 192
plural form formulas . 117
plural forms . 114
plural forms, in MO files . 106
plural forms, in PO files . 17
plural forms, translating . 131
plural, in a PO file header 116
PO files’ format . 13
PO mode (Emacs) commands 51
PO template file . 33
po_file_domains . 97
po_file_free . 97
po_file_read . 97
po_message_iterator . 97
po_message_iterator_free 97
po_message_msgid . 97
po_message_msgid_plural . 97
po_message_msgstr . 97
po_message_msgstr_plural 98
po_next_message . 97
portability problems with sed 77
POTFILES.in file . 139
preparing programs for translation 19
preparing shell scripts for translation 161
problems with catgets interface 109
programming languages . 154
Python . 165
python-brace-format flag . 14
python-format flag . 14

Q
Qt format strings . 37
Qt mode, and msgfmt program 99
qt-format flag . 16
qt-plural-format flag . 16
quotation marks . 44, 140
quote characters, use in PO files 44

R
range: flag . 17
recode-sr-latin program . 77
related reading . 198
release . 152
RST . 196

S
Scheme . 170
scheme-format flag . 15
scripting languages . 154
search messages in a catalog 72
selecting message language . 10
sentences . 21
setting up gettext at build time 153
setting up gettext at run time 10
several domains . 110
sex . 1
sh-format flag . 14
she, he, and they . 1
shell format string . 164
shell scripts . 160
Smalltalk . 170
smalltalk-format flag . 15
sorting msgcat output . 70
sorting msgmerge output . 48
sorting msgunfmt output . 105
sorting output of xgettext . 38
specifying plural form in a PO file 116
standard output, and msgcat 68
standard output, and msgmerge program 46
string concatenation . 22
string normalization in entries 54
style . 20
supported languages, xgettext 34

T
Tcl . 180
Tcl mode, and msgfmt program 99
Tcl mode, and msgunfmt program 103
tcl-format flag . 15
template PO file . 6
testing .po files for equivalence 38
Tk’s scripting language . 180
translated entries . 55
translating menu entries . 112
translation aspects . 3

General Index 254

Translation Matrix . 12
Translation Project . 1
turning off NLS support . 146
tutorial of gettext usage . 5

U
unify duplicate translations . 79
untranslated entries . 56
update translations from a compendium 66
upgrading to new versions of gettext 135

V
version control for backup files, msgmerge 47

W
wxWidgets library . 178

X
xargs, and output from msgexec 90
xgettext program, usage . 33
xmodmap program, and typing quotation marks

. 44

Y
YaST2 scripting language . 179
YCP . 179
ycp-format flag . 15

	Introduction
	The Purpose of GNU gettext
	I18n, L10n, and Such
	Aspects in Native Language Support
	Files Conveying Translations
	Overview of GNU gettext

	The User's View
	Operating System Installation
	Setting the Locale Used by GUI Programs
	Setting the Locale through Environment Variables
	Locale Names
	Locale Environment Variables
	Specifying a Priority List of Languages

	Installing Translations for Particular Programs

	The Format of PO Files
	Preparing Program Sources
	Importing the gettext declaration
	Triggering gettext Operations
	Preparing Translatable Strings
	How Marks Appear in Sources
	Marking Translatable Strings
	Special Comments preceding Keywords
	Special Cases of Translatable Strings
	Letting Users Report Translation Bugs
	Marking Proper Names for Translation
	Preparing Library Sources

	Making the PO Template File
	Invoking the xgettext Program
	Input file location
	Output file location
	Choice of input file language
	Input file interpretation
	Operation mode
	Language specific options
	Output details
	Informative output

	Creating a New PO File
	Invoking the msginit Program
	Input file location
	Output file location
	Input file syntax
	Output details
	Informative output

	Filling in the Header Entry

	Updating Existing PO Files
	Invoking the msgmerge Program
	Input file location
	Operation mode
	Output file location
	Output file location in update mode
	Operation modifiers
	Input file syntax
	Output details
	Informative output

	Editing PO Files
	KDE's PO File Editor
	GNOME's PO File Editor
	Emacs's PO File Editor
	Completing GNU gettext Installation
	Main PO mode Commands
	Entry Positioning
	Normalizing Strings in Entries
	Translated Entries
	Fuzzy Entries
	Untranslated Entries
	Obsolete Entries
	Modifying Translations
	Modifying Comments
	Details of Sub Edition
	C Sources Context
	Consulting Auxiliary PO Files

	Using Translation Compendia
	Creating Compendia
	Concatenate PO Files
	Extract a Message Subset from a PO File

	Using Compendia
	Initialize a New Translation File
	Update an Existing Translation File

	Manipulating PO Files
	Invoking the msgcat Program
	Input file location
	Output file location
	Message selection
	Input file syntax
	Output details
	Informative output

	Invoking the msgconv Program
	Input file location
	Output file location
	Conversion target
	Input file syntax
	Output details
	Informative output

	Invoking the msggrep Program
	Input file location
	Output file location
	Message selection
	Input file syntax
	Output details
	Informative output
	Examples

	Invoking the msgfilter Program
	Input file location
	Output file location
	The filter
	Useful filter-options when the filter is sed
	Built-in filters
	Input file syntax
	Output details
	Informative output
	Examples

	Invoking the msguniq Program
	Input file location
	Output file location
	Message selection
	Input file syntax
	Output details
	Informative output

	Invoking the msgcomm Program
	Input file location
	Output file location
	Message selection
	Input file syntax
	Output details
	Informative output

	Invoking the msgcmp Program
	Input file location
	Operation modifiers
	Input file syntax
	Informative output

	Invoking the msgattrib Program
	Input file location
	Output file location
	Message selection
	Attribute manipulation
	Input file syntax
	Output details
	Informative output

	Invoking the msgen Program
	Input file location
	Output file location
	Input file syntax
	Output details
	Informative output

	Invoking the msgexec Program
	Input file location
	Input file syntax
	Informative output

	Highlighting parts of PO files
	The --color option
	The environment variable TERM
	The --style option
	Style rules for PO files
	Customizing less for viewing PO files

	Writing your own programs that process PO files

	Producing Binary MO Files
	Invoking the msgfmt Program
	Input file location
	Operation mode
	Output file location
	Output file location in Java mode
	Output file location in C# mode
	Output file location in Tcl mode
	Input file syntax
	Input file interpretation
	Output details
	Informative output

	Invoking the msgunfmt Program
	Operation mode
	Input file location
	Input file location in Java mode
	Input file location in C# mode
	Input file location in Tcl mode
	Output file location
	Output details
	Informative output

	The Format of GNU MO Files

	The Programmer's View
	About catgets
	The Interface
	Problems with the catgets Interface?!

	About gettext
	The Interface
	Solving Ambiguities
	Locating Message Catalog Files
	How to specify the output character set gettext uses
	Using contexts for solving ambiguities
	Additional functions for plural forms
	Optimization of the *gettext functions

	Comparing the Two Interfaces
	Using libintl.a in own programs
	Being a gettext grok
	Temporary Notes for the Programmers Chapter
	Temporary - Two Possible Implementations
	Temporary - About catgets
	Temporary - Why a single implementation
	Temporary - Notes

	The Translator's View
	Introduction 0
	Introduction 1
	Discussions
	Organization
	Central Coordination
	National Teams
	Sub-Cultures
	Organizational Ideas

	Mailing Lists

	Information Flow
	Translating plural forms
	Prioritizing messages: How to determine which messages to translate first

	The Maintainer's View
	Flat or Non-Flat Directory Structures
	Prerequisite Works
	Invoking the gettextize Program
	Files You Must Create or Alter
	POTFILES.in in po/
	LINGUAS in po/
	Makevars in po/
	Extending Makefile in po/
	configure.ac at top level
	config.guess, config.sub at top level
	mkinstalldirs at top level
	aclocal.m4 at top level
	acconfig.h at top level
	config.h.in at top level
	Makefile.in at top level
	Makefile.in in src/
	gettext.h in lib/

	Autoconf macros for use in configure.ac
	AM_GNU_GETTEXT in gettext.m4
	AM_GNU_GETTEXT_VERSION in gettext.m4
	AM_GNU_GETTEXT_NEED in gettext.m4
	AM_GNU_GETTEXT_INTL_SUBDIR in intldir.m4
	AM_PO_SUBDIRS in po.m4
	AM_XGETTEXT_OPTION in po.m4
	AM_ICONV in iconv.m4

	Integrating with CVS
	Avoiding version mismatch in distributed development
	Files to put under CVS version control
	Invoking the autopoint Program
	Options
	Informative output

	Creating a Distribution Tarball

	The Installer's and Distributor's View
	Other Programming Languages
	The Language Implementor's View
	The Programmer's View
	The Translator's View
	C Format Strings
	Objective C Format Strings
	Shell Format Strings
	Python Format Strings
	Lisp Format Strings
	Emacs Lisp Format Strings
	librep Format Strings
	Scheme Format Strings
	Smalltalk Format Strings
	Java Format Strings
	C# Format Strings
	awk Format Strings
	Object Pascal Format Strings
	YCP Format Strings
	Tcl Format Strings
	Perl Format Strings
	PHP Format Strings
	GCC internal Format Strings
	GFC internal Format Strings
	Qt Format Strings
	Qt Format Strings
	KDE Format Strings
	Boost Format Strings
	Lua Format Strings
	JavaScript Format Strings

	The Maintainer's View
	Individual Programming Languages
	C, C++, Objective C
	sh - Shell Script
	Preparing Shell Scripts for Internationalization
	Contents of gettext.sh
	Invoking the gettext program
	Invoking the ngettext program
	Invoking the envsubst program
	Invoking the eval_gettext function
	Invoking the eval_ngettext function

	bash - Bourne-Again Shell Script
	Python
	GNU clisp - Common Lisp
	GNU clisp C sources
	Emacs Lisp
	librep
	GNU guile - Scheme
	GNU Smalltalk
	Java
	C#
	GNU awk
	Pascal - Free Pascal Compiler
	wxWidgets library
	YCP - YaST2 scripting language
	Tcl - Tk's scripting language
	Perl
	General Problems Parsing Perl Code
	Which keywords will xgettext look for?
	How to Extract Hash Keys
	What are Strings And Quote-like Expressions?
	Invalid Uses Of String Interpolation
	Valid Uses Of String Interpolation
	When To Use Parentheses
	How To Grok with Long Lines
	Bugs, Pitfalls, And Things That Do Not Work

	PHP Hypertext Preprocessor
	Pike
	GNU Compiler Collection sources
	Lua
	JavaScript

	Internationalizable Data
	POT - Portable Object Template
	Resource String Table
	Glade - GNOME user interface description

	Concluding Remarks
	History of GNU gettext
	Related Readings

	Language Codes
	Usual Language Codes
	Rare Language Codes

	Country Codes
	Licenses
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	Appendix: How to Apply These Terms to Your New Programs

	GNU LESSER GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Libraries

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Program Index
	Option Index
	Variable Index
	PO Mode Index
	Autoconf Macro Index
	General Index

