
sed, a stream editor
version 4.2.2, 27 June 2015

by Ken Pizzini, Paolo Bonzini

Copyright c© 1998, 1999 Free Software Foundation, Inc.
This file documents version 4.2.2 of GNU sed, a stream editor.
Copyright c© 1998, 1999, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
This document is released under the terms of the GNU Free Documentation License as
published by the Free Software Foundation; either version 1.1, or (at your option) any later
version.
You should have received a copy of the GNU Free Documentation License along with GNU
sed; see the file ‘COPYING.DOC’. If not, write to the Free Software Foundation, 59 Temple
Place - Suite 330, Boston, MA 02110-1301, USA.
There are no Cover Texts and no Invariant Sections; this text, along with its equivalent in
the printed manual, constitutes the Title Page.
Published by the Free Software Foundation,
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Chapter 2: Invocation 1

sed, a stream editor

1 Introduction

sed is a stream editor. A stream editor is used to perform basic text transformations on an
input stream (a file or input from a pipeline). While in some ways similar to an editor which
permits scripted edits (such as ed), sed works by making only one pass over the input(s),
and is consequently more efficient. But it is sed’s ability to filter text in a pipeline which
particularly distinguishes it from other types of editors.

2 Invocation

Normally sed is invoked like this:

sed SCRIPT INPUTFILE...

The full format for invoking sed is:

sed OPTIONS... [SCRIPT] [INPUTFILE...]

If you do not specify INPUTFILE, or if INPUTFILE is ‘-’, sed filters the contents of the
standard input. The script is actually the first non-option parameter, which sed specially
considers a script and not an input file if (and only if) none of the other options specifies a
script to be executed, that is if neither of the ‘-e’ and ‘-f’ options is specified.

sed may be invoked with the following command-line options:

--version
Print out the version of sed that is being run and a copyright notice, then exit.

--help Print a usage message briefly summarizing these command-line options and the
bug-reporting address, then exit.

-n
--quiet
--silent By default, sed prints out the pattern space at the end of each cycle through

the script (see Section 3.1 [How sed works], page 4). These options disable this
automatic printing, and sed only produces output when explicitly told to via
the p command.

-e script

--expression=script
Add the commands in script to the set of commands to be run while processing
the input.

-f script-file

--file=script-file
Add the commands contained in the file script-file to the set of commands to
be run while processing the input.

Chapter 2: Invocation 2

-i[SUFFIX]
--in-place[=SUFFIX]

This option specifies that files are to be edited in-place. GNU sed does this
by creating a temporary file and sending output to this file rather than to the
standard output.1.
This option implies ‘-s’.
When the end of the file is reached, the temporary file is renamed to the output
file’s original name. The extension, if supplied, is used to modify the name
of the old file before renaming the temporary file, thereby making a backup
copy2).
This rule is followed: if the extension doesn’t contain a *, then it is appended
to the end of the current filename as a suffix; if the extension does contain one
or more * characters, then each asterisk is replaced with the current filename.
This allows you to add a prefix to the backup file, instead of (or in addition
to) a suffix, or even to place backup copies of the original files into another
directory (provided the directory already exists).
If no extension is supplied, the original file is overwritten without making a
backup.
For the DJGPP port, if only SFN support is available, the backup file name will
be truncated to the well known 8+3 length. This rule is followed: the suffix will
remove as many characters as necessary from a potentially existing extension
to fit into the 3 characters long space available for extensions; if a prefix is
given, it will shift to the right as many as characters are necessary to fit into
the 8 characters long space available for file names. As example, the following
command:

sed -ibck_*_up s/foobar/raboof/ filename.txt

will produce a backup file for filename.txt with bck_file._up as backup file
name. As can be seen the suffix _up is 3 characters long an overwrites the
file name’s extension ext completely. The prefix bck_ is 4 characters long and
occupies the place of the first 4 characters of the file name, so that the last 4
characters of the original file name are lost.

-l N

--line-length=N
Specify the default line-wrap length for the l command. A length of 0 (zero)
means to never wrap long lines. If not specified, it is taken to be 70.

--posix GNU sed includes several extensions to POSIX sed. In order to simplify writ-
ing portable scripts, this option disables all the extensions that this manual
documents, including additional commands. Most of the extensions accept sed
programs that are outside the syntax mandated by POSIX, but some of them
(such as the behavior of the N command described in see Chapter 7 [Report-
ing Bugs], page 32) actually violate the standard. If you want to disable only

1 This applies to commands such as =, a, c, i, l, p. You can still write to the standard output by using
the w or W commands together with the ‘/dev/stdout’ special file

2 Note that GNU sed creates the backup file whether or not any output is actually changed.

Chapter 2: Invocation 3

the latter kind of extension, you can set the POSIXLY_CORRECT variable to a
non-empty value.

-b
--binary This option is available on every platform, but is only effective where the oper-

ating system makes a distinction between text files and binary files. When such
a distinction is made—as is the case for MS-DOS, Windows, Cygwin—text files
are composed of lines separated by a carriage return and a line feed character,
and sed does not see the ending CR. When this option is specified, sed will
open input files in binary mode, thus not requesting this special processing and
considering lines to end at a line feed.

--follow-symlinks
This option is available only on platforms that support symbolic links and has
an effect only if option ‘-i’ is specified. In this case, if the file that is specified
on the command line is a symbolic link, sed will follow the link and edit the
ultimate destination of the link. The default behavior is to break the symbolic
link, so that the link destination will not be modified.

-r
--regexp-extended

Use extended regular expressions rather than basic regular expressions. Ex-
tended regexps are those that egrep accepts; they can be clearer because they
usually have less backslashes, but are a GNU extension and hence scripts that
use them are not portable. See Appendix A [Extended regular expressions],
page 34.

-s
--separate

By default, sed will consider the files specified on the command line as a single
continuous long stream. This GNU sed extension allows the user to consider
them as separate files: range addresses (such as ‘/abc/,/def/’) are not allowed
to span several files, line numbers are relative to the start of each file, $ refers
to the last line of each file, and files invoked from the R commands are rewound
at the start of each file.

-u
--unbuffered

Buffer both input and output as minimally as practical. (This is particularly
useful if the input is coming from the likes of ‘tail -f’, and you wish to see
the transformed output as soon as possible.)

-z
--null-data
--zero-terminated

Treat the input as a set of lines, each terminated by a zero byte (the ASCII
‘NUL’ character) instead of a newline. This option can be used with commands
like ‘sort -z’ and ‘find -print0’ to process arbitrary file names.

If no ‘-e’, ‘-f’, ‘--expression’, or ‘--file’ options are given on the command-line, then
the first non-option argument on the command line is taken to be the script to be executed.

Chapter 3: sed Programs 4

If any command-line parameters remain after processing the above, these parameters
are interpreted as the names of input files to be processed. A file name of ‘-’ refers to the
standard input stream. The standard input will be processed if no file names are specified.

3 sed Programs

A sed program consists of one or more sed commands, passed in by one or more of the
‘-e’, ‘-f’, ‘--expression’, and ‘--file’ options, or the first non-option argument if zero of
these options are used. This document will refer to “the” sed script; this is understood to
mean the in-order catenation of all of the scripts and script-files passed in.

Commands within a script or script-file can be separated by semicolons (;) or newlines
(ASCII 10). Some commands, due to their syntax, cannot be followed by semicolons working
as command separators and thus should be terminated with newlines or be placed at the
end of a script or script-file. Commands can also be preceded with optional non-significant
whitespace characters.

Each sed command consists of an optional address or address range, followed by a one-
character command name and any additional command-specific code.

3.1 How sed Works

sed maintains two data buffers: the active pattern space, and the auxiliary hold space.
Both are initially empty.

sed operates by performing the following cycle on each line of input: first, sed reads
one line from the input stream, removes any trailing newline, and places it in the pattern
space. Then commands are executed; each command can have an address associated to it:
addresses are a kind of condition code, and a command is only executed if the condition is
verified before the command is to be executed.

When the end of the script is reached, unless the ‘-n’ option is in use, the contents of
pattern space are printed out to the output stream, adding back the trailing newline if it
was removed.3 Then the next cycle starts for the next input line.

Unless special commands (like ‘D’) are used, the pattern space is deleted between two
cycles. The hold space, on the other hand, keeps its data between cycles (see commands
‘h’, ‘H’, ‘x’, ‘g’, ‘G’ to move data between both buffers).

3.2 Selecting lines with sed

Addresses in a sed script can be in any of the following forms:

number Specifying a line number will match only that line in the input. (Note that sed
counts lines continuously across all input files unless ‘-i’ or ‘-s’ options are
specified.)

3 Actually, if sed prints a line without the terminating newline, it will nevertheless print the missing newline
as soon as more text is sent to the same output stream, which gives the “least expected surprise” even
though it does not make commands like ‘sed -n p’ exactly identical to cat.

Chapter 3: sed Programs 5

first~step
This GNU extension matches every stepth line starting with line first. In par-
ticular, lines will be selected when there exists a non-negative n such that the
current line-number equals first + (n * step). Thus, to select the odd-numbered
lines, one would use 1~2; to pick every third line starting with the second, ‘2~3’
would be used; to pick every fifth line starting with the tenth, use ‘10~5’; and
‘50~0’ is just an obscure way of saying 50.

$ This address matches the last line of the last file of input, or the last line of
each file when the ‘-i’ or ‘-s’ options are specified.

/regexp/ This will select any line which matches the regular expression regexp. If regexp
itself includes any / characters, each must be escaped by a backslash (\).
The empty regular expression ‘//’ repeats the last regular expression match (the
same holds if the empty regular expression is passed to the s command). Note
that modifiers to regular expressions are evaluated when the regular expression
is compiled, thus it is invalid to specify them together with the empty regular
expression.

\%regexp%
(The % may be replaced by any other single character.)
This also matches the regular expression regexp, but allows one to use a different
delimiter than /. This is particularly useful if the regexp itself contains a lot of
slashes, since it avoids the tedious escaping of every /. If regexp itself includes
any delimiter characters, each must be escaped by a backslash (\).

/regexp/I
\%regexp%I

The I modifier to regular-expression matching is a GNU extension which causes
the regexp to be matched in a case-insensitive manner.

/regexp/M
\%regexp%M

The M modifier to regular-expression matching is a GNU sed extension which
directs GNU sed to match the regular expression in multi-line mode. The mod-
ifier causes ^ and $ to match respectively (in addition to the normal behavior)
the empty string after a newline, and the empty string before a newline. There
are special character sequences (\‘ and \’) which always match the beginning
or the end of the buffer. In addition, the period character does not match a
new-line character in multi-line mode.

If no addresses are given, then all lines are matched; if one address is given, then only
lines matching that address are matched.

An address range can be specified by specifying two addresses separated by a comma
(,). An address range matches lines starting from where the first address matches, and
continues until the second address matches (inclusively).

If the second address is a regexp, then checking for the ending match will start with the
line following the line which matched the first address: a range will always span at least
two lines (except of course if the input stream ends).

Chapter 3: sed Programs 6

If the second address is a number less than (or equal to) the line matching the first
address, then only the one line is matched.

GNU sed also supports some special two-address forms; all these are GNU extensions:

0,/regexp/
A line number of 0 can be used in an address specification like 0,/regexp/ so
that sed will try to match regexp in the first input line too. In other words,
0,/regexp/ is similar to 1,/regexp/, except that if addr2 matches the very
first line of input the 0,/regexp/ form will consider it to end the range, whereas
the 1,/regexp/ form will match the beginning of its range and hence make the
range span up to the second occurrence of the regular expression.
Note that this is the only place where the 0 address makes sense; there is no
0-th line and commands which are given the 0 address in any other way will
give an error.

addr1,+N Matches addr1 and the N lines following addr1.

addr1,~N Matches addr1 and the lines following addr1 until the next line whose input
line number is a multiple of N.

Appending the ! character to the end of an address specification negates the sense of
the match. That is, if the ! character follows an address range, then only lines which do
not match the address range will be selected. This also works for singleton addresses, and,
perhaps perversely, for the null address.

3.3 Overview of Regular Expression Syntax

To know how to use sed, people should understand regular expressions (regexp for short).
A regular expression is a pattern that is matched against a subject string from left to
right. Most characters are ordinary : they stand for themselves in a pattern, and match the
corresponding characters in the subject. As a trivial example, the pattern

The quick brown fox

matches a portion of a subject string that is identical to itself. The power of regular
expressions comes from the ability to include alternatives and repetitions in the pattern.
These are encoded in the pattern by the use of special characters, which do not stand for
themselves but instead are interpreted in some special way. Here is a brief description of
regular expression syntax as used in sed.

char A single ordinary character matches itself.

* Matches a sequence of zero or more instances of matches for the preceding
regular expression, which must be an ordinary character, a special character
preceded by \, a ., a grouped regexp (see below), or a bracket expression. As
a GNU extension, a postfixed regular expression can also be followed by *; for
example, a** is equivalent to a*. POSIX 1003.1-2001 says that * stands for
itself when it appears at the start of a regular expression or subexpression, but
many nonGNU implementations do not support this and portable scripts should
instead use * in these contexts.

\+ As *, but matches one or more. It is a GNU extension.

Chapter 3: sed Programs 7

\? As *, but only matches zero or one. It is a GNU extension.

\{i\} As *, but matches exactly i sequences (i is a decimal integer; for portability,
keep it between 0 and 255 inclusive).

\{i,j\} Matches between i and j, inclusive, sequences.

\{i,\} Matches more than or equal to i sequences.

\(regexp\)
Groups the inner regexp as a whole, this is used to:
• Apply postfix operators, like \(abcd\)*: this will search for zero or more

whole sequences of ‘abcd’, while abcd* would search for ‘abc’ followed
by zero or more occurrences of ‘d’. Note that support for \(abcd\)* is
required by POSIX 1003.1-2001, but many non-GNU implementations do
not support it and hence it is not universally portable.

• Use back references (see below).

. Matches any character, including newline.

^ Matches the null string at beginning of the pattern space, i.e. what appears
after the circumflex must appear at the beginning of the pattern space.
In most scripts, pattern space is initialized to the content of each line (see
Section 3.1 [How sed works], page 4). So, it is a useful simplification to think
of ^#include as matching only lines where ‘#include’ is the first thing on line—
if there are spaces before, for example, the match fails. This simplification is
valid as long as the original content of pattern space is not modified, for example
with an s command.
^ acts as a special character only at the beginning of the regular expression or
subexpression (that is, after \(or \|). Portable scripts should avoid ^ at the
beginning of a subexpression, though, as POSIX allows implementations that
treat ^ as an ordinary character in that context.

$ It is the same as ^, but refers to end of pattern space. $ also acts as a special
character only at the end of the regular expression or subexpression (that is,
before \) or \|), and its use at the end of a subexpression is not portable.

[list]
[^list] Matches any single character in list: for example, [aeiou] matches all vowels.

A list may include sequences like char1-char2 , which matches any character
between (inclusive) char1 and char2.
A leading ^ reverses the meaning of list, so that it matches any single character
not in list. To include] in the list, make it the first character (after the ^ if
needed), to include - in the list, make it the first or last; to include ^ put it
after the first character.
The characters $, *, ., [, and \ are normally not special within list. For exam-
ple, [*] matches either ‘\’ or ‘*’, because the \ is not special here. However,
strings like [.ch.], [=a=], and [:space:] are special within list and represent
collating symbols, equivalence classes, and character classes, respectively, and
[is therefore special within list when it is followed by ., =, or :. Also, when

Chapter 3: sed Programs 8

not in POSIXLY_CORRECT mode, special escapes like \n and \t are recognized
within list. See Section 3.9 [Escapes], page 15.

regexp1\|regexp2
Matches either regexp1 or regexp2. Use parentheses to use complex alternative
regular expressions. The matching process tries each alternative in turn, from
left to right, and the first one that succeeds is used. It is a GNU extension.

regexp1regexp2

Matches the concatenation of regexp1 and regexp2. Concatenation binds more
tightly than \|, ^, and $, but less tightly than the other regular expression
operators.

\digit Matches the digit-th \(...\) parenthesized subexpression in the regular expres-
sion. This is called a back reference. Subexpressions are implicity numbered
by counting occurrences of \(left-to-right.

\n Matches the newline character.

\char Matches char, where char is one of $, *, ., [, \, or ^. Note that the only
C-like backslash sequences that you can portably assume to be interpreted are
\n and \\; in particular \t is not portable, and matches a ‘t’ under most
implementations of sed, rather than a tab character.

Note that the regular expression matcher is greedy, i.e., matches are attempted from left
to right and, if two or more matches are possible starting at the same character, it selects
the longest.

Examples:

‘abcdef’ Matches ‘abcdef’.

‘a*b’ Matches zero or more ‘a’s followed by a single ‘b’. For example, ‘b’ or ‘aaaaab’.

‘a\?b’ Matches ‘b’ or ‘ab’.

‘a\+b\+’ Matches one or more ‘a’s followed by one or more ‘b’s: ‘ab’ is the shortest
possible match, but other examples are ‘aaaab’ or ‘abbbbb’ or ‘aaaaaabbbbbbb’.

‘.*’
‘.\+’ These two both match all the characters in a string; however, the first matches

every string (including the empty string), while the second matches only strings
containing at least one character.

‘^main.*(.*)’
This matches a string starting with ‘main’, followed by an opening and closing
parenthesis. The ‘n’, ‘(’ and ‘)’ need not be adjacent.

‘^#’ This matches a string beginning with ‘#’.

‘\\$’ This matches a string ending with a single backslash. The regexp contains two
backslashes for escaping.

‘\$’ Instead, this matches a string consisting of a single dollar sign, because it is
escaped.

Chapter 3: sed Programs 9

‘[a-zA-Z0-9]’
In the C locale, this matches any ASCII letters or digits.

‘[^ tab]\+’
(Here tab stands for a single tab character.) This matches a string of one or
more characters, none of which is a space or a tab. Usually this means a word.

‘^\(.*\)\n\1$’
This matches a string consisting of two equal substrings separated by a newline.

‘.\{9\}A$’
This matches nine characters followed by an ‘A’.

‘^.\{15\}A’
This matches the start of a string that contains 16 characters, the last of which
is an ‘A’.

3.4 Often-Used Commands

If you use sed at all, you will quite likely want to know these commands.

[No addresses allowed.]
The # character begins a comment; the comment continues until the next new-
line.
If you are concerned about portability, be aware that some implementations
of sed (which are not posix conformant) may only support a single one-line
comment, and then only when the very first character of the script is a #.
Warning: if the first two characters of the sed script are #n, then the ‘-n’ (no-
autoprint) option is forced. If you want to put a comment in the first line of
your script and that comment begins with the letter ‘n’ and you do not want
this behavior, then be sure to either use a capital ‘N’, or place at least one space
before the ‘n’.

q [exit-code]
This command only accepts a single address.
Exit sed without processing any more commands or input. Note that the cur-
rent pattern space is printed if auto-print is not disabled with the ‘-n’ options.
The ability to return an exit code from the sed script is a GNU sed extension.

d Delete the pattern space; immediately start next cycle.

p Print out the pattern space (to the standard output). This command is usually
only used in conjunction with the ‘-n’ command-line option.

n If auto-print is not disabled, print the pattern space, then, regardless, replace
the pattern space with the next line of input. If there is no more input then
sed exits without processing any more commands.

{ commands }
A group of commands may be enclosed between { and } characters. This is
particularly useful when you want a group of commands to be triggered by a
single address (or address-range) match.

Chapter 3: sed Programs 10

3.5 The s Command

The syntax of the s (as in substitute) command is ‘s/regexp/replacement/flags ’. The
/ characters may be uniformly replaced by any other single character within any given s
command. The / character (or whatever other character is used in its stead) can appear in
the regexp or replacement only if it is preceded by a \ character.

The s command is probably the most important in sed and has a lot of different options.
Its basic concept is simple: the s command attempts to match the pattern space against
the supplied regexp; if the match is successful, then that portion of the pattern space which
was matched is replaced with replacement.

The replacement can contain \n (n being a number from 1 to 9, inclusive) references,
which refer to the portion of the match which is contained between the nth \(and its
matching \). Also, the replacement can contain unescaped & characters which reference
the whole matched portion of the pattern space. Finally, as a GNU sed extension, you can
include a special sequence made of a backslash and one of the letters L, l, U, u, or E. The
meaning is as follows:

\L Turn the replacement to lowercase until a \U or \E is found,

\l Turn the next character to lowercase,

\U Turn the replacement to uppercase until a \L or \E is found,

\u Turn the next character to uppercase,

\E Stop case conversion started by \L or \U.

When the g flag is being used, case conversion does not propagate from one occurrence
of the regular expression to another. For example, when the following command is executed
with ‘a-b-’ in pattern space:

s/\(b\?\)-/x\u\1/g

the output is ‘axxB’. When replacing the first ‘-’, the ‘\u’ sequence only affects the empty
replacement of ‘\1’. It does not affect the x character that is added to pattern space when
replacing b- with xB.

On the other hand, \l and \u do affect the remainder of the replacement text if they are
followed by an empty substitution. With ‘a-b-’ in pattern space, the following command:

s/\(b\?\)-/\u\1x/g

will replace ‘-’ with ‘X’ (uppercase) and ‘b-’ with ‘Bx’. If this behavior is undesirable, you
can prevent it by adding a ‘\E’ sequence—after ‘\1’ in this case.

To include a literal \, &, or newline in the final replacement, be sure to precede the
desired \, &, or newline in the replacement with a \.

The s command can be followed by zero or more of the following flags:

g Apply the replacement to all matches to the regexp, not just the first.

number Only replace the numberth match of the regexp.
Note: the posix standard does not specify what should happen when you mix
the g and number modifiers, and currently there is no widely agreed upon
meaning across sed implementations. For GNU sed, the interaction is defined
to be: ignore matches before the numberth, and then match and replace all
matches from the numberth on.

Chapter 3: sed Programs 11

p If the substitution was made, then print the new pattern space.
Note: when both the p and e options are specified, the relative ordering of the
two produces very different results. In general, ep (evaluate then print) is what
you want, but operating the other way round can be useful for debugging. For
this reason, the current version of GNU sed interprets specially the presence of
p options both before and after e, printing the pattern space before and after
evaluation, while in general flags for the s command show their effect just once.
This behavior, although documented, might change in future versions.

w file-name

If the substitution was made, then write out the result to the named file.
As a GNU sed extension, two special values of file-name are supported:
‘/dev/stderr’, which writes the result to the standard error, and
‘/dev/stdout’, which writes to the standard output.4

e This command allows one to pipe input from a shell command into pattern
space. If a substitution was made, the command that is found in pattern space
is executed and pattern space is replaced with its output. A trailing newline
is suppressed; results are undefined if the command to be executed contains a
nul character. This is a GNU sed extension.

I
i The I modifier to regular-expression matching is a GNU extension which makes

sed match regexp in a case-insensitive manner.

M
m The M modifier to regular-expression matching is a GNU sed extension which

directs GNU sed to match the regular expression in multi-line mode. The mod-
ifier causes ^ and $ to match respectively (in addition to the normal behavior)
the empty string after a newline, and the empty string before a newline. There
are special character sequences (\‘ and \’) which always match the beginning
or the end of the buffer. In addition, the period character does not match a
new-line character in multi-line mode.

3.6 Less Frequently-Used Commands

Though perhaps less frequently used than those in the previous section, some very small
yet useful sed scripts can be built with these commands.

y/source-chars/dest-chars/
(The / characters may be uniformly replaced by any other single character
within any given y command.)
Transliterate any characters in the pattern space which match any of the source-
chars with the corresponding character in dest-chars.
Instances of the / (or whatever other character is used in its stead), \, or
newlines can appear in the source-chars or dest-chars lists, provide that each
instance is escaped by a \. The source-chars and dest-chars lists must contain
the same number of characters (after de-escaping).

4 This is equivalent to p unless the ‘-i’ option is being used.

Chapter 3: sed Programs 12

a\
text As a GNU extension, this command accepts two addresses.

Queue the lines of text which follow this command (each but the last ending
with a \, which are removed from the output) to be output at the end of the
current cycle, or when the next input line is read.

Escape sequences in text are processed, so you should use \\ in text to print a
single backslash.

As a GNU extension, if between the a and the newline there is other than
a whitespace-\ sequence, then the text of this line, starting at the first non-
whitespace character after the a, is taken as the first line of the text block.
(This enables a simplification in scripting a one-line add.) This extension also
works with the i and c commands.

i\
text As a GNU extension, this command accepts two addresses.

Immediately output the lines of text which follow this command (each but the
last ending with a \, which are removed from the output).

c\
text Delete the lines matching the address or address-range, and output the lines of

text which follow this command (each but the last ending with a \, which are
removed from the output) in place of the last line (or in place of each line, if no
addresses were specified). A new cycle is started after this command is done,
since the pattern space will have been deleted.

= As a GNU extension, this command accepts two addresses.

Print out the current input line number (with a trailing newline).

l n Print the pattern space in an unambiguous form: non-printable characters (and
the \ character) are printed in C-style escaped form; long lines are split, with
a trailing \ character to indicate the split; the end of each line is marked with
a $.

n specifies the desired line-wrap length; a length of 0 (zero) means to never
wrap long lines. If omitted, the default as specified on the command line is
used. The n parameter is a GNU sed extension.

r filename

As a GNU extension, this command accepts two addresses.

Queue the contents of filename to be read and inserted into the output stream
at the end of the current cycle, or when the next input line is read. Note that
if filename cannot be read, it is treated as if it were an empty file, without any
error indication.

As a GNU sed extension, the special value ‘/dev/stdin’ is supported for the
file name, which reads the contents of the standard input.

Chapter 3: sed Programs 13

w filename

Write the pattern space to filename. As a GNU sed extension, two special
values of file-name are supported: ‘/dev/stderr’, which writes the result to
the standard error, and ‘/dev/stdout’, which writes to the standard output.5

The file will be created (or truncated) before the first input line is read; all w
commands (including instances of the w flag on successful s commands) which
refer to the same filename are output without closing and reopening the file.

D If pattern space contains no newline, start a normal new cycle as if the d
command was issued. Otherwise, delete text in the pattern space up to the first
newline, and restart cycle with the resultant pattern space, without reading a
new line of input.

N Add a newline to the pattern space, then append the next line of input to the
pattern space. If there is no more input then sed exits without processing any
more commands.

P Print out the portion of the pattern space up to the first newline.

h Replace the contents of the hold space with the contents of the pattern space.

H Append a newline to the contents of the hold space, and then append the
contents of the pattern space to that of the hold space.

g Replace the contents of the pattern space with the contents of the hold space.

G Append a newline to the contents of the pattern space, and then append the
contents of the hold space to that of the pattern space.

x Exchange the contents of the hold and pattern spaces.

3.7 Commands for sed gurus

In most cases, use of these commands indicates that you are probably better off program-
ming in something like awk or Perl. But occasionally one is committed to sticking with sed,
and these commands can enable one to write quite convoluted scripts.

: label [No addresses allowed.]

Specify the location of label for branch commands. In all other respects, a
no-op.

b label Unconditionally branch to label. The label may be omitted, in which case the
next cycle is started.

t label Branch to label only if there has been a successful substitution since the last
input line was read or conditional branch was taken. The label may be omitted,
in which case the next cycle is started.

5 This is equivalent to p unless the ‘-i’ option is being used.

Chapter 3: sed Programs 14

3.8 Commands Specific to GNU sed

These commands are specific to GNU sed, so you must use them with care and only when
you are sure that hindering portability is not evil. They allow you to check for GNU sed
extensions or to do tasks that are required quite often, yet are unsupported by standard
seds.

e [command]
This command allows one to pipe input from a shell command into pattern
space. Without parameters, the e command executes the command that is
found in pattern space and replaces the pattern space with the output; a trailing
newline is suppressed.

If a parameter is specified, instead, the e command interprets it as a command
and sends its output to the output stream. The command can run across
multiple lines, all but the last ending with a back-slash.

In both cases, the results are undefined if the command to be executed contains
a nul character.

Note that, unlike the r command, the output of the command will be printed
immediately; the r command instead delays the output to the end of the current
cycle.

F Print out the file name of the current input file (with a trailing newline).

L n This GNU sed extension fills and joins lines in pattern space to produce output
lines of (at most) n characters, like fmt does; if n is omitted, the default as
specified on the command line is used. This command is considered a failed
experiment and unless there is enough request (which seems unlikely) will be
removed in future versions.

Q [exit-code]
This command only accepts a single address.

This command is the same as q, but will not print the contents of pattern space.
Like q, it provides the ability to return an exit code to the caller.

This command can be useful because the only alternative ways to accomplish
this apparently trivial function are to use the ‘-n’ option (which can unneces-
sarily complicate your script) or resorting to the following snippet, which wastes
time by reading the whole file without any visible effect:

:eat
$d Quit silently on the last line
N Read another line, silently
g Overwrite pattern space each time to save memory
b eat

R filename

Queue a line of filename to be read and inserted into the output stream at
the end of the current cycle, or when the next input line is read. Note that if
filename cannot be read, or if its end is reached, no line is appended, without
any error indication.

Chapter 3: sed Programs 15

As with the r command, the special value ‘/dev/stdin’ is supported for the
file name, which reads a line from the standard input.

T label Branch to label only if there have been no successful substitutions since the
last input line was read or conditional branch was taken. The label may be
omitted, in which case the next cycle is started.

v version

This command does nothing, but makes sed fail if GNU sed extensions are
not supported, simply because other versions of sed do not implement it. In
addition, you can specify the version of sed that your script requires, such as
4.0.5. The default is 4.0 because that is the first version that implemented
this command.
This command enables all GNU extensions even if POSIXLY_CORRECT is set in
the environment.

W filename

Write to the given filename the portion of the pattern space up to the first
newline. Everything said under the w command about file handling holds here
too.

z This command empties the content of pattern space. It is usually the same as
‘s/.*//’, but is more efficient and works in the presence of invalid multibyte
sequences in the input stream. posix mandates that such sequences are not
matched by ‘.’, so that there is no portable way to clear sed’s buffers in the
middle of the script in most multibyte locales (including UTF-8 locales).

3.9 GNU Extensions for Escapes in Regular Expressions

Until this chapter, we have only encountered escapes of the form ‘\^’, which tell sed not to
interpret the circumflex as a special character, but rather to take it literally. For example,
‘*’ matches a single asterisk rather than zero or more backslashes.

This chapter introduces another kind of escape6—that is, escapes that are applied to a
character or sequence of characters that ordinarily are taken literally, and that sed replaces
with a special character. This provides a way of encoding non-printable characters in
patterns in a visible manner. There is no restriction on the appearance of non-printing
characters in a sed script but when a script is being prepared in the shell or by text editing,
it is usually easier to use one of the following escape sequences than the binary character it
represents:

The list of these escapes is:

\a Produces or matches a bel character, that is an “alert” (ascii 7).

\f Produces or matches a form feed (ascii 12).

\n Produces or matches a newline (ascii 10).

\r Produces or matches a carriage return (ascii 13).

6 All the escapes introduced here are GNU extensions, with the exception of \n. In basic regular expression
mode, setting POSIXLY_CORRECT disables them inside bracket expressions.

Chapter 4: Some Sample Scripts 16

\t Produces or matches a horizontal tab (ascii 9).

\v Produces or matches a so called “vertical tab” (ascii 11).

\cx Produces or matches Control-x , where x is any character. The precise effect
of ‘\cx ’ is as follows: if x is a lower case letter, it is converted to upper case.
Then bit 6 of the character (hex 40) is inverted. Thus ‘\cz’ becomes hex 1A,
but ‘\c{’ becomes hex 3B, while ‘\c;’ becomes hex 7B.

\dxxx Produces or matches a character whose decimal ascii value is xxx.

\oxxx Produces or matches a character whose octal ascii value is xxx.

\xxx Produces or matches a character whose hexadecimal ascii value is xx.

‘\b’ (backspace) was omitted because of the conflict with the existing “word boundary”
meaning.

Other escapes match a particular character class and are valid only in regular expressions:

\w Matches any “word” character. A “word” character is any letter or digit or the
underscore character.

\W Matches any “non-word” character.

\b Matches a word boundary; that is it matches if the character to the left is a
“word” character and the character to the right is a “non-word” character, or
vice-versa.

\B Matches everywhere but on a word boundary; that is it matches if the character
to the left and the character to the right are either both “word” characters or
both “non-word” characters.

\‘ Matches only at the start of pattern space. This is different from ^ in multi-line
mode.

\’ Matches only at the end of pattern space. This is different from $ in multi-line
mode.

4 Some Sample Scripts

Here are some sed scripts to guide you in the art of mastering sed.

4.1 Centering Lines

This script centers all lines of a file on a 80 columns width. To change that width, the number
in \{...\} must be replaced, and the number of added spaces also must be changed.

Note how the buffer commands are used to separate parts in the regular expressions to
be matched—this is a common technique.

#!/usr/bin/sed -f

Chapter 4: Some Sample Scripts 17

Put 80 spaces in the buffer
1 {
x
s/^$/ /
s/^.*$/&&&&&&&&/
x

}

del leading and trailing spaces
y/tab/ /
s/^ *//
s/ *$//

add a newline and 80 spaces to end of line
G

keep first 81 chars (80 + a newline)
s/^\(.\{81\}\).*$/\1/

\2 matches half of the spaces, which are moved to the beginning
s/^\(.*\)\n\(.*\)\2/\2\1/

4.2 Increment a Number

This script is one of a few that demonstrate how to do arithmetic in sed. This is indeed
possible,7 but must be done manually.

To increment one number you just add 1 to last digit, replacing it by the following digit.
There is one exception: when the digit is a nine the previous digits must be also incremented
until you don’t have a nine.

This solution by Bruno Haible is very clever and smart because it uses a single buffer; if
you don’t have this limitation, the algorithm used in Section 4.7 [cat -n], page 22, is faster.
It works by replacing trailing nines with an underscore, then using multiple s commands
to increment the last digit, and then again substituting underscores with zeros.

#!/usr/bin/sed -f

/[^0-9]/ d

replace all trailing 9s by _ (any other character except digits, could
be used)
:d
s/9\(_*\)$/_\1/
td

7 sed guru Greg Ubben wrote an implementation of the dc rpn calculator! It is distributed together with
sed.

Chapter 4: Some Sample Scripts 18

incr last digit only. The first line adds a most-significant
digit of 1 if we have to add a digit.

s/^\(_*\)$/1\1/; tn
s/8\(_*\)$/9\1/; tn
s/7\(_*\)$/8\1/; tn
s/6\(_*\)$/7\1/; tn
s/5\(_*\)$/6\1/; tn
s/4\(_*\)$/5\1/; tn
s/3\(_*\)$/4\1/; tn
s/2\(_*\)$/3\1/; tn
s/1\(_*\)$/2\1/; tn
s/0\(_*\)$/1\1/; tn

:n
y/_/0/

4.3 Rename Files to Lower Case

This is a pretty strange use of sed. We transform text, and transform it to be shell com-
mands, then just feed them to shell. Don’t worry, even worse hacks are done when using
sed; I have seen a script converting the output of date into a bc program!

The main body of this is the sed script, which remaps the name from lower to upper
(or vice-versa) and even checks out if the remapped name is the same as the original name.
Note how the script is parameterized using shell variables and proper quoting.

#! /bin/sh
rename files to lower/upper case...
#
usage:
move-to-lower *
move-to-upper *
or
move-to-lower -R .
move-to-upper -R .
#

help()
{

cat << eof
Usage: $0 [-n] [-r] [-h] files...

-n do nothing, only see what would be done
-R recursive (use find)
-h this message
files files to remap to lower case

Chapter 4: Some Sample Scripts 19

Examples:
$0 -n * (see if everything is ok, then...)
$0 *

$0 -R .

eof
}

apply_cmd=’sh’
finder=’echo "$@" | tr " " "\n"’
files_only=

while :
do

case "$1" in
-n) apply_cmd=’cat’ ;;
-R) finder=’find "$@" -type f’;;
-h) help ; exit 1 ;;
*) break ;;

esac
shift

done

if [-z "$1"]; then
echo Usage: $0 [-h] [-n] [-r] files...
exit 1

fi

LOWER=’abcdefghijklmnopqrstuvwxyz’
UPPER=’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

case ‘basename $0‘ in
upper) TO=$UPPER; FROM=$LOWER ;;
*) FROM=$UPPER; TO=$LOWER ;;

esac

eval $finder | sed -n ’

remove all trailing slashes
s/\/*$//

add ./ if there is no path, only a filename
/\//! s/^/.\//

save path+filename
h

Chapter 4: Some Sample Scripts 20

remove path
s/.*\///

do conversion only on filename
y/’$FROM’/’$TO’/

now line contains original path+file, while
hold space contains the new filename
x

add converted file name to line, which now contains
path/file-name\nconverted-file-name
G

check if converted file name is equal to original file name,
if it is, do not print anything
/^.*\/\(.*\)\n\1/b

escape special characters for the shell
s/["$‘\\]/\\&/g

now, transform path/fromfile\n, into
mv path/fromfile path/tofile and print it
s/^\(.*\/\)\(.*\)\n\(.*\)$/mv "\1\2" "\1\3"/p

’ | $apply_cmd

4.4 Print bash Environment

This script strips the definition of the shell functions from the output of the set Bourne-shell
command.

#!/bin/sh

set | sed -n ’
:x

if no occurrence of ‘=()’ print and load next line
/=()/! { p; b; }
/ () $/! { p; b; }

possible start of functions section
save the line in case this is a var like FOO="() "
h

Chapter 4: Some Sample Scripts 21

if the next line has a brace, we quit because
nothing comes after functions
n
/^{/ q

print the old line
x; p

work on the new line now
x; bx
’

4.5 Reverse Characters of Lines

This script can be used to reverse the position of characters in lines. The technique moves
two characters at a time, hence it is faster than more intuitive implementations.

Note the tx command before the definition of the label. This is often needed to reset
the flag that is tested by the t command.

Imaginative readers will find uses for this script. An example is reversing the output of
banner.8

#!/usr/bin/sed -f

/../! b

Reverse a line. Begin embedding the line between two newlines
s/^.*$/\
&\
/

Move first character at the end. The regexp matches until
there are zero or one characters between the markers
tx
:x
s/\(\n.\)\(.*\)\(.\n\)/\3\2\1/
tx

Remove the newline markers
s/\n//g

8 This requires another script to pad the output of banner; for example

#! /bin/sh

banner -w $1 $2 $3 $4 |

sed -e :a -e ’/^.\{0,’$1’\}$/ { s/$/ /; ba; }’ |

~/sedscripts/reverseline.sed

Chapter 4: Some Sample Scripts 22

4.6 Reverse Lines of Files

This one begins a series of totally useless (yet interesting) scripts emulating various Unix
commands. This, in particular, is a tac workalike.

Note that on implementations other than GNU sed this script might easily overflow
internal buffers.

#!/usr/bin/sed -nf

reverse all lines of input, i.e. first line became last, ...

from the second line, the buffer (which contains all previous lines)
is *appended* to current line, so, the order will be reversed
1! G

on the last line we’re done -- print everything
$ p

store everything on the buffer again
h

4.7 Numbering Lines

This script replaces ‘cat -n’; in fact it formats its output exactly like GNU cat does.

Of course this is completely useless and for two reasons: first, because somebody else
did it in C, second, because the following Bourne-shell script could be used for the same
purpose and would be much faster:

#! /bin/sh
sed -e "=" $@ | sed -e ’
s/^/ /
N
s/^ *\(......\)\n/\1 /

’

It uses sed to print the line number, then groups lines two by two using N. Of course,
this script does not teach as much as the one presented below.

The algorithm used for incrementing uses both buffers, so the line is printed as soon as
possible and then discarded. The number is split so that changing digits go in a buffer and
unchanged ones go in the other; the changed digits are modified in a single step (using a
y command). The line number for the next line is then composed and stored in the hold
space, to be used in the next iteration.

#!/usr/bin/sed -nf

Prime the pump on the first line
x
/^$/ s/^.*$/1/

Chapter 4: Some Sample Scripts 23

Add the correct line number before the pattern
G
h

Format it and print it
s/^/ /
s/^ *\(......\)\n/\1 /p

Get the line number from hold space; add a zero
if we’re going to add a digit on the next line
g
s/\n.*$//
/^9*$/ s/^/0/

separate changing/unchanged digits with an x
s/.9*$/x&/

keep changing digits in hold space
h
s/^.*x//
y/0123456789/1234567890/
x

keep unchanged digits in pattern space
s/x.*$//

compose the new number, remove the newline implicitly added by G
G
s/\n//
h

4.8 Numbering Non-blank Lines

Emulating ‘cat -b’ is almost the same as ‘cat -n’—we only have to select which lines are
to be numbered and which are not.

The part that is common to this script and the previous one is not commented to show
how important it is to comment sed scripts properly...

#!/usr/bin/sed -nf

/^$/ {
p
b

}

Chapter 4: Some Sample Scripts 24

Same as cat -n from now
x
/^$/ s/^.*$/1/
G
h
s/^/ /
s/^ *\(......\)\n/\1 /p
x
s/\n.*$//
/^9*$/ s/^/0/
s/.9*$/x&/
h
s/^.*x//
y/0123456789/1234567890/
x
s/x.*$//
G
s/\n//
h

4.9 Counting Characters

This script shows another way to do arithmetic with sed. In this case we have to add
possibly large numbers, so implementing this by successive increments would not be feasible
(and possibly even more complicated to contrive than this script).

The approach is to map numbers to letters, kind of an abacus implemented with sed.
‘a’s are units, ‘b’s are tens and so on: we simply add the number of characters on the current
line as units, and then propagate the carry to tens, hundreds, and so on.

As usual, running totals are kept in hold space.

On the last line, we convert the abacus form back to decimal. For the sake of variety,
this is done with a loop rather than with some 80 s commands9: first we convert units,
removing ‘a’s from the number; then we rotate letters so that tens become ‘a’s, and so on
until no more letters remain.

#!/usr/bin/sed -nf

Add n+1 a’s to hold space (+1 is for the newline)
s/./a/g
H
x
s/\n/a/

9 Some implementations have a limit of 199 commands per script

Chapter 4: Some Sample Scripts 25

Do the carry. The t’s and b’s are not necessary,
but they do speed up the thing
t a
: a; s/aaaaaaaaaa/b/g; t b; b done
: b; s/bbbbbbbbbb/c/g; t c; b done
: c; s/cccccccccc/d/g; t d; b done
: d; s/dddddddddd/e/g; t e; b done
: e; s/eeeeeeeeee/f/g; t f; b done
: f; s/ffffffffff/g/g; t g; b done
: g; s/gggggggggg/h/g; t h; b done
: h; s/hhhhhhhhhh//g

: done
$! {
h
b

}

On the last line, convert back to decimal

: loop
/a/! s/[b-h]*/&0/
s/aaaaaaaaa/9/
s/aaaaaaaa/8/
s/aaaaaaa/7/
s/aaaaaa/6/
s/aaaaa/5/
s/aaaa/4/
s/aaa/3/
s/aa/2/
s/a/1/

: next
y/bcdefgh/abcdefg/
/[a-h]/ b loop
p

4.10 Counting Words

This script is almost the same as the previous one, once each of the words on the line is
converted to a single ‘a’ (in the previous script each letter was changed to an ‘a’).

It is interesting that real wc programs have optimized loops for ‘wc -c’, so they are
much slower at counting words rather than characters. This script’s bottleneck, instead, is
arithmetic, and hence the word-counting one is faster (it has to manage smaller numbers).

Again, the common parts are not commented to show the importance of commenting
sed scripts.

#!/usr/bin/sed -nf

Chapter 4: Some Sample Scripts 26

Convert words to a’s
s/[tab][tab]*/ /g
s/^/ /
s/ [^][^]*/a /g
s/ //g

Append them to hold space
H
x
s/\n//

From here on it is the same as in wc -c.
/aaaaaaaaaa/! bx; s/aaaaaaaaaa/b/g
/bbbbbbbbbb/! bx; s/bbbbbbbbbb/c/g
/cccccccccc/! bx; s/cccccccccc/d/g
/dddddddddd/! bx; s/dddddddddd/e/g
/eeeeeeeeee/! bx; s/eeeeeeeeee/f/g
/ffffffffff/! bx; s/ffffffffff/g/g
/gggggggggg/! bx; s/gggggggggg/h/g
s/hhhhhhhhhh//g
:x
$! { h; b; }
:y
/a/! s/[b-h]*/&0/
s/aaaaaaaaa/9/
s/aaaaaaaa/8/
s/aaaaaaa/7/
s/aaaaaa/6/
s/aaaaa/5/
s/aaaa/4/
s/aaa/3/
s/aa/2/
s/a/1/
y/bcdefgh/abcdefg/
/[a-h]/ by
p

4.11 Counting Lines

No strange things are done now, because sed gives us ‘wc -l’ functionality for free!!! Look:

#!/usr/bin/sed -nf
$=

Chapter 4: Some Sample Scripts 27

4.12 Printing the First Lines

This script is probably the simplest useful sed script. It displays the first 10 lines of input;
the number of displayed lines is right before the q command.

#!/usr/bin/sed -f
10q

4.13 Printing the Last Lines

Printing the last n lines rather than the first is more complex but indeed possible. n is
encoded in the second line, before the bang character.

This script is similar to the tac script in that it keeps the final output in the hold space
and prints it at the end:

#!/usr/bin/sed -nf

1! {; H; g; }
1,10 !s/[^\n]*\n//
$p
h

Mainly, the scripts keeps a window of 10 lines and slides it by adding a line and deleting
the oldest (the substitution command on the second line works like a D command but does
not restart the loop).

The “sliding window” technique is a very powerful way to write efficient and complex
sed scripts, because commands like P would require a lot of work if implemented manually.

To introduce the technique, which is fully demonstrated in the rest of this chapter and
is based on the N, P and D commands, here is an implementation of tail using a simple
“sliding window.”

This looks complicated but in fact the working is the same as the last script: after we
have kicked in the appropriate number of lines, however, we stop using the hold space to
keep inter-line state, and instead use N and D to slide pattern space by one line:

#!/usr/bin/sed -f

1h
2,10 {; H; g; }
$q
1,9d
N
D

Note how the first, second and fourth line are inactive after the first ten lines of input.
After that, all the script does is: exiting on the last line of input, appending the next input
line to pattern space, and removing the first line.

4.14 Make Duplicate Lines Unique

This is an example of the art of using the N, P and D commands, probably the most difficult
to master.

Chapter 4: Some Sample Scripts 28

#!/usr/bin/sed -f
h

:b
On the last line, print and exit
$b
N
/^\(.*\)\n\1$/ {

The two lines are identical. Undo the effect of
the n command.
g
bb

}

If the N command had added the last line, print and exit
$b

The lines are different; print the first and go
back working on the second.
P
D

As you can see, we mantain a 2-line window using P and D. This technique is often used
in advanced sed scripts.

4.15 Print Duplicated Lines of Input

This script prints only duplicated lines, like ‘uniq -d’.

#!/usr/bin/sed -nf

$b
N
/^\(.*\)\n\1$/ {

Print the first of the duplicated lines
s/.*\n//
p

Loop until we get a different line
:b
$b
N
/^\(.*\)\n\1$/ {

s/.*\n//
bb

}
}

Chapter 4: Some Sample Scripts 29

The last line cannot be followed by duplicates
$b

Found a different one. Leave it alone in the pattern space
and go back to the top, hunting its duplicates
D

4.16 Remove All Duplicated Lines

This script prints only unique lines, like ‘uniq -u’.

#!/usr/bin/sed -f

Search for a duplicate line --- until that, print what you find.
$b
N
/^\(.*\)\n\1$/ ! {

P
D

}

:c
Got two equal lines in pattern space. At the
end of the file we simply exit
$d

Else, we keep reading lines with N until we
find a different one
s/.*\n//
N
/^\(.*\)\n\1$/ {

bc
}

Remove the last instance of the duplicate line
and go back to the top
D

4.17 Squeezing Blank Lines

As a final example, here are three scripts, of increasing complexity and speed, that imple-
ment the same function as ‘cat -s’, that is squeezing blank lines.

The first leaves a blank line at the beginning and end if there are some already.

#!/usr/bin/sed -f

Chapter 4: Some Sample Scripts 30

on empty lines, join with next
Note there is a star in the regexp
:x
/^\n*$/ {
N
bx
}

now, squeeze all ’\n’, this can be also done by:
s/^\(\n\)*/\1/
s/\n*/\
/

This one is a bit more complex and removes all empty lines at the beginning. It does
leave a single blank line at end if one was there.

#!/usr/bin/sed -f

delete all leading empty lines
1,/^./{
/./!d
}

on an empty line we remove it and all the following
empty lines, but one
:x
/./!{
N
s/^\n$//
tx
}

This removes leading and trailing blank lines. It is also the fastest. Note that loops are
completely done with n and b, without relying on sed to restart the the script automatically
at the end of a line.

#!/usr/bin/sed -nf

delete all (leading) blanks
/./!d

get here: so there is a non empty
:x
print it
p
get next
n
got chars? print it again, etc...
/./bx

Chapter 7: Reporting Bugs 31

no, don’t have chars: got an empty line
:z
get next, if last line we finish here so no trailing
empty lines are written
n
also empty? then ignore it, and get next... this will
remove ALL empty lines
/./!bz

all empty lines were deleted/ignored, but we have a non empty. As
what we want to do is to squeeze, insert a blank line artificially
i\

bx

5 GNU sed’s Limitations and Non-limitations

For those who want to write portable sed scripts, be aware that some implementations have
been known to limit line lengths (for the pattern and hold spaces) to be no more than 4000
bytes. The posix standard specifies that conforming sed implementations shall support at
least 8192 byte line lengths. GNU sed has no built-in limit on line length; as long as it can
malloc() more (virtual) memory, you can feed or construct lines as long as you like.

However, recursion is used to handle subpatterns and indefinite repetition. This means
that the available stack space may limit the size of the buffer that can be processed by
certain patterns.

6 Other Resources for Learning About sed

In addition to several books that have been written about sed (either specifically or as
chapters in books which discuss shell programming), one can find out more about sed
(including suggestions of a few books) from the FAQ for the sed-users mailing list, available
from:

http://sed.sourceforge.net/sedfaq.html

Also of interest are http://www.student.northpark.edu/pemente/sed/index.htm
and http://sed.sf.net/grabbag, which include sed tutorials and other sed-related
goodies.

The sed-users mailing list itself maintained by Sven Guckes. To subscribe, visit
http://groups.yahoo.com and search for the sed-users mailing list.

http://sed.sourceforge.net/sedfaq.html
http://www.student.northpark.edu/pemente/sed/index.htm
http://sed.sf.net/grabbag
http://groups.yahoo.com

Chapter 7: Reporting Bugs 32

7 Reporting Bugs

Email bug reports to bug-sed@gnu.org. Also, please include the output of ‘sed --version’
in the body of your report if at all possible.

Please do not send a bug report like this:

while building frobme-1.3.4
$ configure
error sed: file sedscr line 1: Unknown option to ’s’

If GNU sed doesn’t configure your favorite package, take a few extra minutes to identify
the specific problem and make a stand-alone test case. Unlike other programs such as C
compilers, making such test cases for sed is quite simple.

A stand-alone test case includes all the data necessary to perform the test, and the
specific invocation of sed that causes the problem. The smaller a stand-alone test case is,
the better. A test case should not involve something as far removed from sed as “try to
configure frobme-1.3.4”. Yes, that is in principle enough information to look for the bug,
but that is not a very practical prospect.

Here are a few commonly reported bugs that are not bugs.

N command on the last line
Most versions of sed exit without printing anything when the N command is
issued on the last line of a file. GNU sed prints pattern space before exiting
unless of course the -n command switch has been specified. This choice is by
design.

For example, the behavior of

sed N foo bar

would depend on whether foo has an even or an odd number of lines10. Or,
when writing a script to read the next few lines following a pattern match,
traditional implementations of sed would force you to write something like

/foo/{ $!N; $!N; $!N; $!N; $!N; $!N; $!N; $!N; $!N }

instead of just

/foo/{ N;N;N;N;N;N;N;N;N; }

In any case, the simplest workaround is to use $d;N in scripts that rely on the
traditional behavior, or to set the POSIXLY_CORRECT variable to a non-empty
value.

Regex syntax clashes (problems with backslashes)
sed uses the posix basic regular expression syntax. According to the standard,
the meaning of some escape sequences is undefined in this syntax; notable in
the case of sed are \|, \+, \?, \‘, \’, \<, \>, \b, \B, \w, and \W.

As in all GNU programs that use posix basic regular expressions, sed interprets
these escape sequences as special characters. So, x\+ matches one or more
occurrences of ‘x’. abc\|def matches either ‘abc’ or ‘def’.

10 which is the actual “bug” that prompted the change in behavior

mailto:bug-sed@gnu.org

Chapter 7: Reporting Bugs 33

This syntax may cause problems when running scripts written for other seds.
Some sed programs have been written with the assumption that \| and \+
match the literal characters | and +. Such scripts must be modified by removing
the spurious backslashes if they are to be used with modern implementations
of sed, like GNU sed.
On the other hand, some scripts use s|abc\|def||g to remove occurrences of
either abc or def. While this worked until sed 4.0.x, newer versions interpret
this as removing the string abc|def. This is again undefined behavior according
to POSIX, and this interpretation is arguably more robust: older seds, for
example, required that the regex matcher parsed \/ as / in the common case
of escaping a slash, which is again undefined behavior; the new behavior avoids
this, and this is good because the regex matcher is only partially under our
control.
In addition, this version of sed supports several escape characters (some of
which are multi-character) to insert non-printable characters in scripts (\a, \c,
\d, \o, \r, \t, \v, \x). These can cause similar problems with scripts written
for other seds.

‘-i’ clobbers read-only files
In short, ‘sed -i’ will let you delete the contents of a read-only file, and in
general the ‘-i’ option (see Chapter 2 [Invocation], page 1) lets you clobber
protected files. This is not a bug, but rather a consequence of how the Unix
filesystem works.
The permissions on a file say what can happen to the data in that file, while
the permissions on a directory say what can happen to the list of files in that
directory. ‘sed -i’ will not ever open for writing a file that is already on disk.
Rather, it will work on a temporary file that is finally renamed to the original
name: if you rename or delete files, you’re actually modifying the contents of
the directory, so the operation depends on the permissions of the directory, not
of the file. For this same reason, sed does not let you use ‘-i’ on a writeable
file in a read-only directory, and will break hard or symbolic links when ‘-i’ is
used on such a file.

0a does not work (gives an error)
There is no line 0. 0 is a special address that is only used to treat addresses like
0,/RE/ as active when the script starts: if you write 1,/abc/d and the first
line includes the word ‘abc’, then that match would be ignored because address
ranges must span at least two lines (barring the end of the file); but what you
probably wanted is to delete every line up to the first one including ‘abc’, and
this is obtained with 0,/abc/d.

[a-z] is case insensitive
You are encountering problems with locales. POSIX mandates that [a-z]
uses the current locale’s collation order – in C parlance, that means using
strcoll(3) instead of strcmp(3). Some locales have a case-insensitive colla-
tion order, others don’t.
Another problem is that [a-z] tries to use collation symbols. This only happens
if you are on the GNU system, using GNU libc’s regular expression matcher

Appendix A: Extended regular expressions 34

instead of compiling the one supplied with GNU sed. In a Danish locale, for
example, the regular expression ^[a-z]$ matches the string ‘aa’, because this
is a single collating symbol that comes after ‘a’ and before ‘b’; ‘ll’ behaves
similarly in Spanish locales, or ‘ij’ in Dutch locales.
To work around these problems, which may cause bugs in shell scripts, set the
LC_COLLATE and LC_CTYPE environment variables to ‘C’.

s/.*// does not clear pattern space
This happens if your input stream includes invalid multibyte sequences. posix
mandates that such sequences are not matched by ‘.’, so that ‘s/.*//’ will not
clear pattern space as you would expect. In fact, there is no way to clear sed’s
buffers in the middle of the script in most multibyte locales (including UTF-8
locales). For this reason, GNU sed provides a ‘z’ command (for ‘zap’) as an
extension.
To work around these problems, which may cause bugs in shell scripts, set the
LC_COLLATE and LC_CTYPE environment variables to ‘C’.

Appendix A Extended regular expressions

The only difference between basic and extended regular expressions is in the behavior of a
few characters: ‘?’, ‘+’, parentheses, braces (‘{}’), and ‘|’. While basic regular expressions
require these to be escaped if you want them to behave as special characters, when using
extended regular expressions you must escape them if you want them to match a literal
character. ‘|’ is special here because ‘\|’ is a GNU extension – standard basic regular
expressions do not provide its functionality.
Examples:

abc? becomes ‘abc\?’ when using extended regular expressions. It matches the literal
string ‘abc?’.

c\+ becomes ‘c+’ when using extended regular expressions. It matches one or more
‘c’s.

a\{3,\} becomes ‘a{3,}’ when using extended regular expressions. It matches three or
more ‘a’s.

\(abc\)\{2,3\}
becomes ‘(abc){2,3}’ when using extended regular expressions. It matches
either ‘abcabc’ or ‘abcabcabc’.

\(abc*\)\1
becomes ‘(abc*)\1’ when using extended regular expressions. Backreferences
must still be escaped when using extended regular expressions.

Concept Index 35

Concept Index

This is a general index of all issues discussed in this manual, with the exception of the sed
commands and command-line options.

0
0 address . 33

A
Additional reading about sed 31
addr1,+N . 6
addr1,~N . 6
Address, as a regular expression 5
Address, last line . 5
Address, numeric . 4
Addresses, in sed scripts . 4
Append hold space to pattern space 13
Append next input line to pattern space 13
Append pattern space to hold space 13
Appending text after a line . 12

B
Backreferences, in regular expressions 10
Branch to a label, if s/// failed 15
Branch to a label, if s/// succeeded 13
Branch to a label, unconditionally 13
Buffer spaces, pattern and hold 4
Bugs, reporting . 32

C
Case-insensitive matching . 11
Caveat — #n on first line . 9
Command groups . 9
Comments, in scripts . 9
Conditional branch . 13, 15
Copy hold space into pattern space 13
Copy pattern space into hold space 13

D
Delete first line from pattern space 13
Disabling autoprint, from command line 1

E
empty regular expression . 5
Emptying pattern space . 15, 34
Evaluate Bourne-shell commands 14
Evaluate Bourne-shell commands, after

substitution . 11
Exchange hold space with pattern space 13
Excluding lines . 6
Extended regular expressions, choosing 3

Extended regular expressions, syntax 34

F
File name, printing . 14
Files to be processed as input 3
Flow of control in scripts . 13

G
Global substitution . 10
GNU extensions, ‘/dev/stderr’ file 11, 13
GNU extensions, ‘/dev/stdin’ file 12, 14
GNU extensions, ‘/dev/stdout’ file 2, 11, 13
GNU extensions, 0 address 6, 33
GNU extensions, 0,addr2 addressing 6
GNU extensions, addr1,+N addressing 6
GNU extensions, addr1,~N addressing 6
GNU extensions, branch if s/// failed 15
GNU extensions, case modifiers in s commands

. 10
GNU extensions, checking for their presence 15
GNU extensions, disabling . 2
GNU extensions, emptying pattern space . . . 15, 34
GNU extensions, evaluating Bourne-shell

commands . 11, 14
GNU extensions, extended regular expressions . . . 3
GNU extensions, g and number modifier

interaction in s command 10
GNU extensions, I modifier 5, 11
GNU extensions, in-place editing 2, 33
GNU extensions, L command 14
GNU extensions, M modifier 5, 11
GNU extensions, modifiers and the empty regular

expression . 5
GNU extensions, ‘n~m ’ addresses 5
GNU extensions, quitting silently 14
GNU extensions, R command 14
GNU extensions, reading a file a line at a time . . 14
GNU extensions, reformatting paragraphs 14
GNU extensions, returning an exit code 9, 14
GNU extensions, setting line length 12
GNU extensions, special escapes 15, 33
GNU extensions, special two-address forms 6
GNU extensions, subprocesses 11, 14
GNU extensions, to basic regular expressions 6,

7, 8, 32
GNU extensions, two addresses supported by most

commands . 12
GNU extensions, unlimited line length 31
GNU extensions, writing first line to a file 15

Concept Index 36

Goto, in scripts . 13
Greedy regular expression matching 8
Grouping commands . 9

H
Hold space, appending from pattern space 13
Hold space, appending to pattern space 13
Hold space, copy into pattern space 13
Hold space, copying pattern space into 13
Hold space, definition . 4
Hold space, exchange with pattern space 13

I
In-place editing . 33
In-place editing, activating . 2
In-place editing, Perl-style backup file names 2
Inserting text before a line . 12

L
Labels, in scripts . 13
Last line, selecting . 5
Line length, setting . 2, 12
Line number, printing . 12
Line selection . 4
Line, selecting by number . 4
Line, selecting by regular expression match 5
Line, selecting last . 5
List pattern space . 12

M
Mixing g and number modifiers in the s command

. 10

N
Next input line, append to pattern space 13
Next input line, replace pattern space with 9
Non-bugs, 0 address . 33
Non-bugs, in-place editing . 33
Non-bugs, localization-related 33, 34
Non-bugs, N command on the last line 32
Non-bugs, regex syntax clashes 32

P
Parenthesized substrings . 10
Pattern space, definition . 4
Portability, comments . 9
Portability, line length limitations 31
Portability, N command on the last line 32
POSIXLY_CORRECT behavior, bracket expressions . . 7
POSIXLY_CORRECT behavior, enabling 2
POSIXLY_CORRECT behavior, escapes 15

POSIXLY_CORRECT behavior, N command 32
Print first line from pattern space 13
Printing file name . 14
Printing line number . 12
Printing text unambiguously 12

Q
Quitting . 9, 14

R
Range of lines . 5
Range with start address of zero 6
Read next input line . 9
Read text from a file . 12, 14
Reformat pattern space . 14
Reformatting paragraphs . 14
Replace hold space with copy of pattern space . . 13
Replace pattern space with copy of hold space . . 13
Replacing all text matching regexp in a line 10
Replacing only nth match of regexp in a line . . . 10
Replacing selected lines with other text 12
Requiring GNU sed . 15

S
Script structure . 4
Script, from a file . 1
Script, from command line . 1
sed program structure . 4
Selecting lines to process . 4
Selecting non-matching lines . 6
Several lines, selecting . 5
Slash character, in regular expressions 5
Spaces, pattern and hold . 4
Special addressing forms . 6
Standard input, processing as input 4
Stream editor . 1
Subprocesses . 11, 14
Substitution of text, options 10

T
Text, appending . 12
Text, deleting . 9
Text, insertion . 12
Text, printing . 9
Text, printing after substitution 11
Text, writing to a file after substitution 11
Transliteration . 11

U
Unbuffered I/O, choosing . 3
Usage summary, printing . 1

Concept Index 37

V
Version, printing . 1

W
Working on separate files . 3

Write first line to a file . 15
Write to a file . 13

Z
Zero, as range start address . 6

Command and Option Index 38

Command and Option Index

This is an alphabetical list of all sed commands and command-line options.

#
(comments) . 9

-
--binary . 3
--expression . 1
--file . 1
--follow-symlinks . 3
--help . 1
--in-place . 2
--line-length . 2
--null-data . 3
--posix . 2
--quiet . 1
--regexp-extended . 3
--separate . 3
--silent . 1
--unbuffered . 3
--version . 1
--zero-terminated . 3
-b . 3
-e . 1
-f . 1
-i . 2
-l . 2
-n . 1
-n, forcing from within a script 9
-r . 3
-s . 3
-u . 3
-z . 3

:
: (label) command . 13

=
= (print line number) command 12

{
{} command grouping . 9

A
a (append text lines) command 12

B
b (branch) command . 13

C
c (change to text lines) command 12

D
D (delete first line) command 13
d (delete) command . 9

E
e (evaluate) command . 14

F
F (File name) command . 14

G
G (appending Get) command . 13
g (get) command . 13

H
H (append Hold) command . 13
h (hold) command . 13

I
i (insert text lines) command 12

L
L (fLow paragraphs) command 14
l (list unambiguously) command 12

N
N (append Next line) command 13
n (next-line) command . 9

P
P (print first line) command 13
p (print) command . 9

Q
q (quit) command . 9
Q (silent Quit) command . 14

Command and Option Index 39

R
r (read file) command . 12
R (read line) command . 14

S
s command, option flags . 10

T
T (test and branch if failed) command 15
t (test and branch if successful) command . . 13

V
v (version) command . 15

W
w (write file) command . 13
W (write first line) command 15

X
x (eXchange) command . 13

Y
y (transliterate) command 11

Z
z (Zap) command . 15

i

Table of Contents

. 1

1 Introduction . 1

2 Invocation . 1

3 sed Programs . 4
3.1 How sed Works . 4
3.2 Selecting lines with sed . 4
3.3 Overview of Regular Expression Syntax . 6
3.4 Often-Used Commands . 9
3.5 The s Command . 10
3.6 Less Frequently-Used Commands . 11
3.7 Commands for sed gurus . 13
3.8 Commands Specific to GNU sed . 14
3.9 GNU Extensions for Escapes in Regular Expressions 15

4 Some Sample Scripts . 16
4.1 Centering Lines . 16
4.2 Increment a Number . 17
4.3 Rename Files to Lower Case . 18
4.4 Print bash Environment . 20
4.5 Reverse Characters of Lines . 21
4.6 Reverse Lines of Files . 22
4.7 Numbering Lines . 22
4.8 Numbering Non-blank Lines . 23
4.9 Counting Characters . 24
4.10 Counting Words . 25
4.11 Counting Lines . 26
4.12 Printing the First Lines . 27
4.13 Printing the Last Lines . 27
4.14 Make Duplicate Lines Unique . 27
4.15 Print Duplicated Lines of Input . 28
4.16 Remove All Duplicated Lines . 29
4.17 Squeezing Blank Lines . 29

5 GNU sed’s Limitations and Non-limitations
. 31

6 Other Resources for Learning About sed 31

ii

7 Reporting Bugs . 32

Appendix A Extended regular expressions 34

Concept Index . 35

Command and Option Index . 38

	
	Introduction
	Invocation
	sed Programs
	How sed Works
	Selecting lines with sed
	Overview of Regular Expression Syntax
	Often-Used Commands
	The s Command
	Less Frequently-Used Commands
	Commands for sed gurus
	Commands Specific to GNU sed
	GNU Extensions for Escapes in Regular Expressions

	Some Sample Scripts
	Centering Lines
	Increment a Number
	Rename Files to Lower Case
	Print bash Environment
	Reverse Characters of Lines
	Reverse Lines of Files
	Numbering Lines
	Numbering Non-blank Lines
	Counting Characters
	Counting Words
	Counting Lines
	Printing the First Lines
	Printing the Last Lines
	Make Duplicate Lines Unique
	Print Duplicated Lines of Input
	Remove All Duplicated Lines
	Squeezing Blank Lines

	GNU sed's Limitations and Non-limitations
	Other Resources for Learning About sed
	Reporting Bugs
	Extended regular expressions
	Concept Index
	Command and Option Index

